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Octreotide (somatostatin analog)
attenuates cardiac ischemia/reperfusion
injury via activating nuclear factor
(erythroid-derived 2)-like 2 (Nrf2) signaling
pathway in rat model of hyperthyroidism
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Abstract

Background: Hyperthyroidism is known to increase the risk of ischemic heart diseases. Octreotide has been
reported to attenuate ischemia/reperfusion (I/R) injury. Whether it is useful when ischemic heart disease is
accompanied with co-morbidities like hyperthyroidism needs more clarifying. So, this study aimed to explore the
effect of octreotide on cardiac I/R injury in hyperthyroid rats and to clarify if Nrf2 activation is involved in this effect.
Forty adult female Wistar rats were subdivided into control (euthyroid) (n = 10) and hyperthyroid (n = 30) groups.
Rats in hyperthyroid group received L-thyroxine (12 mg/L) in drinking water for 35 days, then were randomly
divided into three equal subgroups (n = 10): hyperthyroid control positive group, hyperthyroid octreotide treated
group, and hyperthyroid octreotide + Nrf2 inhibitor (brusatol) treated group. Isolated hearts were submitted to I/R
and evaluated for cardiac hemodynamics and infarct size. Serum T3 and T4, coronary efflux lactate dehydrogenase
(LDH) and creatine kinase-myoglobin binding (CK-MB) and cardiac tissue malondialdehyde (MDA) were estimated.
Nrf2- regulated gene expressions of HO-1, SOD, GPx, and catalase were assessed.

Results: Octreotide administration to hyperthyroid rats improved baseline and post-ischemic recovery of cardiac
hemodynamics, decreased the high coronary efflux LDH and CK-MB and tissue MDA, reduced infarction size, and
upregulated the decreased antioxidative enzymes HO-1, SOD, GPx, and catalase mRNA expressions in the
hyperthyroid I/R rat hearts. The Nrf2 inhibitor brusatol reversed the cardioprotective effect of octreotide in
hyperthyroid I/R rat hearts.

Conclusion: Octreotide can reduce oxidative stress to effectively alleviate I/R injury in the hyperthyroid rat hearts
through upregulation of Nrf2-dependent antioxidative signaling pathways.
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Background
Myocardial ischemia is caused by impaired coronary
flow and insufficient oxygen supply that leads to myo-
cardial injury and necrosis [1]. Improving blood supply,
known as reperfusion, is considered the most effective
therapeutic maneuver to rescue ischemic myocardium
[2]. Although reperfusion effectively reduces the mortal-
ity of cardiac cells, early restoration of blood flow leads
to overproduction of free radicals like reactive oxygen
species (ROS), which may further lead to cardiac tissue
injury [3] accompanied by activation of cardioprotective
mechanisms, an effect called hormesis [4]. These mecha-
nisms include production of important antioxidative
molecules as catalase, superoxide dismutases (SOD),
glutathione, glutathione S-transferases, glutathione per-
oxidases (GPx), heme oxygenases (HO), thioredoxin re-
ductases, and thioredoxins that can be regulated by the
transcription factor nuclear factor (erythroid 2-related)
factor 2 (Nrf2) [5]. Nrf2 is a transcription factor that
binds to antioxidant response elements (AREs) in target
genes and plays a decisive role in the coordinated induc-
tion of genes encoding many stress-responsive and
cytoprotective enzymes and related proteins [6]. Conse-
quently, activation of Nrf2 could be considered as a
therapeutic option in cardiovascular diseases [7].
The cardiac functions are known to be regulated by thy-

roid hormones (TH) that have cardiac inotropic, chrono-
tropic, lusitropic, and dromotropic properties [8]. Thyroid
dysfunction has been related to high risk of cardiovascular
morbidity and mortality. It was reported that tachycardia,
cardiac hypertrophy, and heart failure were frequently
demonstrated in hyperthyroidism [9]. The high levels of
TH increase the cardiac susceptibility to ischemia/reperfu-
sion (I/R) injury with elevated apoptotic rate of hypertro-
phied cardiomyocytes [10]. Such deleterious effects are
attributed to increased rates of ATP consumption and
overproduction of ROS encountered in hyperthyroidism
[11]. It was reported that thyroid diseases are more com-
mon in women than in men, typically in their third to the
fifth decade of life [12]. Moreover, it has been confirmed
in mouse, rat, rabbit, and dog animal models that females
exhibit a cardioprotective phenotype during their repro-
ductive life. However, it was found that rat estrous cycle
does not influence I/R injury either in vivo or ex vivo rat
models [13].
Somatostatin (SS) is growth hormone inhibitory pep-

tide that is produced by neuroendocrine and immune
cells in response to ions, nutrients, neuropeptides, thy-
roid and steroid hormones, growth factors, and cyto-
kines. Somatostatin receptors were found to be
expressed in the rat heart and aortic myocytes [14].
Octreotide, a potent analog of somatostatin, was re-
ported to have an antioxidant effect and positive effects
on I/R injury in several organ rat models. It has

protective effect against intestinal [15], pancreatic [16],
and ovarian [17] I/R injury in rats. Moreover, octreotide
can mimic the cardioprotective action of ischemic pre-
conditioning against myocardial infarction [18]. How-
ever, assessment of its role in cardiac I/R injury in the
presence of disease conditions such as hyperthyroidism
needs to be investigated.
The current study aimed to explore the effect of octreo-

tide on cardiac I/R injury in hyperthyroid female rats and
to clarify if Nrf2 activation is involved in this effect.

Methods
Experimental animals
A total number of 40 adult female Wistar rats aged 12–
15 weeks weighing 180–220 g were used as experimental
animals in the current study and were purchased from
animal house of the Faculty of Veterinary Medicine. The
animals were housed in standard cages (five rats/cage).
They were maintained under controlled room
temperature (24–26 °C) and humidity (50–60%) with 12-h
light and 12-h dark cycle and were fed on a standard diet
with free access to water. All experimental procedures and
protocols were following the guide for the care and use of
laboratory animals (8th edition, National Academies
Press) and have been reviewed and approved by Zagazig
University institutional animal care unit committee (ZU-
IACUC; Sharkia; Egypt) with approval number: ZU-
IACUC/3/F/38/2019.

Experimental protocol
Following acclimatization for 1 week, rats were ran-
domly divided into two groups: control (C) euthyroid
group (n = 10) and hyperthyroid (HT) (n = 30) groups.
Rats in hyperthyroid group received L-thyroxine (syn-
thetic form of T4) (Eltroxin tablet, aspen, Egypt) (12 mg/
L) in drinking water for 35 days [19]. After assessment of
hyperthyroidism, the hyperthyroid rats were randomly
divided into three equal subgroups (n = 10): hyperthy-
roid control positive (HTC) group, hyperthyroid octreo-
tide treated (HT+OCT) group, and hyperthyroid
octreotide + Nrf2 inhibitor brusatol treated (HT+BRU+
OCT) group.
The rats in HT+OCT group received subcutaneous in-

jections of octreotide (Sandostatin Amp. Novartis Co.
Egypt) (35 μg/kg, in saline) 30 min prior to I/R [17]. The
rats in HT+BRU+OCT group received intraperitoneal
injection of brusatol (0.4 mg/kg, in dimethyl sulfoxide
[DMSO], BioVision, Inc., USA) 10 min prior to octreo-
tide injection [20], and the concentration of the vehicle
was maintained at 0.5% (v/v). Rats of both control and
HT groups received subcutaneous saline, 30 min prior to
I/R, and intraperitoneal DMSO, 10 min prior to saline,
while rats of HT+OCT group received intraperitoneal
DMSO, 10 min prior to octreotide injections.
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Assessment of induction of hyperthyroidism
At the end of hyperthyroidism induction phase, blood
samples were obtained from tail veins and allowed to
clot for 2 h at room temperature before centrifugation
for 20 min, then examined for levels of 3,5,3’ triiodothyr-
onine (T3) and thyroxine (T4) using commercial ELISA
Kit (MyBioSource, Inc., USA) by colorimetric method
according to the manufacturer’s instructions.

Preparation of I/R model in the isolated rat heart
Forty-eight hours following the last T4 dose and assess-
ment of hyperthyroidism, the rats were sacrificed after
12 h of fasting under anesthesia (chloral hydrate) inhal-
ation. The heart was rapidly excised to be retrogradely
perfused on a Langendorff apparatus with modified
Krebs-Henseleit buffer (pH 7.4, 37 °C) containing the fol-
lowing (in mM): NaCl 118.0, NaHCO3 25.0, CaCl2 1.25,
KCl 4.7, MgSO4 1.2, KH2PO4 1.2, and glucose 11.0,
equilibrated with 95% O2 + 5% CO2. Left ventricular
pressure (LVP) was measured with a pressure transducer
connected via a catheter to a latex balloon placed in the
left ventricle through the left atrium. The balloon was
filled with water to realize left ventricular end diastolic
pressure (LVEDP) of about 5 mmHg. After 20 min of
equilibration, the hearts were exposed to 30min of glo-
bal ischemia followed by 120 min of reperfusion. Left
ventricular end diastolic pressure (LVEDP), left ventricu-
lar developed pressure (LVDP), LV maximal derivative
of pressure (max. dP/dt), and LV minimal derivative of
pressure (min. dP/dt) (±dp/dt) were recorded by using
Power Lab 4/30 (ML 888, AD Instruments, Australia).
All recordings were digitized and analyzed using the
program Lab Chart Pro software (version 7.3.7, AD In-
struments, Australia). All measures were recorded at the
end of baseline period and 30min, 60 min, and 120 min
of reperfusion period.

Determination of infarct size
At the end of reperfusion, hearts were removed from the
perfusion apparatus. Ventricular sections were sliced
from the apex to base into 1.5 to 3mm circumferential
slices, incubated 20 min in 1% solution of 2,3,5-triphenyl
tetrazolium chloride (TTC) in phosphate buffer (pH 7.4)
at 37 ° C, then immersed in 10% formalin for 2 h to iden-
tify viable myocardium as red stained, while necrotic
(infracted) tissue remains unstained (pale gray). TTC-
stained ventricle slices were placed between two glass
slides and photographed with a digital camera (Canon
WB250F). Infarct size was measured by using Fiji Image
J (1.51n; National Institute of Health; NIH, Bethesda,
MD, USA) and expressed as a percentage of the total
ventricular area [21].

Determination of cardiac enzymatic markers
Coronary efflux (the reperfusion fluid) was collected for
10min of reperfusion and spectrophotometrically assayed
for lactate dehydrogenase (LDH) by rat ELISA kits (Vitro
Scient, Egypt) and creatine kinase-myoglobin binding
(CK-MB) by rat ELISA Kits (Pointe Scientific, Inc., USA).

Determination of cardiac tissue lipid peroxidation
The hearts’ tissue were frozen and stored at − 80 °C until
analysis of malondialdehyde (MDA) in cardiac homoge-
nates using commercially available ELISA kits (Bio diag-
nostic, Egypt) for monitoring lipid peroxidation
spectrophotometrically.

Real-time reverse transcription polymerase chain reaction
(RT-PCR) for the relative quantification of Nrf2-regulated
gene expressions of HO-1, SOD, GPx, and catalase
Total RNA was extracted from homogenized heart spec-
imens using the ribozol RNA extraction reagent
(Amresco, Solon, Cleveland, OH, USA) as per the manu-
facturer’s instructions. cDNAs were synthesized using
the SensiFAST TM cDNA synthesis kit (Bioline, London,
UK). Real-time PCR was performed using 10 μl of
SYBER Green PCR Mix (SensiFAST TM SYBER Lo-ROX
Kit, Bioline, London, UK). The SYBER green data were
analyzed with a relative quantification to glyceraldehyde
3-phosphate dehydrogenase (GAPDH) as the reference
gene. The sets of primers used were provided by Sigma
Aldrich (Sigma-Aldrich, Germany) (Table 1). The rela-
tive gene expression ratio is calculated from the real-
time PCR using the 2−ΔΔCt method [22].

Statistical analysis
The results are presented as descriptive statistics (mean
± standard deviation). Statistical analysis was performed
using the Statistical Package for Social Science (SPSS)
version 25 (SPSS, Inc., IBM Company, Chicago, IL,
USA). The normal distribution of data from each group
was confirmed using the Kolmogorov-Smirnov normal-
ity test. Since the test indicated that variables followed
normal distribution, comparisons among the experimen-
tal groups were analyzed by one-way analysis of variance
(ANOVA) followed by least significance differences
(LSD) test to evaluate statistical difference between two
groups. Independent samples t test was used to compare
the two groups. P value < 0.05 was considered to be sta-
tistically significant.

Results
Development of the rat model of hyperthyroidism
Serum level of T3 was (28.9 ± 4.9) and (236.3 ± 14.4)
ng/dL and T4 was (5.2 ± 0.86) and (14.4 ± 1.3) μg/dL in
the control and HT groups, respectively.
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There was a significant increase in serum levels of T3
and T4 in HT group when compared by control one (p
< 0.001) (Fig. 1).

Effect of octreotide on left ventricular function
Baseline cardiac hemodynamics: LVDP and ±dp/dt were
significantly lower in the hyperthyroid group than control
(p < 0.001) while LVEDP show insignificant difference be-
tween all groups (F = 0.897, P = 0.452). Octreotide admin-
istration leads to significant increase in LVDP and ±dp/dt
(p = 0.002, p < 0.001, p < 0.001 respectively) in the HT+
OCT group when compared with the HTC group, and
this effect was abolished by brusatol leading to significant
decrease in LVDP and ±dp/dt values in the HT+BRU+
OCT (p = 0.018, p = 0.016, p < 0.001 respectively) in com-
parison to the HT+OCT group.
Induction of cardiac ischemia led to a state of ischemic

contracture or stone heart, and the ±dp/dt reached zero
levels in all experimental groups.
After ischemia, hyperthyroid group showed a signifi-

cant increase in LVEDP (post ischemic contracture),
compared to control (p < 0.001). Octreotide significantly
reduced the LVEDP during reperfusion phase in the
HT+OCT group when compared with the HTC group
(p < 0.001); in addition, brusatol significantly abolish the
octreotide action on LVEDP during reperfusion phase in

the HT+BRU+OCT group compared to the HT+OCT
group (p < 0.001).
Post-ischemic ±dp/dt and LVDP decreased signifi-

cantly in the HTC group, compared with the control
group (p < 0.001). Octreotide significantly improved the
±dp/dt and LVDP in reperfusion phase in the HT+OCT
group when compared with the HTC group (p < 0.001),
and this action is abolished by brusatol leading to signifi-
cant decrease in LVDP and ±dp/dt values in the HT+
BRU+OCT group (p < 0.001) in comparison to the HT+
OCT group (Table 2).

Effect of octreotide on infarct size
Infarction size as % of the total area was 40.6 ± 4.8,
56.6 ± 4.35, 46.9 ± 5.5, and 53.8 ± 5.4 in the con-
trol, HTC, HT+OCT, and HT+BRU+OCT groups,
respectively.
Infarction size was increased by induction of hyperthy-

roidism; HTC (p < 0.001), HT+OCT (p = 0.008), and
HT+BRU+OCT (p < 0.001) in comparison to control
rats. Octreotide administration leads to significant de-
crease in infarction size (p < 0.001) in the HT+OCT
group when compared with the HTC group, and this ef-
fect was abolished by brusatol (p = 0.004) in comparison
to the HT+OCT group (Fig. 2).

Table 1 Primer sequences

Gene Forward Reverse

HO-1 5′-CGTGCAGAGAATTCTGAGTTC-3′ 5′-AGACGCTTTACGTAGTGCTG-3′

SOD 5′-ATGGGGACAATACACAAGGC-3′ 5′-TCATCTTGTTTCTCGTGGAC-3′

GPx 5′-CACAGTCCACCGTGTATGCC-3′ 5′-AGTTGGGCTCGAACCCACC-3′

Catalase 5′-GTCCGATTCTCCACAGTCGC-3′ 5′-CGCTGAACAAGAAAGTAACCTG-3′

GAPDH 5′-CCATCAACGACCCCTTCATT-3′ 5′-GACCAGCTTCCCATTCTCAG-3′

HO-1 heme-oxygenase-1, SOD superoxide dismutase, GPx glutathione peroxidase, GAPDH glyceraldehyde-3-phosphate dehydrogenase

Fig. 1 Evaluation of serum levels of thyroid hormones. a T3. b T4. n = 10 rats in the control group and 30 rats in hyperthyroid. Data are
represented as mean ± standard deviation. *Differs significantly from the control group with p < 0. 05
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Effect of octreotide on post-ischemic cardiac enzymes
release
Post-ischemic coronary efflux LDH was (230.6 ± 12.3),
(289.9 ± 13.9), (245.9 ± 16.6), and (283.5 ± 12.7) IU/L
and CK-MB was (617 ± 17.2), (687 ± 10.2), (653 ± 13.1),
and (684 ± 15.3) IU/L in control, HTC, HT+OCT, and
HT+BRU+OCT groups, respectively.
Coronary efflux LDH and CK-MB was elevated by in-

duction of hyperthyroidism: HTC (p < 0.001), HT+OCT
(p = 0.019; p < 0.001), and HT+BRU+OCT (p < 0.001)
in comparison to the control group. Octreotide adminis-
tration leads to significant decrease in their level (p <
0.001) in the HT+OCT group when compared with the
HTC group, and this effect was abolished by brusatol in
the HT+BRU+OCT group (p < 0.001) in comparison to
the HT+OCT group (Fig. 3).

Effect of octreotide on cardiac tissue MDA
Cardiac tissue MDA level was (9.5 ± 1.9), (18.9 ± 2.1),
(11.9 ± 2.5), and (17.8 ± 2.3) μmol/g wet tissue in con-
trol, HTC, HT+OCT, and HT+BRU+OCT groups,
respectively.

Cardiac tissue MDA level was higher in hyperthyroid
rats: HTC (p < 0.001), HT+OCT (p = 0.02), and HT+
BRU+OCT (p < 0.001) in comparison to the control
group. Octreotide administration leads to significant de-
crease in MDA level (p < 0.001) in the HT+OCT group
when compared with the HTC group, and this effect was
abolished by brusatol in the HT+BRU+OCT group (p <
0.001) in comparison to the HT+OCT group (Fig. 4).

Effect of octreotide on Nrf2 antioxidative-regulated gene
mRNA expressions
Nrf2 antioxidative gene HO-1, SOD, GPx, and catalase
mRNA expressions were decreased by induction of
hyperthyroidism (p < 0.001) in comparison to the con-
trol group. Octreotide administration improved this ac-
tion leading to significant increase in HO-1, SOD, GPx,
and catalase mRNA expressions (p < 0.001) in the HT+
OCT group when compared with the HTC group. This
improvement produced by octreotide was inhibited by
brusatol leading to significant decrease in Nrf2
antioxidative-regulated gene mRNA expressions in the
HT+BRU+OCT group in comparison to the HT+OCT
group (p < 0.001) (Fig. 5).

Table 2 Effect of octreotide on left ventricular hemodynamic parameters in hyperthyroid rat hearts exposed to ischemia/reperfusion

Baseline Reperfusion (min) time-point

30 60 120

LVEDP (mmHg)

Control 8.5 ± 1.01 33.8 ± 2.3 31.2 ± 3.2 29.2 ± 2.7

HTC 9.3 ± 1.4 43.5 ± 3.6* 41.7 ± 2.9* 38.9 ± 3*

HT+OCT 8.7 ± 1.5 35.3 ± 1.7# 32 ± 3.7# 30.8 ± 3.1#

HT+BRU+OCT 9.5 ± 1.98 41.4 ± 2.5*$ 40.1 ± 2.7*$ 37.7 ± 4.9*$

LVDP (% of baseline)

Control 100 (93.2 ± 8.4 mmHg) 62.1 ± 2.8 50.9 ± 3.4 37.2 ± 3.2

HTC 100 (72.2 ± 8.8 mmHg)* 54.2 ± 3.5* 43.7 ± 3.1* 29.5 ± 3.3*

HT+OCT 100 (84.2 ± 6.01 mmHg)*# 63.1 ± 2.8# 52.3 ± 3.5# 35.6 ± 4.1#

HT+BRU+OCT 100 (75.4 ± 8.3 mmHg)*$ 53.1 ± 3.3*$ 42.1 ± 4.1*$ 28.2 ± 3.8*$

Max. dP/dt (% of baseline)

Control 100 (2794 ± 121mmHg/s) 60.3 ± 3.8 49.1 ± 4.8 36.6 ± 3.6

HTC 100 (2457 ± 102mmHg/s)* 53.8 ± 4.1* 42.1 ± 4.4* 28.5 ± 3.6*

HT+OCT 100 (2672 ± 160mmHg/s)*# 62.1 ± 2.6# 51.1 ± 2.3# 37.8 ± 4.9#

HT+BRU+OCT 100 (2531 ± 106mmHg/s)*$ 52.1 ± 3.2*$ 41.4 ± 3.2*$ 29.6 ± 2.9*$

Min. dP/dt (% of baseline)

Control 100 (2025 ± 199mmHg/s) 59.6 ± 3.5 47.9 ± 4.4 38.2 ± 4.7

HTC 100 (1401 ± 117mmHg/s)* 52.4 ± 3.9* 39.7 ± 3.9* 28.5 ± 3.6*

HT+OCT 100 (1788 ± 124mmHg/s)*# 60.1 ± 3.1# 48.1 ± 4.9# 36.8 ± 4.6#

HT+BRU+OCT 100 (1336 ± 116mmHg/s)*$ 50.9 ± 4.4*$ 38.4 ± 2.9*$ 27.9 ± 3.7*$

n = 10 in each group. Data are represented as mean ± SD
LVEDP left ventricular end diastolic pressure, LVDP left ventricular developed pressure, max. dP/dt LV maximal derivative of pressure, min. dP/dt LV minimal
derivative of pressure
Significance (P < 0.05): *significant when compared with the control group, #significant when compared with HTC groups, $significant when compared
with HT+OCT
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Discussion
In the current work, our findings indicate that hyperthy-
roidism increased injury induced by I/R in female rat
heart. Treatment with octreotide attenuated myocardial
injury and improved cardiac function in the I/R heart of
the hyperthyroid female rats. Activation of the Nrf2 anti-
oxidative function was involved in this action of octreo-
tide as evidenced by reduction in the cardio-protective
effect of octreotide by Nrf2 inhibitor, brusatol.

In the present study, adult female rats were given L-
thyroxine in drinking water showing hyperthyroidism as
evidenced by high T3 and T4 levels compared by control
groups. Long-term T4 administration increased serum
levels of T4, and serum T3 levels were also increased as
T4 can be converted into T3 by deiodinases type 1 and
2 in target tissues [23]. As the incidence of most thyroid
diseases is higher in women than men (ratio 8:1) [24],
the current study was designed to use female rats.

Fig. 2 Effect of octreotide on infarct size (as present of the total area) in rat hearts exposed to ischemia for 30min and reperfusion for 120min. n = 10
rats in each group. Data are represented as mean ± standard deviation. Significance (P < 0.05): *significant when compared with the control group;
#significant when compared with HTC groups; $significant when compared with HT+OCT

Fig. 3 Effect of octreotide on a LDH and b CK-MB in coronary flux in rat hearts exposed to ischemia for 30 min and reperfusion for 120 min. n =
10 rats in each group. Data are represented as mean ± standard deviation. Significance (P < 0.05): *significant when compared with the control
group, #significant when compared with HTC group, $significant when compared with HT+OCT
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Fig. 4 Effect of octreotide on cardiac tissue MDA in rat hearts exposed to ischemia for 30 min and reperfusion for 120 min. n = 10 rats in each
group. Data are represented as mean ± standard deviation. Significance (P < 0.05): *significant when compared with the control group,
#significant when compared with HTC group, $significant when compared with HT+OCT

Fig. 5 Effect of octreotide on Nrf2-regulated gene expressions of HO-1 (a), SOD (b), GPx (c), and catalase (d) in rat hearts exposed to ischemia for
30 min and reperfusion for 120 min. Data are represented as mean ± standard deviation. Significance (P < 0.05): *significant when compared with
the control group, #significant when compared with HTC group, $significant when compared with HT+OCT
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Regarding ventricular function, baseline values of
LVDP and ±dp/dt were lower in the hyperthyroid rats
and revealed a decreased recovery of LVDP and ±dp/dt
following I/R with increase in LVEDP (post-ischemic
contracture) indicating more susceptibility to I/R injury.
These findings are supported by findings of other re-
searchers [11, 19] who demonstrated that LVDP recov-
ery was significantly impaired due to persistently
increased LVEDP levels throughout the reperfusion
period with marked reduction in contractility and relax-
ation velocities in thyrotoxic rat hearts. In contrast, it
was noticed that there was an improvement in the car-
diac hemodynamic in the hyperthyroid male mouse
heart after I/R injury [25]. Moreover, it was found that
hyperthyroidism provides cardio-protective effects fol-
lowing I/R in male rats [26, 27].
Our finding concerned increased LDH and CK-MB

levels in first 10 min of reperfusion and increased infarct
size in hyperthyroid rats indicates higher susceptibility
of the hyperthyroid rat heart to I/R injury. This could be
attributed to higher oxidative stress activity in hyperthy-
roid rats that could oxidize membrane lipids as evi-
denced in the current work by elevated cardiac tissue
MDA levels in hyperthyroid rats. This increased oxida-
tive stress is associated with decrease in endogenous an-
tioxidative defenses indicated by decreased antioxidative
enzymes HO-1, SOD, GPx, and catalase mRNA expres-
sions in the hyperthyroid I/R heart.
Oxidative stress occurs when there is an imbalance be-

tween pro-oxidants and antioxidants, which occurs when
antioxidant defenses cannot neutralize oxidants [28]. Ex-
cess thyroid hormones increases energy demand and
mitochondrial activity that surge the ROS production
[29]. Moreover, TH could increase ROS by direct actions
on mitochondrial activity as T3 receptors have been de-
scribed to present in mitochondria [30].
Supporting our results, it was found that catalase,

SOD2, and GPX1 mRNA expressions were downregu-
lated in hyperthyroid rat hearts after I/R injury [19]. In
addition, clinical studies described diminished antioxi-
dant enzymes expression in hyperthyroid patients that
could be reestablished by antithyroid drugs [31].
Octreotide, a potent somatostatin analog, was reported

to have an antioxidant effect and had promising actions
against intestinal [15], hepatic [32], and ovarian [17] I/R
injury in rats. Moreover, it was reported that octreotide
may have a protective action against I/R injury in hyper-
thyroid male rats [33].
The data obtained from the current study revealed that

octreotide administration to hyperthyroid rats 30 min
prior to I/R improved baseline and post-ischemic recov-
ery of cardiac function in hyperthyroid rats that accom-
panied by reduction of myocardial injury, as indicated by
decreased coronary efflux LDH and CK-MB and reduced

infarction size. Moreover, octreotide reduced the lipid
peroxidation product MDA and upregulated the de-
creased antioxidative enzymes HO-1, SOD, GPx, and
catalase mRNA expressions in the hyperthyroid I/R
heart suggesting that the cardio protective action of
octreotide could be due its antioxidant properties.
Mechanisms of octreotide action on I/R injury in dif-

ferent organ models were discussed in several studies
that highlighted the antioxidant properties of octreotide.
It was reported that octreotide decreased retinal MDA
in a retina I/R model [34]. Moreover, tissue MDA and
myeloperoxidase activity were decreased by octreotide
treatment in rat model of acute increased intra-
abdominal pressure-induced I/R injury [35]. Similarly,
favorable effects of octreotide against intestinal I/R in-
jury were found that are based on HO-1 induction [15].
It was postulated that Nrf2 could upregulate expression

of antioxidative enzymes including HO-1, SOD, and GPx
and catalase to activate protective mechanisms against oxi-
dative injury [36]. Abnormalities in Nrf2 and Nrf2-
regulated genes have been associated with cardiovascular
diseases [37]. Moreover, previous studies revealed that
octreotide i.p. immediately after experimental ischemic
stroke in rats could activate the Nrf2 signaling pathway that
upregulated HO-1 and downregulated NF-κB expressions
an important nuclear transcription factor that regulates the
genes of a vast number of inflammatory mediators [38].
Consequently, whether octreotide could diminish I/R

injury in the hyperthyroid heart through activation of
Nrf2-linked antioxidative pathway was investigated in
the current study, and we found that the Nrf2 inhibitor
brusatol reversed the cardioprotective effect of octreo-
tide in hyperthyroid I/R hearts. These results suggested
that octreotide reduces oxidative stress in the hyperthy-
roid I/R heart at least, partly via modulations of the Nrf2
antioxidative pathway. However, the underlying mechan-
ism that mediates the activation of Nrf2 by octreotide in
the hyperthyroid I/R rat heart needs to be clarified.

Conclusion
In conclusion, octreotide, a potent analog of somatostatin,
can reduce oxidative stress to effectively alleviate I/R in-
jury in the hyperthyroid rat hearts through upregulation
of Nrf2-dependent antioxidative signaling pathway. Future
studies to elucidate the exact mechanism of octreotide-
dependent activation of Nrf2 are recommended.
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