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Abstract

Background: Time consumed and expenses in discovering and synthesizing new hypothetical drugs with
improved biological activity have been a major challenge toward the treatment of multi-drug-resistant strain
Mycobacterium tuberculosis (TB). To solve the above problem, quantitative structure activity relationship (QSAR) is a
recent approach developed to discover novel agents with better biological activity against M. tuberculosis.

Results: A validated QSAR model was developed in this study to predict the biological activities of some anti-
tubercular compounds and to design new hypothetical drugs is influenced with the molecular descriptors, AATS7s,
VR1_Dzi, VR1_Dzs, SpMin7_Bhe, and TDB8e, which has been validated through internal and external validation test.
Prior to high anti-tubercular activity of the lead compound, compound 17 served as a template structure to design
compounds with improved activity. Among the compounds designed, compounds 17i, 17j, and 17n were observed
with improved anti-tubercular activities which ranges from 8.8981 to 9.0377 pBA.

Conclusion: The outcome of this research is recommended for pharmaceutical and medicinal chemists to synthesis
and carry out an in vivo and in vitro screening for the proposed designed compounds in order to substantiate the
computational findings.
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Background
Multi-drug resistance strain (TB) has posed a challenge to-
ward the treatment of tuberculosis in the global community.
World Health Organization in (2018) has reported 9.0 mil-
lion people infected with tuberculosis, 360,000 HIV patients
who were living with tuberculosis, death of 230,000 chil-
dren, and death of 1.6 million people worldwide [1]. Some
of the notable commercially sold drugs administered to
people infected with tuberculosis are isoniazid (INH), pyra-
zinamide (PZA), rifampicin (RMP), and para-amino salicylic
acid (PAS). The emergence of multi drug-resistant strains of

M. tuberculosis toward the aforementioned drugs has led to
advances in searching for new and better approach that is
precise and fast in developing a novel compound with im-
proved biological activity againstM. tuberculosis.
The advance of computational chemistry has led to de-

velopment of new drug. Computational methods which
reduced the cost for effective evaluation of large virtual
database of chemical compounds are currently employed
in designing new drugs. Such method includes complex
network theory, quantitative structure–activity relation-
ships (QSAR) models, Machine Learning (ML), and Artifi-
cial Neural Networks (ANN) analysis. For the time being,
QSAR is a theoretical approach with widely used compu-
tational method in predicting and designing new hypo-
thetical drug candidate [2]. The application of QSAR

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

* Correspondence: shola4343@gmail.com
1Chemistry department, Ahmadu Bello University, Zaria, Nigeria Kaduna State
810107, Nigeria
Full list of author information is available at the end of the article

Future Journal of
Pharmaceutical Sciences

Adeniji and Adalumo Future Journal of Pharmaceutical Sciences            (2020) 6:15 
https://doi.org/10.1186/s43094-020-00027-z

http://crossmark.crossref.org/dialog/?doi=10.1186/s43094-020-00027-z&domain=pdf
https://orcid.org/0000-0002-7750-8174
http://creativecommons.org/licenses/by/4.0/
mailto:shola4343@gmail.com


technique to this problem has a potential to minimize the
effort and time required to discover new compounds or to
improve current compounds in terms of their efficiency.
Multi variant QSAR model is expressed mathematically to
relate the physical, chemical, biological, or environmental
activities of interest with measurable or computable pa-
rameters such as physicochemical, topological, stereochem-
ical, or electronic indices called molecular descriptors.
Meanwhile, some prominent researchers [3–6] have suc-
cessfully established QSAR models to show the relation-
ship between some derivatives such as triazole, chalcone,
quinolone, 7-methyijuglone, pyrrole, and their respective
biological activities using the QSAR approach. Hence, this
research was aimed to build a robust QSAR model with
high predictability and to design new potent hypothetical
compounds with proposed better anti-tubercular activity.

Methods
Data collection
The molecules of derivatives of 2,4-disubstituted quin-
oline derivatives reported as anti-Mycobacterium tuber-
culosis which were used in this study were obtained
from the literature [7]. The list of these compounds and
their biological activities were presented in Table 1.

Biological activities
The biological activities of 2,4-disubstituted quinoline
derivatives as potent anti-tubercular agents were initially
expressed in percentage (%) and then converted to loga-
rithm unit using Eq. 1 below in order to increase the lin-
earity and approach normal distribution of the activity
values. The observed structures and the biological activ-
ities of these compounds were presented in Table 1 [4].

pBA ¼ log
molecular weight g=molð Þ

Dose g=molð Þ

� �
percentage %ð Þ

100−percentage %ð Þ
� �� �

ð1Þ

Molecular optimization
The Spartan 14 software version 1.1.4 was used to
optimize all the inhibitory compounds in order for the
compounds to attain stable conformation at a minimal
energy. The strain energy from the molecules was re-
moved by employing molecular mechanics force field
(MMFF), and complete optimization was achieved with
the aid of density functional theory (DFT) by utilizing
the (B3LYP) basic set [4].

Generation of molecular descriptor
A descriptor is a mathematical logic that defines the
properties of a molecule in a numeral term based on the
connection between the biological activity of each mol-
ecule and its molecular structure. Descriptors for all the

Table 1 Geometrical structures of inhibitory compounds as
anti-tubercular agents

Where superscript a represent the test set
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inhibitory molecules were calculated with the aid of the
PaDEL descriptor software version 2.20, and a total of
1879 molecular descriptors were generated.

Normalization and pretreatment of data
For each of the variable (descriptor) to have the same
chance at the inception so as to influence the QSAR
model, the descriptor values generated from the PaDEL
descriptor software version 2.20 were subjected to
normalization using Eq. 2 [8].

D ¼ d1−dmin

dmax−dmin
ð2Þ

where dmax and dmin are the maximum and minimum value
for each descriptor column of D. d1 is the descriptor value for
each of the molecule. Immediately after the data have been
normalized, the normalized data were then subjected to pre-
treatment so as to remove redundant descriptors.

Generation training and test set
The whole compounds that made up the data set were
divided into training and test set in proportion of 70 to
30% using Kennard and Stone’s algorithm which was in-
corporated in DTC lab software. The development of
the QSAR model and internal validation test were per-
formed on the training set while the confirmation of the
developed model was performed on test set.

Building of QSAR models and internal validation test
The QSAR models were built by adopting the Genetic
Function Approximation (GFA) technique incorporated
in the Material Studio software version 8.0 to select the
optimum descriptors for the training set. Meanwhile,
multi-linear regression approach (MLR) was used as a
modeling tool to develop the multi-variant equations by
placing the activity data in the last column of Microsoft
Excel 2013 spread sheet which was later imported into
the Material Studio software version 8.0 to generate the
QSAR model. The internal validation test to affirm the
built model is robust and also has a high predictability
that was also performed in the Material Studio software
version 8.0 and reported.

Evaluation of leverage values (applicability domain)
Influential and outlier molecule present in both the
training and test set were determined by employing the
applicability domain approach. The leverage hi approach
as defined in Eq. 3 was used to define applicability do-
main space ±3 for outlier molecule [9].

hi ¼ Mi MTM
� �−1

MT
i ð3Þ

where Mi represents the matrix of i for the training
set. M represents the n × d descriptor matrix for the

training set, and MT is the transpose of the training set
(M). MT

i represents the transpose matrix Mi. Meanwhile,
the warning leverage h* defined in Eq. 4 is the limit
boundary to check for an influential molecule.

h� ¼ 3
d þ 1ð Þ
N

ð4Þ

where d is the total number of descriptors present in
the built model, and N is the total number of com-
pounds that made up the training set.

Y-randomization validation test
Y-randomization test is one of the external validation
criteria which has to be considered in order to ascertain
that the developed model is not built by chance [10].
Random shuffling of the data was performed on the
training set following the principle laid by [11]. The ac-
tivity data (dependent variable) were shuffled while the
descriptors (independent variables) were kept unchanged
in order to generate the multi-linear regression (MLR)
model. For the developed QSAR to pass the Y-
randomization test, the R2 and Q2 values for the model
must be significantly low for numbers of trials while Y-
randomization coefficient (cR2

pÞ shown in Eq. 5 must be

≥0.5 in order to establish the robustness of the model.

cR2
p ¼ R� R2− Rrð Þ2� 	2 ð5Þ

where cR2
p is the Y-randomization coefficient, R is the

correlation coefficient, and Rr is the average “R” of ran-
dom models.

Affirmation of the build model
The internal and external validation criteria for both test
and training set reported were compared with the gener-
ally accepted threshold value shown in Table 6 for any
QSAR model [9–12] in order to affirm the reliability, fit-
ting, stability, robustness, and predictability of the devel-
oped models.

Results
Model 1
pBA = − 7.836545646 × AATS7s + 0.201962934 × VR1_
Dzi + 0.087893211 × VR1_Dzs−4.204663658 × SpMin7_
Bhe + 0.674915710 TDB8e + 29.11653208

Model 2
pBA = − 4.790218643 × AATS5e + 0.082643756 × VR3_
Dzv−3.953009651 × SpMin7_Bhe + 0.094784839 TDB7e
+ 0.024520722 RDF90i + 41.534742802
EE is the standard error of estimation, w is the total

number of terms present in the built model except the
constant term, j is the number of descriptors confined in
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the built model, q is a user-defined factor, and N is the
number of compounds of training set. Yobs, �Y training , and
Ypred are the observed activity, mean observed activity of
the training compounds and the predicted activity re-
spectively. r2 is correlation coefficients of the plot of ob-
served activity against predicted activity values, ro

2 is the
correlation coefficients of the plot of observed activity
against predicted activity values at zero intercept, r′o

2 is
the correlation coefficients of the plot of predicted activ-
ity against observed activity at zero intercept [7, 9, 10].

Discussion on designed compounds

Discussion
QSAR studies
Optimum QSAR model for predicting the derivatives of
2,4-disubstituted quinoline against M. tuberculosis was
successfully achieved by adopting the combination of
computational and theoretical method. Data set com-
prises of 36 compounds was partitioned into 25 training
set and 11 test set using Kennard and Stone algorithm
method. The 25 training set compounds were used to
derive QSAR model using the multi-linear regression
technique which also served as data set for internal val-
idation test while the external validation test for the de-
rived model was conducted on the test set.
The observed activities reported in literature, the calcu-

lated activities calculated for all the anti-tubercular com-
pounds, the leverage values, and the residual values were
presented in Table 1. The difference between the observed
activities and calculated activities is the residual values which
were observed to be significant low [13–15]. The low re-
sidual value indicates that the model built has a good pre-
dictive ability.
The optimum (2D and 3D) descriptors that efficiently

describe the anti-tubercular compounds in relation to
their biological activities were selected by the GFA ap-
proach. The characterization and relative information on
the molecular structure of the anti-tubercular agent il-
lustrated by the descriptors were reported in numerical
value as shown in Table 2.
Various statistical analyses were conducted on the cal-

culated descriptors in order to check the validity of the
built model as reported in Table 3. Variance inflation

factor (VIF) was evaluated for all the descriptors in order
to determine the degree of correlation between each the
descriptor. Generally, VIF value equals to 1 or falls with
1 and 5 signify non-existence of inter-correlation among
the descriptors. However, if the VIF value is greater than
10, it signify that the model developed is unstable, hence
the model should be re-checked if necessary. Regarding
the VIF values for each of the descriptors which were
found to be less than 5 as reported in Table 3 affirm that
the descriptors were significantly orthogonal to each
order since there is no inter-correlation between them.
The degree of contribution that each descriptor plays in
the built model was evaluated by determining the stand-
ard regression coefficient ( bsjÞ and mean effect (ME).

The magnitude and signs for bsj and ME values reported

in Table 4 indicate strength and direction with which
each descriptor influence the activity model. The rela-
tionship between the descriptors and biological activity
of each compound was determined by one way analysis
of variance (ANOVA). The probability value of each of
the descriptor at 95% confidence level was found to be
(p < 0.05) as presented in Table 3. Therefore, this signify
that the alternative hypothesis that says there is a direct
relationship between the biological activity of each com-
pound and the descriptor swaying the built model is ac-
cepted; thus, null hypothesis proposing no direct
relationship between biological activity of each com-
pound and the descriptor swaying the built model is
rejected. To further justify the validation of the

Table 2 Descriptors name and class in model 1

S/
NO

Name of descriptor(s) Descriptor
symbols

Class

1 Average Broto-Moreau autocorrelation-lag
7/weighted by I-state

AATS7s 2D

2 Randic-like eigenvector-based index from
Barysz matrix/weighted by first ionization
potential

VR1_Dzi 2D

3 Randic-like eigenvector-based index from
Barysz matrix/weighted by I-state

VR1_Dzs 2D

4 Smallest absolute eigenvalue of Burden
modified matrix-n 7/weighted by relative
Sanderson electronegativities

SpMin7_
Bhe

2D

5 Topological distance based autocorrelation-lag
8/weighted by Sanderson electronegativities

TDB8e 3D

Table 3 Statistical analysis and validation of descriptors model 1

Descriptor Standard regression coefficient (bj) Mean effect (ME) P value (confidence interval) VIF Standard error

AATS7s − 0.2854 − 0.2651 2.23E-04 3.0925 5.11E-05

VR1_Dzi 0.4312 0.4176 0.00719 1.6328 2.98E-06

VR1_Dzs 0.1729 0.1623 4.34E-04 2.7301 4.78E-05

SpMin7_Bhe − 0.4287 − 0.4017 3.42E-04 3.2001 3.09E-04

TDB8e 0.6341 − 0.6287 2.84E-05 1.0034 0.4302
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descriptors in the activity model, Pearson’s correlation
statistic was conducted to also check whether there is
inter-correlation between each descriptor. The correl-
ation coefficient between each descriptors reported in

Table 4 was all < ± 0.8. Hence, this implies that all the
descriptors were void of multicollinearity.
Validation results for both the external and internal as-

sessment to assure that the built models are reliable and ro-
bust were presented in Table 5. These results were all in
full agreement with the general validation criteria pre-
sented in Table 5 to truly indorse that the stability
and robustness of the model is valid. Reference to
these validation results obtained, model one was se-
lected and established to be the prime model which
was used to predict the biological activities of 2, 4-
disubstituted quinoline against M. tuberculosis.
The built QSAR model and results obtained in this re-

search were compared with recent model developed in
the literature [3, 6] as shown below:

Table 4 Coefficient of Pearson’s correlation for descriptor in
model

Inter-correlation

AATS7s VR1_Dzi VR1_Dzs SpMin7_Bhe TDB8e

AATS7s 1

VR1_Dzi 0.4318 1

VR1_Dzs 0.5324 0.4091 1

SpMin7_Bhe 0.3912 − 0.0123 − 0.0291 1

TDB8e 0.1008 − 0.0189 0.0183 0.0298 1

Table 5 Internal and external validation parameters for each model

S/NO Validation parameters Formula Threshold Model 1 Model 2

Internal validation

1 Friedman’s lack of fit (LOF) SEE

ð1−wþq� j
N Þ2

0.0274 0.0301

2 R-squared
1−½

P
ðYobs −Ypred

Þ2P
ðY

obs −�Ytraining

Þ2�
R2 > 0.6 0.9183 0.8429

3 Adjusted R-squared R2−P ðN−1Þ
N−pþ1

R2adj > 0:6 0.8854 0.8189

4 Cross validated R-squared (Q2
cvÞ 1−½

P
ðYpred −Yobs

Þ2P
ðY

obs −�Ytraining

Þ2�
Q2 > 0.6 0.8202 0.7400

5 Significant regression Yes Yes

6 Critical SOR F value (95%)
P

ðYpred −Yobs
Þ2

p =

P
ðYpred −Yobs

Þ2
N−p−1

F(test) > 2.09 4.3892 4.3892

7 Replicate points 0 0

8 Computed observed error 0 0

9 Min expt. error for non-significant LOF (95%) 0.0278 0.0278

Model randomization

10 Average of the correlation coefficient for randomized data ( Rr ) R < 0:5 0.3371 0.3983

11 Average of determination coefficient for randomized data (R
2
r Þ R

2
r < 0:5 0.1521 0.1763

12 Average of leave-one-out cross-validated determination
coefficient for randomized data (Q

2
r )

Q
2
r < 0:5 − 1.3198 − 1.3719

13 Y-randomization coefficient (cR2pÞ R2 � ð1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jR2−R2r j

q
Þ

cR2p > 0:6 0.7362 0.7058

External validation

14 Slope of the plot of observed activity against predicted activity
values at zero intercept (K)

ΔYObs
ΔYpred

0.85 < k < 1.15 1.0013 1.0582

15 Slope of the plot of predicted against observed activity at zero
intercept (k′)

ΔYpred

ΔYObs
0.85 < k < 1.15 0.9290 0.9016

16 =r20−r
0 2
0=

< 0.3 0.0834 0.0610

17 r2−r20
r2

< 0.1 0.0028 0.0042

18 r2−r
0 2
0

r2
< 0.1 0.0610 0.0582

19 R2test R2test ¼ 1−
P

ðYpredtest−Yobstest Þ2P
ðYpredtest−�Ytraining Þ

2
>0.6 0.8052 0.7281
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pBA =−0.307001458(MATS2s)+ 1.528715398(nHBint3
)+3.976720227(maxtsC)+ 0.016199645(TDB9e)+ 0.08938
1479(RDF90i) − 0.107407822(RDF110s)+ 4.057082751,
R2 = 0.92024, Radj = 0.9102, Q2

cv = 0.8954, and R2pred =
0.8842 [3]
pIC50 =−2.040810634 (nCl)−19.024890361 (MATS2m

)+ 1.855704759 (RDF140s)+ 6.739013671 = 27, R2 = 0.94
80, Radj = 0.9350, Q2

cv = 0.8799, and R2pred = 0.7690 [6]
The validation factors reported in this work and those

reported in the literature were all in agreement with the
validation parameters presented in Table 5 which really
inveterate that the model generated is predictive and
robust.
The coefficient of Y-randomization (cR2

pÞ with sig-

nificant value of 0.7362 greater than threshold value
of 0.5 reported in Table 5 provides a reasonable sup-
port that the model built is robust and not just by
chance.
The graphical representation to show the degree of

correlation between the calculated activities and

observed activities of the training and test set were
shown in Figs. 1 and 2. The correlation coefficient
(R2) value of 0.9183 and 0.8052 for both the training
set and test set shows that there is a high correlation
existing between the calculated activities and observed
activities of the training and test set which were also
in agreement with the accepted QSAR threshold
values reported in Table 6.

The residual plot shown in Fig. 3 signify that there is
no indication of computational incompetency and in-
accuracy in the QSAR model derived as all the standard
residual values for both training and test set were found
within the defined boundary of ±2 on the standard re-
sidual activity axis.

The Williams plot to show the applicability domain
space (AD) is shown in Fig. 4. However, compound
(number 30) is found to have a leverage value greater
than the predicted warning leverage (h* = 0.60).
Therefore, it can be infer that compound (number
30) is an influential molecule. Moreover, it is also

Fig. 1 Plot of predicted activity against observed activity of training set

Fig. 2 Plot of predicted activity against observed activity of test set
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Table 6 Binding affinity, hydrogen bond, and hydrophobic interaction of the ligands (2,4-disubstituted quinolone derivatives) with
M. tuberculosis target (DNA gyrase)

Ligand Binding affinity
(BA) Kcal/mol

Target Hydrogen bond Hydrophobic interaction

Amino acid Bond length (Å) Amino acid

1 − 7.2 DNA gyrase PRO124 2.251 VAL278, TRP103, HIS220, GLN277

2 − 7.5 DNA gyrase ARG98 2.9399 GLN277, PRO285, HIS220, VAL78

3 − 7.7 DNA gyrase ASP94
TRP182

2.3878 PRO124, VAL138, GLN101, CYS112

4 − 7.7 DNA gyrase ARG98 1.4999 PRO124, VAL97, HIS220

5 − 7.9 DNA gyrase ASP94 2.1801 VAL278, PRO119, GLN101, ASP122

6 − 8.3 DNA gyrase SER102 2.529 ASP122, ALA167, TRP182, SER247

7 − 8.2 DNA gyrase ARG98
GLY120
SER118

4.287
2.6231, 2.8491
2.6198

TYR276, ASP94, VAL97, PRO124

8 − 8.8 DNA gyrase HIS220 2.4765 PHE228, ALA173 , PRO119, TRP182, SER247

9 − 8.4 DNA gyrase LEU213
ARG184

1.461 MET99, VAL78, TRP182, SER118, ASP122,

10 − 8.2 DNA gyrase PRO119
GLY120

2.1738 VAL77, SER247, ARG98, ASP94, VAL182

11 − 9.7 DNA gyrase ASP94 TRP103 1.383 GLY120, GLY120, SER118, PHE168, PRO285, VAL78,

12 − 8.6 DNA gyrase SER104
VAL77

2.023 TRP162, CYS145, ASP122, VAL78, PRO126, ARG98,

13 − 8.1 DNA gyrase PRO 2.221 PRO34, PRO285, PHE177, VAL27, MET99

14 − 8.4 DNA gyrase VAL169
ARG134
PRO285

2.6021 MET99, ASP122, PHE232

15 − 9.1 DNA gyrase GLY145
SER205

2.4909 VAL98, ALA223, MET145, MET99, LEU164

16 − 8.1 DNA gyrase ARG98
SER118
GLY120

3.3701
2.8704
1.9128, 3.2821

PRO124, VAL97, VAL97, ASP94, PRO123, ASP122,

17 − 18.8 DNA gyrase ARG98 1.99395 CYS174, ALA67, ASN74, GLY120, MET99,

18 − 9.1 DNA gyrase LEU114
ALA78

2.3983 LEU164, VAL228, PHE168, GLY232, TYR276

19 − 9.7 DNA gyrase ALA167
ARG94

1.3965 ALA233, LYS136, MET99, VAL228

20 − 11.6 DNA gyrase MET99 2.3975 TRP142, PHE88, PRO169, VAL78,LEU 156

21 − 9.9 DNA gyrase GLN223
TYR276

2.5093 ARG98, LEU103, ALA167, PHE168, MET234,

22 − 6.8 DNA gyrase PHE212
TRP182

1.8408 VAL78, LEU123, SER119, ALA233, TYR276,

23 − 10.7 DNA gyrase LSY146
TRP143

2.1665 PHE168, CYS254, TRP182, ALA167, VAL78, VAL82

24 − 7.9 DNA gyrase ARG98
CYS156

1.5984 ALA167, LEU 103, TRP112, ARG386

25 − 7.1 DNA gyrase TRP182 2.3663 ARG72, ALA143, VAL78, GLN154

26 − 8 DNA gyrase PHE256
ARG143

1.287 TRP182, CYS345, ALA176, PHE 168,

27 − 9.2 DNA gyrase – – PRO285, MET 232, SER108, ALA137

28 − 8.5 DNA gyrase – – LEU164, VAL178, PRO169, PHE98, VAL228,

29 − 8.1 DNA gyrase ARG145 1.9217 LEU234, VAL228, CYS 144, ALA233, VAL78

30 − 8.2 DNA gyrase TRP182
MET99

2.3896 PRO34, PRO94, PHE93, VAL178, PHE241, PRO169
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observed that all the compounds fall within the de-
fined space of ±3 which indicates that no compound
is said to be outlier.

In silico design for new derivatives based on Lead
compound 17
Ligand-based approach was employed to design new
compounds with better anti-tubercular activities via
modification of the template by deletion, insertion,
and substitution of active substituent(s) into the tem-
plate structure. The choice of template used in this
study was (E)-N-benzyl-2-(2-benzylidenehydrazinyl)-
quinoline-4-carboxamide (i.e., molecule 17 in Table 1)
due to its relative high anti-tubercular activity which
also falls within the model applicability domain (AD)
space shown in Fig. 4. The modification was easily

made around N-ethylacetamide and 2-methylhydrazine
moiety of the template at positions 16 and 23 shown
in Fig. 5. The QSAR model built indicated that in-
crease in the values of descriptors, VR3_Dzp, VR1_
Dzi, and VR1_Dzs and influences the activity posi-
tively. This implies that increase in the value of these
descriptors also augment the values of the activity in
the same direction. Variation of the substituent at po-
sitions 16 and 23 of the template structure with alkyl
group, benzene derivatives, and substituted alky
amines lead to generation of fourteen compounds
with better anti-tubercular activities reported in Table
7. The leverage values predicted for the designed
compounds were used to screen and confirm whether
these compounds were within their model AD. Based
on the leverage value predicted for each compound in

Table 6 Binding affinity, hydrogen bond, and hydrophobic interaction of the ligands (2,4-disubstituted quinolone derivatives) with
M. tuberculosis target (DNA gyrase) (Continued)

Ligand Binding affinity
(BA) Kcal/mol

Target Hydrogen bond Hydrophobic interaction

Amino acid Bond length (Å) Amino acid

31 − 9.3 DNA gyrase ARG98 1.3896 PHE168, ALA137, TRP182, VAL122, PHE220

32 − 11.4 DNA gyrase TYR276 3.1345 VAL78, HIS220

33 − 7.1 DNA gyrase GLN277 2.5007 PHE338, ALA233, TYR276, ASP122, CYS345

34 − 9.6 DNA gyrase HIS220
SER104
MET99

3.2896 PHE285, GLY120, SER118

35 − 9.4 DNA gyrase TYR276 2.5007 TRP182, PHE168, TRP182, ALA167, TYR276

36 − 8.2 DNA gyrase ALA167
LEU137

1.3907 VAL167, CYS234, ARG165, ARG98, GLN385,
TYR276, GLN385

Ethambutol − 5.8 DNA gyrase ALA337 2.59739 –

Isoniazid − 14.6 DNA gyrase SER279
ALA337

2.29943
2.52954, 2.24657

CYS345, PHE338

Fig. 3 Plot of standardized residual activity versus observed activity
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Table 7 assured that each compound have a low le-
verage value compared with the warning leverage h∗ =
0.64 shown in Fig. 5. Hence, this signified that all the
designed compounds fall within their model AD
space. Among the compounds designed, compounds
17i, 17j, and 17n were observed with better anti-
tubercular activities. This was as a result of substitu-
tion at positions 16 and 23 of the template structure
with N-substituted alky amine which act as electron
releasing group via positive inductive effect (+I). Due
to the positive +I effect of the alkyl group attached to
the template structure, the nitrogen becomes strongly
electronegative, so the lone pair of electron on N-
atom is easily available. The steric hindrance of the
bulky alkyl group (30 amine) observed in the com-
pound 17j accounts for the decrease in its reactivity
when compared to compound 17i (10 amine) and 17n

(20 amine). Based on the decreasing order of amine,
(CH3)2NH > CH3NH2 > (CH3)3N > NH3, suggests
why compound 17n was observed with prominent
activity.

Conclusion
This work addresses the quantitative structure activity re-
lationship (QSAR) between quinoline derivatives and their
biological activities against Mycobacterium tuberculosis.
The QSAR model was established to predict the reported
experimental activities of 2,4-disubstituted quinoline de-
rivatives against M. tuberculosis via computational model-
ing approach under the influence of optimum descriptors:
AATS7s, VR1_Dzi, VR1_Dzs, SpMin7_Bhe, and TDB8e.
The lead compound (compound 17) with higher anti-
tubercular activity was used as a structural template to de-
signed new hypothetical drug candidates. Among the

Fig. 4 The Williams plot of the standardized residuals versus the leverage value

(A) (B)
Fig. 5 a Shows the lead compound (17) for 2,4-disubstituted quiloline. b Shows the general formula of the lead compound (17) for 2,4-
disubstituted quiloline as a design template
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Table 7 Designed molecule, predicted descriptors, and calculated activities for template 17 of 2,4-quiloline derivative
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compounds designed, compounds 17i, 17j, and 17n were
observed with improved anti-tubercular activities which
ranges from 8.8981 to 9.0377 pBA. The outcome of this
research is recommended for pharmaceutical and medi-
cinal chemists to synthesis and carry out an in vivo and
in vitro screening for the proposed designed compounds
in order to substantiate the computational findings.
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