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Abstract

Background: Coordination compounds, in particular cobalt(II) mixed ligand complexes containing 1,10-phenantroline,
have drawn the attention of many investigators as some of them are showing antimicrobial activities.

Result: Herein, we report three novel mixed ligand complexes of cobalt(II) having the formulae [Co(L1)2(H2O)2]Cl2,
[Co(L1)2(L2)(H2O)]Cl2 and [Co2(L1)4(L2)2(L3)]Cl4 (L1 = 1,10-phenanthroline, L2 = adenine, L3 = 1,3-diaminepropane) were
synthesized and characterized by elemental analysis, conductivity measurement, infrared, and UV-Vis spectroscopic
techniques. Octahedral geometries are proposed to all the complexes. In vitro antibacterial activities of the ligands, salt,
and metal complexes were tested on four pathogenic bacteria (Staphylococcus aureus, Salmonella typhus, Escherichia
coli, and Staphylococcus epidermis) using disc diffusion method.

Conclusions: It is interesting to note that the newly synthesized cobalt(II) complexes are active against gram negative
bacteria (Escherichia coli and Klebsiella pneumoniae) even though cobalt(II) complexes are well known for their activity
against gram positive bacteria.
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Background
On coordination with suitable ligands, it is possible to
impose a set of desired properties on transition metals
for specific applications. It is achieved by altering prop-
erties such as the stability of different oxidation states,
solvophilicity, electrophilic, and nucleophilic properties
of the metal ions. It can be done by tuning through vari-
ation of the metal and the choice of one of the vast array

of ligands available for complexation [1–3]. While co-
ordinating, the properties of the ligands themselves are
also modified. For instance, the pharmacological activ-
ities and their crucial role in DNA/RNA base pairing
through several hydrogen-bonding patterns of free pu-
rines such as adenine can significantly change after com-
plex formation [4–6]. 1,10-Phenanthroline significantly
changes its toxicity when coordinated to metals [7, 8].
Based on this, synthesis of different coordination com-
pounds with one or more metal centers by ligand tailor-
ing has become a fascinating research field. Designing
such coordination compounds for therapeutic applica-
tions has been part of this activity [9–18].
A good number of mononuclear [4, 7, 19, 20] and

binuclear [21–25] mixed ligand metal complexes have
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been reported. In particular, the bioinorganic chemistry of
cobalt(II) complexes have drawn the attention of many in-
vestigators [26–28]. This is because of the fact that cobalt
complexes are showing antibacterial [29] and antifungal
[30] activities. However, in most reports, Co(II) complexes
are unable to show activities against Gram-negative bac-
teria [31]. This is probably due to their inability to pene-
trate the cell wall of these bacteria [32–34], which
demands the fine-tuning of Co(II) complexes employing
novel ligand functionalities, thereby achieving variable
compositions. In this context, two mononuclear and one
binuclear Co(II) complexes have been synthesized from 1,
10-phenanthroline, adenine, and 1,3-diaminopropane, and
their biological activities were studied and are compared
with commercially available antibiotics.
1,10-Phenanthroline (Fig. 1) is rigid planar, chelating

bidentate ligand. The stacking interaction of 1,10-phe-
nanthroline with DNA base pairs makes it applicable in
medical fields [35, 36].
Adenine (Fig. 2) is a purine nucleotide and can exist

in either amino or imino forms. However, the amino
tautomer is more stable and therefore predominates
under the cellular conditions [37]. Its exocyclic amino
group is less likely to coordinate since the lone pair of
electrons is largely delocalized into the ring by resonance
(Fig. 3). Because it is free from resonance and steric hin-
drance, the best coordination site for adenine is N7 of
the imidazole ring [38].

Metal complexes of adenine have considerable interest
in the design of model complexes involving purines which
could mimic interactions of metal ions with DNA [39].
1,3-Diaminopropane is a bidentate ligand (Fig. 4)

which is used as a precursor for pharmaceutical, agro-
chemical, and organic industries [40, 41].

Methods
Materials
The metal salt is CoCl2.6H2O (Analar BDH) and the li-
gands are 1,10-phenanthroline monohydrate (BDH), aden-
ine (99%, ACROS), and 1,3-diaminopropane (ACROS).
Muller Hinton Agar and barium chloride (BLULUX La-
boratories Ltd, India) were used as such. All other solvents
used are of reagent quality.

Physical methods of analysis
All the complexes were analyzed for their metal and hal-
ide contents by the conventional methods. The molar
conductance was measured using 10−3 M solution for

Fig. 1 The chemical structure of 1,10-phenanthroline

Fig. 2 Tautomeric forms of adenine

Fig. 3 Resonance of adenine
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each complex in deionized water with JENWAY 4200
conductivity meter at room temperature. The electronic
spectra were recorded in the 50,000–12,500 cm−1 region
on Sanyo SP65 UV/VIS spectrophotometer. IR spectra
were recorded using KBr discs in the 4000–400 cm−1 re-
gion on AVATAR 330 FT-IR, Thermo Nicolet spectro-
photometer. C, H, and N content determination were
performed on a Perkin Elmer 2400 elemental analyzer.

Synthesis of complexes
Synthesis of [Co(L1)2(H2O)2]Cl2 (1)
A methanolic solution of 1,10-phenanthroline monohy-
drate (1 g, 5 mmol) was added to a methanolic solution
of CoCl2.6H2O(0.6 g, 2.5 mmol) being stirred magnetic-
ally in an ice bath. It was further allowed to stir for 1 h
at room temperature. It was then refluxed for one more
hour and allowed to cool to room temperature. On
evaporating the resultant solution, a yellow powder,
which was obtained and washed with acetone several
times to remove any unreacted 1,10-phenanthroline. It
was then re-crystalized from methanol (yield, 1.14 g;
85.84%).

Synthesis of [Co (L1)2(L2)(H2O)]Cl2 (2)
To an aqueous solution of 1 (0.3 g, 0.57 mmol) being
stirred magnetically in oil bath at 60 °C, an aqueous so-
lution of adenine (0.077 g, 0.57 mmol) was added. A
deep reddish brown homogeneous solution was ob-
tained. The solvent was removed under vacuum. Yellow-
ish orange powder was collected and washed several
times with acetonitrile (yield, 0.23 g; 62.9%).

Synthesis of [Co2(L1)4(L2)2(L3)]Cl4 (3)
To an aqueous solution of 2 (0.320 g, 0.49 mmol) being
stirred magnetically in water bath at 10 °C, an aqueous
solution of slightly excess 1,3-diaminopropane (0.022 g,
25 μL) was added. A deep reddish brown homogeneous
solution was obtained. The stirring was continued for
one more hour. The solvent was removed from the
resulting solution under vacuum. A red-brown powder
was obtained and was washed with acetone several times
(yield, 0.266 g; 73%).

Results
Synthesis and characterization studies
The formation of the complexes can be represented by
the following equations (scheme 1):
CoCl2.6H2O + 2L1 → [Co(L1)2(H2O)2]Cl2 (1)
[Co(L1)2(H2O)2]Cl2 + L2 → [Co(L1)2L2H2O]Cl2 (2)
[Co(L1)2L2H2O]Cl2 + L3 → [Co2(L1)4(L2)2(L3)]Cl4 (3)

where L1 = 1,10-phenantroline, L2 = Adenine, and L3 =
1,3-diaminopropane.

Fig. 4 Structure of 1,3-diaminopropane

Scheme 1 The synthetic path of the complexes
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All the synthesized complexes are soluble in most of the
polar solvents including water while insoluble in most of
the non-polar solvents and exhibit high melting point.
From elemental analysis and the conductance mea-

surements, the complexes can be formulated as
[Co(L1)2(H2O)2]Cl2 (1), [Co(L1)2(L2)(H2O)]Cl2 (2), and
[Co2(L1)4(L2)2(L3)]Cl4 (3) where L1 = 1,10-phenantro-
line, L2 = thymine, and L3 = 1,3-diaminopropane
(Table 1).
The important IR spectral band of the ligands and the

corresponding complexes are presented in Table 2.
The electronic spectra of the ligands and the corre-

sponding complexes 1, 2, and 3 with tentative assign-
ments are presented in Table 3.
It has been observed that complex 3 is having better

biological activity than the corresponding precursor
complexes 1 and 2 against all the bacterial strains in the
present study (Table 4).
The activity indexes of the present study with respect

to the commercial antibiotic demonstrated that the com-
plexes are less active. However, it is evident that the
MIC of the binuclear complex 3 is better than com-
plexes 1 and 2 (Table 5).

Spectroscopic results
Infrared spectra
The observed shifts in band positions are a clear indica-
tion that the ligands are coordinated to the Co(II). The
bands at 1620 cm−1(s) and 1585 cm−1(s), characteristic
for νC=C and νC=N, stretching vibration respectively in

1,10-phenanthroline monohydrate are shifted to 1628
cm−1(w) and 1522 cm−1(w), respectively, in [Co(L1)2(-
H2O)2]Cl2. The shift in frequency may indicate the
change in the bond order in C=C and C=N following
the coordination. However, the decrease in their inten-
sity indicates the formation of rigid and symmetric
structure. The coordination of adenine to Co(II) in
[Co(L1)2(H2O)2]Cl2 is evident that all its characteristic
vibration frequencies appear in [Co(L1)2(L2)(H2O)]Cl2.
The relatively higher electronic concentration in N7 in the
imidazole ring is the most preferable site of coordination
[38]. The characteristic vibration frequencies of adenine
appeared dominantly. This is probably due to the relative
vibration freedom of adenine in the complex compared to
the rigid and symmetric configuration of the rest of the
complex. The strong and broad band ranging from 3403
to 3043 cm−1 is due to the additive combination of the
characteristic vibrations of primary amine from adenine
and 1,3-diaminopropane which is a strong confirmation of
the coordination of 1,3-diaminopropane to [Co(L1)2(-
L2)(H2O)]Cl2. Moreover, the increase in strength and
broadness of the band in the frequency range 3403–3043
cm−1as well as the appearance of new bands at the vibra-
tion frequency 539 cm−1 is due to Co–N bond confirms
the coordination of 1,3-diaminpropane in the formation of
the binuclear complex.

Electronic spectra
Inter-ligand and simple characteristic d-d transitions are
exhibited by the complexes. Significant difference in the

Table 1 Analytical data of the complexes

Complexes Molar
mass
(g∕mol)

Elemental analysis, calculated (found) (%) ΛM (molar
conductivity),
S cm2 mol−1

Melting
point/°C

Color/
appearance

Yield
(%)

Co Cl C H N

[Co (L1)2(H2O)2]
Cl2

526.29 360 Yellow
powder

85.84 11.22,
(11.0)

13.50,
(13.20)

54.77,
(54.71)

3.83,
(3.76)

10.65,
(10.10)

138.6

[Co( L1)2( L2)(H2O)]
Cl2

643.90 256 Yellow-orange
powder

62.90 9.16, (8.94) 11.01,
(10.80)

54.01,
(53.88)

3.60,
(3.33)

19.58,
(18.93)

129.4

[Co2( L1)4( L2)2( L3)]
Cl4

1,324.83 245 Brownish-red
powder

73.00 8.90, (8.84) 10.70, (9.99) 55.30,
(54.93)

3.95,
(3.66)

21.15,
(20.69)

154.2

Table 2 Characteristic IR absorption (cm−1) of ligands L1, L2, and L3 and complexes 1, 2, and 3

Compound ν(C=C) ν(C=N) ν(C-H) ν(N-H) ν(O-H) ν(C-N)
L1 1581 1610 3043 - 3422 -

L2 1582 1605 2689 3290 - 1230

L3 - - 2800 3350, 2950 - 1100

[Co(L1)2(HO)2]Cl2 1587 1626 3048 - 3425 -

[Co(L1)2(L2)(H2O)]Cl2 1607 1664 3118 Overlapped with OH 3442–3139 1383

[Co2(L1)4(L2)2(L3)]Cl4 1587 1632 3189 3450–3062 - 1387
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band number and position of transition absorption be-
tween CoCl2.6H2O, the ligands, and the complexes is
observed. This may be as a consequence of different en-
vironments around the metal ion following the coordin-
ation [42–44]. The coordination of the ligands to the
metal is demonstrated by the shifts in the maximum ab-
sorption wave lengths corresponding to ligand centered
π → π*(C=C), π → π*(C=N), n → π*(C=N) as well as
metal centered energy states. The absorption band at 37,
878 cm−1 of 1,10-phenanthroline due to n → π*(C=N) is
shifted to 37,313; 37,174; and 36,764 cm−1 in the com-
plexes 1, 2, and 3, respectively [45]. Furthermore, the
single band due to the simple d-d transition in the start-
ing salt CoCl2.6H2O observed at 23,419 cm−1 is changed
to triple absorption bands between 44,062 and 13,642
cm−1 is assigned to 4T1g(F) →

4T1g(P),
4T1g(F) →

4A2g(F),
and 4T1g(F) →

4T2g(F) transitions, characteristics of octa-
hedral geometry around Co(II) ion. The equatorial or-
bitals (dx2 − y2) of Co(II) are coordinated to the strong
field bidentate 1,10-phenanthroline which results strong
and shorter bonds compared to those orbitals in the
axial position (dz2) due to Jahn-Teller effect. Conse-
quently, distorted octahedral geometry is achieved. The
coordinated 1,10-phenanthroline occupied the base
plane with water and adenine occupying the apical pos-
ition. Based on the above studies, a distorted octahedral
geometry is assigned for all the complexes as follows
(Fig. 5).

Antibacterial activity
Antibacterial activity is occurring because of the diffu-
sion of the complexes through the lipid membrane of
the cells and interacting with the normal activity of the
cell. This can be varied by designing the complexes with
varying lipophilic properties. The interaction of the com-
plexes with targeted cell could be achieved by tuning the
complex in such a way that its components have proper-
ties either that bind covalently (irreversible) or interact
non-covalently (reversible) or by carrier agents that de-
liver active ligands in vivo to the biological target [46]. It
has been observed that complex 3 showed better bio-
logical activities than the precursor complexes 1 and 2
against all the tested strains (Table 4). Based on the pro-
posed structure, it is expected that complex 3 is having
configurationally free twisting movement through the
bridge, which presumably enhanced its flexibility and in
turn enhances the penetration power of the complex
into the cytoplasm of the pathogenic cells [47].

Minimum inhibitory concentration (MIC) determination
Minimum inhibitory concentration (MIC) is the lowest
concentration that completely inhibited the growth of
microorganisms for 24 h. Around 100 μg/mL of complex
3 is sufficient to inhibit the growth of all the tested
strains (Fig. 6).
The percentage activity indexes against the reference

antibiotic demonstrated that the complexes are less

Table 3 Electronic spectral data of the salt and complexes

Compounds Absorption bands (cm−1) Tentative assignments

L1 43,103; 37,878 π–π; n → π*

L2 - -

L3 34,602 n → π*

[Co(L1)2(H2O)2]Cl2 44,052; 37,313; 22,624; 15,748; 13,440 π → π*; n → π*; 4T1g(F) → 4T1g(P);
4T1g(F) →

4A2g(F); 4T1g(F) →
4T2g(F)

[Co(L1)2(L2)(H2O)]Cl2 43,103; 37,174; 22,371; 15,948; 13,280 π → π*; n → π*; 4T1g(F) → 4T1g(P);
4T1g(F) →

4A2g(F);
4T1g(F) →

4T2g(F)

[Co2(L1)4(L2)2(L3)] Cl4 44,052; 36,764; 21,929; 18,518; 13,642 π → π*; n → π*; 4T1g(F) → 4T1g(P);
4T1g(F) →

4A2g(F);
4T1g(F) →

4T2g(F)

Table 4 Antibacterial activity of CoCl2.6H2O, ligands, metal complexes, and reference antibiotic

Antimicrobial activity ( mean IZ diameter (mm) ± SD)

Compound Escherichia coli Salmonella typhus Staphylococcus aurous Staphylococcus epidermis

CoCl2.6H2O 10.50 ± 0.00 11.33 ± 0.58 12.08 ± 1.01 13.92 ± 0.14

L1 27.33 ± 0.57 35.33 ± 0.28 34.83 ± 0.29 27.28 ± 0.29

L2 0 0 0 0

L3 40.00 ± 0.00 50.17 ± 0.29 54.50 ± 0.50 43.92 ± 0.14

[Co2(L1)4(L2)2(L3)]Cl4 23.76 ± 0.57 23.92 ± 0.14 23.25 ± 0.66 22.50 ± 1.32

[Co(L1)2(L2)(H2O)]Cl2 21.33 ± 0.57 20.50 ± 0.00 19.53 ± 0.50 20.17 ± 0.29

[Co(L1)2(H2O)2]Cl2 20.67 ± 0.57 19.50 ± 0.50 18.67 ± 0.58 19.25 ± 0.43

Methanol 42.75 ± 0.25 42.67 ± 0.58 44.83 ± 0.29 40.83 ± 0.29

Water 0 0 0 0

Ciprofloxacin 35.25 ± 0.25 40.50 ± 0.50 29.92 ± 0.38 36.08 ± 1.01
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active. However, it is evident that the MIC of the binuc-
lear complex 3 is far better than complexes 1 and 2
(Table 5). This is probably because of bisintercalation
due to the two planar intercalating 1,10-phenanthroline
ring systems covalently linked 1,3-diaminepropane.

Discussion
All the synthesized complexes are soluble in most polar
solvents like acetonitrile, DMSO, and water and insol-
uble in almost all non-polar solvents. From the elemen-
tal analysis and conductivity measurement data, it can

Table 5 The percentage activity index data of the complexes against the tested bacteria compared ciprofloxacin

Microorganism

Compound Escherichia coli Salmonella typhus Staphylococcus aurous Staphylococcus epidermis

[Co2(L1)4(L2)2(L3)]Cl4 − 0.32 − 0.40 − 0.22 − 0.38

[Co(L1)2(L2)(H2O)]Cl2 − 0.39 − 0.49 − 0.35 − 0.44

[Co(L1)2(H2O)2]Cl2 − 0.41 − 0.59 − 0.38 − 0.47

Fig. 5 The proposed structures of the complexes 1–3
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be concluded that the complexes can be formulated as
Co(L1)2(H2O)2Cl2 (1), Co(L1)2(L2)(H2O)Cl2 (2), and
Co2(L1)4(L2)2L3Cl4 (3). The molar conductance data of
the complexes 1, 2, and 3 was measured using 10−3 M
solution for each complex in water and indicates a 1:2
conducting nature for 1 and 2 while a 1:4 conducting
nature for 3. So, the complexes can be formulated as
[Co(L1)2(H2O)2]Cl2 (1), [Co(L1)2(L2)H2O]Cl2 (2), and
[Co2(L1)4(L2)2L3]Cl4 [48, 49]. The results obtained from
infrared and electronic spectra are in conformity with
the above derived formulae.
Based on the analytical and spectroscopic results pre-

sented, a distorted octahedral geometry is assigned for
all the complexes. The antibacterial activity studies re-
vealed that all the synthesized complexes exhibited

antibacterial activity against even the most drug resistant
Klebsiella pneumoniae which makes them as potential
wide range antibacterial drugs, after in vivo cytotoxicity
investigations. The major limitations of these synthe-
sized complexes are that they show minimum inhibition
zone than the reference antibiotic ciprofloxacin. How-
ever, their antibacterial activity can be improved by tun-
ing the ligand functionality.

Conclusion
Novel mixed ligand Co(II) complexes have been pre-
pared and characterized by various physical, chemical,
and spectroscopic techniques. An octahedral geometry
has been suggested for all synthesized complexes. Pre-
sumably, adenine is coordinated to Co(II) through its

Fig. 6 Inhibition zone of complex 3 in different concentration. Cp., Ciprofloxacin; A, 500 ppm; 400, 400 ppm; 300, 300 ppm; 200, 200 ppm; 100,
100 ppm and a Streptococcus epidermis, b Escherichia coli, c Staphylococcus aurous, and d Salmonella typhus
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ring nitrogen (N7). Consequently, the complexes are ex-
pected to interact atleast by hydrogen bonding with thy-
mine residue of the bacteria genetic material.
Furthermore, the synthesis resulted in the alteration of
the properties of the starting materials. One advantage
of this alteration is to enable the complexes to penetrate
the cell wall of the pathogenic cells and consequently,
interfere in their normal system to inhibit their growth.
This was confirmed from the in vitro antibacterial test
results. The result revealed that all the synthesized com-
plexes exhibited antibacterial activity against even the
most drug resistant Klebsiella pneumoniae which makes
them, potentially wide range antibacterial drugs, after
in vivo cytotoxicity investigations.
Even though the ligands and the synthesized com-

plexes show antibacterial activity, they are not recom-
mended as antibiotics as compared to the reference
ciprofloxacin as the antibacterial activity is less for the
complexes than the control. So, more work is needed to
be done with respect to the variation of the ligands by
causing conformational change to the complexes to
achieve a good antibiotic drug by the complexes for
therapeutic applications.
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