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Abstract

Staphylococcus aureus and its target proteins.

Background: Schiff base compounds have extensive applications in various fields such as analytical, inorganic,
organic, and biological fields. They have excellent pharmacology application prospects in the modern era and are
widely used in the pharmaceutical industry. In the present work in vitro antibacterial and in silico docking studies of
two Schiff base compounds 2,2"-(5,5-dimethylcyclohexane-1,3-diylidene)bis(azan-1-yl-1-ylidene)diphenol (DmChDp)
and N,N-(5,5-dimethylcyclohexane-1,3-diylidene)dianiline (DmChDa) were carried out against the bacterial strain

Results: The tests proved that the ligands have potential antibacterial activity. In the computational analysis, the
drug-like properties of the compounds were first pre-filtered using the Lipinski rule of five. Then, molecular docking
study was conducted using the AutoDock 4.2 program, to establish the mechanism by which the molecules inhibit
the growth of S. aureus. For this purpose, 6 different target proteins (PDB ID: 1T2P, 3U2D, 2W9S, 1N67, 27CO, and
4H8E) of S. aureus were selected. Both the Schiff bases showed a good binding affinity with the target protein
dihydrofolate reductase enzyme (PDB ID: 2W9S) but in different sites. Maximum binding energies of about — 10.3
and — 10.2 kcal/mol were observed when DmChDp and DmChDa were docked with 2W9S.

Conclusion: Schiff base compounds DmChDp and DmChDa have appreciable growth-inhibitory power against S.
aureus, which can be attributed to the deactivation of the enzyme, dihydrofolate reductase.
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Background

The research in the field of therapeutics is of great im-
portance for the improvement of the quality of human
life and for reducing human diseases. A vast number of
diseases is due to pathogenic organisms. Pathogens are
microorganisms that are harmful to the human body.
Bacteria, viruses, fungus, prion, protozoan, viroid, etc.
are the different types of pathogens. Microbial infections
are drastically increased in living beings due to multi-
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drug-resistant microorganisms even though the human
body can defend against potential pathogens [1-3].

S. aureus is one of such multi-drug-resistant microor-
ganisms. It is a round-shaped bacterium that is a member
of Firmicutes [4]. The cell wall of this species is amorph-
ous and tough. The major component of the cell wall is
the peptidoglycan (50% of cell wall mass). The other com-
ponent that contributes 40% of cell wall mass is teichoic
acids and the remaining 10% consist of exoproteins, sur-
face proteins, and peptidoglycan hydrolases. Naturally, this
bacterium is found in the nasopharynx of the human body
and on the skin. S. aureus can cause infections of the nose,
skin, vagina, urethra, and gastrointestinal tract [5, 6]. They
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are non-sporing, non-motile, and few strains are encapsu-
lated. Nearly 50% of the human population are carriers of
S. aureus. Generally, beta (B)-lactum antibiotics such as
Penicillin, Carbapenems, Monobactams, and Cephalospo-
rins are used to heal infections caused by Staphylococcus
aureus. These drugs bind with proteins in the bacteria and
thereby inhibit the bacterial cell wall synthesis [7]. But sev-
eral studies showed that beta (f)-lactum antibiotics have a
low binding affinity with Penicillin-binding proteins and
are a major cause for less antibiotic activity [8—10]. Even
though a large number of antibiotics and chemotherapeu-
tic agents such as linezolid and dalfopristin are available
to resist such microorganisms, they are costly and are
used only for patients having highly resistant strains [11].
Thus, the development of efficient and novel chemothera-
peutic agents in the medical field is of great importance.

Schiff bases are generally prepared by the condensa-
tion of carbonyl compounds (aldehyde/ketones) with
aromatic or aliphatic primary amines [12]. It is regarded
as a nitrogen analogue of an aldehyde or ketone where
the imine group substitutes the C=0O group. Therefore,
it is also known as imine or azomethine. The lone pair
of electrons in the sp® hybrid orbital of N atom in —C=
NH- linkage present in Schiff bases enhances their bio-
logical and chemical importance [13, 14]. They have
widespread use as therapeutic agents and antibacterial
agents [15-17]. The azomethine group can be seen in
drugs like Thiacetazone 5 and Nifuroxazide (INN) 4
available in the market [18].

In the present study, the antibacterial activity of the
Schiff bases 2,2’-(5,5-dimethylcyclohexane-1,3-diylide-
ne)bis(azan-1-yl-1-ylidene)diphenol (DmChDp) and N,
N’-(5,5-dimethylcyclohexane-1,3-diylidene)dianiline
(DmChDa) were analysed using disc diffusion method
against the pathogenic bacteria S. aureus (Fig. 1). Apart
from this, a molecular docking study was also carried
out using the AutoDock 4.2 program to predict the best-
fit orientation of the drug molecule that binds to a speci-
fied protein target of interest to find out the activity and
affinity of the drug molecule. This will enable to estab-
lish the mechanism by which the Schiff base prevents
bacterial growth. Sortase-A (1T2P), DNA gyrase (3U2D),
dihydrofolate reductase (DHFR) (2W9S), clumping fac-
tor A (CIfA) (IN67) dehydrosqualene synthase (CrtM)
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(2ZCO0O), and undecaprenyl diphosphate synthase (UPPS)
(4H8E) are the target proteins of S. aureus considered
for the study. The two sites of the target 4H8E and four
sites of all other targets were selected for docking.

Methods

Analar grade samples were used for the synthesis of Schiff
bases. 5, 5-dimethylcyclohexanone, 2-aminophenol, and
aniline, were purchased from E. Merck. The percentage of
elements such as carbon, hydrogen, and nitrogen were
analysed by microanalysis using Elementar make Vario EL
III model CHNS analyser. KBr disc technique on a Shi-
madzu model FT-IR Spectrometer (Model IR affinity)
were used for recording IR spectra in the region 4000—400
cm ™, Shimadzu UV-Visible-1800 Spectrophotometer was
used for recording electronic spectra in DMSO. BRUKER
AVANCE III HD was used for "H NMR and *C NMR
studies in dmso-ds. Mass spectra were recorded using QP
2010 model Shimadzu GCMS.

Synthesis and characterization of Schiff bases
2,2’-(5,5-dimethylcyclohexane-1,3-diylidene)bis(azan-1-yl-1-
ylidene)diphenol (DmChDp)

To a stirred ethanolic solution of 2-aminophenol (0 .02
mol), 5,5-dimethyl-1,3-cyclohexanedione (0.01 mol) dis-
solved in hot ethanol was added, refluxed for 20 min
and cooled. Brown-coloured precipitate formed was fil-
tered, washed with ethanol, and recrystallized. Yield was
80%, and M.P. 180 °C [19].

Anal.caled for CyoH2,N,O, was C, 74.53; H, 6.83; and
N, 8.69%. Found. was C, 73.91; H, 6.74; and N, 8.52%; IR
(KBr) was 3240 cm™' (OH), 1600 cm™ (C=N), 1238
cm! (C-0), 3080 cm™! (aromatic C-H), and 2960 and
2877 cm™! (aliphatic C-H); UV was 22936 cm! (n —
1%), and 33784 and 39682 cm™! (1 — 1*); 'H NMR was
3 099 (CH3), 6 2.35 (CH, between two azomethine
group), § 2.02 (CH, adjacent to > C(CH3),), and 6 6.81—
7.07 (aromatic H); *C NMR was 95.88ppm (C=N),
27.84ppm (CHj3), 41.52ppm (C containing CHy),
49.78ppm (C between azomethine groups), 32.32ppm (C
adjacent to > C(CHj3),), and 116.28-151.55 ppm (aro-
matic C); mass was M" peak absent, m/z 216 (base peak)
[C14H1sNOJ*, m/z 231 [C;4H19N,O]*, and m/z 178
[C11H16NOJ".

a oOH HO
N N

Fig. 1 Structure of a DmChDp and b DmChDa
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N, N’-(5,5-dimethylcyclohexane-1,3-diylidene)dianiline
(DmChDa)

0.01 mol of 5,5-dimethyl-1,3-cyclohexanedione was dis-
solved in hot ethanol and added to a stirred ethanolic
solution of 0.02 mol of aniline. Refluxed for 3h and
cooled. Yellow precipitate separated was filtered, washed
with ethanol, and recrystallized. Yield was 78%, and M.P.
152 °C [20].

Anal.caled for C,0HyN, was C, 82.7; H, 7.5; and N,
9.6%. Found. was C, 81.3; H, 6.9; and N, 8.9%; IR (KBr)
was 1564 cm™" (C=N); 1249 and 3234 cm™" (N-H); 2949,
2879, and 2810 cm™* (CH3 and CH,); and 3055 cm ™
(aromatic H); UV was 32020 cm™' (n — 1%), and 39463
cm™ (m — 7*); "H NMR was § 1.04 (CHy), § 1.51 (CH,
between two azomethine group), and § 7.26,7.09 (aro-
matic H); *C NMR was 28.35 ppm (CHs); 98.94 ppm
(C=N); 32.88, 43.71, and 50.35 ppm (two CH,); and
123.39-138.14 ppm (aromatic C); mass was M" peak ab-
sent, m/z 159 (base peak-[C;;H3N]Y), m/z 215
[C14HoN,]", and m/z 198 [C4H gN]*.

In vitro antibacterial studies

Mueller-Hinton agar was used for preparing the medium
[21]. Schiff base compounds and the standard antibiotic
ampicillin were dissolved in DMSO to prepare the stock
solutions. Then, it is diluted to obtain various ranges of
concentrations from 100 to 500 pg disc™*. Disc diffusion
method was adopted for the drug [22]. The petri dishes
were incubated in an air ambiance at 35 °C for 24 h.
The diameter of the zone of inhibition was measured
and compared with zones produced by the reference
antibiotic, ampicillin.

Target proteins in Staphylococcus aureus

Staphylococcus aureus sortase-A (PDB ID: 1T2P)

Sortases are extracellular transpeptidases of Gram-
positive bacteria [23, 24]. The function of the enzyme is
to sort proteins into the cell wall compartment of Gram-
positive bacteria, hence named Sortases. Sortases have a
great role in the cell wall envelope assembly and bacter-
ial pathogenicity.

DNA gyrase (PDB ID: 3U2D)

Topoisomerase is an isomerase enzyme that provokes
dramatic change in the topology of DNA structure [25,
26]. Topoisomerase is categorized as topoisomerase I
and topoisomerase I, based on the number of strands
cut in one phase of action. New topoisomerases, type III
and IV have also been discovered recently. DNA gyrase
subclass of type II topoisomerase is responsible primarily
for DNA replication.
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Dihydrofolate reductase (DHFR) (PDB ID: 2W9S)
Dihydrofolate reductase (DHFR) is an enzyme that catal-
yses the formation of tetrahydrofolate (THF) by the re-
duction of Dihydrofolate (DHF) in the presence of
nicotinamide adenine dinucleotide phosphate (NADPH)
[27, 28]. Also, it has a great role in the synthesis of thy-
midylate, purines, methionine, and some other import-
ant metabolites. These enzymes are required for cell
proliferation. Thus, inhibition of dihydrofolate reductase
will results in the destruction of the intracellular tetrahy-
drofolate pool thereby preventing biosynthesis of RNA,
DNA, thymidine, and protein. Due to the wide range of
cellular functions, they are targets for anticancer and
antimicrobial agents.

Clumping factor A (CIfA) (PDB ID: 1N67)

In blood plasma, there is a glycoprotein called fibrinogen
(Fg) which is present at ~ 3 mg/ml concentration and
has a significant role in coagulation and haemostasis. Six
polypeptide chains are present in fibrinogen such as 2
Aa, 2 Bb, and 2 nd 2 Bb, which are dimeric and symmet-
rical. The y-chain has C-terminal residues which are bio-
logically important. In the process of fibrinogen-
dependent platelet adherence and aggregation, they
interact with platelet integrin allb3. This C-terminal
residue of y-chain is also targeted by the pathogenic bac-
terium Staphylococcus aureus, resulting in fibrinogen-
dependent cell clumping and tissue adherence. Clump-
ing factor A (CIfA) [29, 30] was the first Fg y-chain-
binding S. aureus adhesin identified.

Dehydrosqualene synthase (CrtM) (PDB ID: 2ZCO)

The golden carotenoid pigment staphyloxanthin is a
virulence factor for S. aureus. Dehydrosqualene synthase
[31, 32] is involved in the synthesis of this pigment. The
main responsibility of the pigment is to preserve S. aur-
eus against oxidative stress as a result of host immune
defence by reactive oxygen species and neutrophils by
acting as an antioxidant.

Undecaprenyl diphosphate synthase (UPPS) (PDB ID: 4H8E)
The role of undecaprenyl diphosphate synthase (UPPS)
in the biosynthesis of the cell wall of Staphylococcus aur-
eus is very significant [33, 34]. UPPS is important since
it is vital for the formation of peptidoglycan. Also, UPPS
is not present in humans and is additional merit for the
development of good antibacterial agents.

In silico molecular docking studies

Lipinski rule of five

Lipinski rule envisages that an orally active drug will be
small and slightly lipophilic. This rule depicts molecular
properties rather than pharmacological activity and
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Table 1 Antibacterial activity of the Schiff bases and ampicillin
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Compounds Diameter of zone of inhibition (mm) at different concentrations (ug disc™")

50 100 250 500
DmChDp 12 16 22 26
DmChDa 10 16 22 25
Ampicillin 15 21 28 30

states that a drug has good oral activity if it satisfies the
five conditions such as the following [35]:

1. Molecular weight < 500
. Octanol-water partition coefficient logP < 5
3. Less than 5 hydrogen bond donors (total number of
NH and OH bonds)
4. Less than 10 hydrogen bond acceptors (total
number of N and O atoms)
5. Molar refractivity between 40 and 130

Molecular docking

Docking studies were carried out to establish the mech-
anism by which the Schiff base compounds prevent bac-
terial growth. Binding affinity and interactions of the
Schiff bases with different target proteins in S. aureus
were derived from docking studies [36—38]. The steps
involved in the docking process are as follows.

Preparation of ligands and proteins The structure of
the Schiff bases in MOL format was derived using
ChemSketch software and converted to PDB format
using open babel software. The structures of the proteins
were downloaded in PDB format from RCSB PDB. Using
Pymol software, water molecules and ligands already
present in the proteins were removed; hydrogen atoms
were added and saved in PDB format. Six target proteins
of Staphylococcus aureus were utilized to check the
interaction with synthesized Schiff bases.

Prediction of active site Prediction of the active site is
important in structure-based drug design. Co-ordinates
of binding sites of the proteins were identified using the
software BIOVIA Discovery Studio.

Docking Molecular docking calculations were carried
out with the aid of the software AutoDock 4.2 and bind-
ing energy of the protein—Schiff base adducts were ob-
tained [39].

Visualization of protein-ligand complexes The protein-
ligand complexes were visualized using the software
BIOVIA Discovery Studio and their 3D and 2D inter-
action plots were derived. Hydrogen bond interactions
such as conventional and non-conventional H bonds,
hydrophobic interactions such as amide-pi stacked, pi-pi

stacked, pi-sigma, pi-pi T-shaped, alkyl and pi-alkyl in-
teractions, electrostatic interactions such as pi-anion and
pi-cation interactions, van der Waals interaction, and
unfavourable donor-donor and acceptor-acceptor inter-
actions are commonly seen between protein and ligand.
The binding affinity of the compound with the target
protein is the resultant of all the interactions and bind-
ing energy existing between them.

Results

The antibacterial activity of the Schiff base compounds
is shown in Table 1. Results showed that they have ap-
preciable growth-inhibitory power. The compounds
were first pre-filtered using Lipinski rule of five to check
the drug-like properties. The parameters such as mass,
number of hydrogen bond donors, number of hydrogen
bond acceptors, log P (octanol-water partition coeffi-
cient), and molar refractivity of both Schiff bases were
evaluated by the rule and are given in Table 2.

In vitro antibacterial study showed that the ligands
DmChDp and DmChDa have the potential to act as
good antibacterial agents. Now, it is necessary to under-
stand the mechanism by which the compounds inhibit
the growth of bacteria. For that, molecular docking stud-
ies were conducted, by the aid of which we get an idea
about the protein target in bacteria with which the li-
gands have more binding affinity. The stability of the
protein-ligand complex was evaluated on the basis of
two essential criteria: (1) the highest binding energy and
(2) the number of interactions of the ligand with the ac-
tive site residues. The highest binding energies (BE) and
the number of interactions of the ligands with protein
models under study were enlisted in Table 3. A ligand
can mainly undergo interactions such as van der Waals,

Table 2 Lipinski rule of five

Parameters Schiff bases Condition

DmChDp  DmChDa fi‘:(:ad"‘g'
property

Mass 322 290 < 500

Hydrogen bond donor 2 0 <5

Hydrogen bond acceptor 4 2 <10

log P 5.15 574 <5

Molar Refractivity 98.03 947 40-130
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Table 3 Binding energy and number of interactions of Schiff bases docked with target proteins in S. aureus

Schiff bases DmChDp DmChDa
Binding energy (BE) (kcal/mol) and other interactions -BE Hbond Other -BE H bond Other
Target proteins and active site  1T2P 1 7.6 2 7 8 0 7
2 7.5 2 5 7.3 0 8
3 6.3 1 5 59 1 6
4 6.2 1 10 6.1 0 6
3U2D 1 6.7 1 8 7.2 0 6
2 6.8 1 5 7.1 0 9
3 6.8 1 3 7.2 0 7
4 6.9 0 6 7.1 0 10
2W9S 1 93 1 8 9.1 0 14
2 9.9 2 8 10.2 1 9
3 103 1 14 9.5 0 8
4 7 1 7 6.9 0 7
1N67 1 9 2 9 86 1 8
2 9 2 6.6 1 4
3 9 1 [ 85 1 9
4 9 2 7 84 1 8
27CO 1 83 2 6 8 1 7
2 78 2 6 59 0 2
3 7.6 1 6 7.1 0 6
4 84 3 6 8.1 1 4
4H8E 1 7.8 3 8 7.5 0 8
2 6.2 3 4 6.2 0 8

BE- Binding energy in kcal/mol, HB- Conventional hydrogen bond, Other- Other interactions

hydrogen bonding, hydrophobic, and electrostatic while
docking into the active site. From literature, it is clear
that binding energy has a great role than the number of
interactions to predict the best binding mode. Among
the interactions, conventional H bond (HB) (more
prominent) and hydrophobic interactions are more ef-
fective than the others. Table 4 indicates the amino acid

residues of different binding pockets interacted with the
Schiff base molecules.

Binding energy and number of interactions clearly es-
tablish that both the Schiff bases have more binding af-
finity towards the enzyme dihydrofolate reductase
(2W9S). The structure of the protein target dihydrofo-
late reductase (2W9S) is shown in Fig. 2.

Table 4 Interactions of Schiff bases with amino acid residues of target proteins in S. aureus

Schiff base DmChDp DmChDa

Active target 2W9S 2W9S

Active site 3 2

Binding energy (kcal/mol) -103 -10.2

Interactions Van der ILE14, GLY15, VAL6, LYS45 ILE14

with amino Waals

acid residue I;ydéogen ALA7 (HB, 224 A), THR46 (NCHB, 3.28 A) SER49 (HB, 2.06 A)
on

Hydrophobic PHE92 (r1-T, 5.02 A), ILES (amide-Tr stack, 3.92 A), LEU20 (R,
436 A), LEU20 (R, 431 A), ILE50 (R, 443 A), ILESO (R, 451 A),
ALA7 (R, 5.17 A), ILE31 (R, 5.18 A), ILES (1R, 495 A), PHE92

(m-R, 427 A)

ASN18 (amide-Tr stack, 4.09 A, LEU20 (R, 443 A), )
LEU20 (R, 448 A), ILE50 (R, 457 A), ILE31(1-0, 399 A),
ILES (R, 493 A), ALA7 (-R, 4.63 A), PHE92 (1-R, 4.56
A

HB conventional H bond, NCHB non-conventional H bond, 7-T - T-shaped, amide-m stack amide-n stacking, R alkyl, 71-R pi-alkyl, -0 pi-sigma
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Fig. 2 Structure of the target protein dihydrofolate reductase (PDB
ID: 2W9S)
A\

Discussion

In vitro antibacterial studies

Even though both compounds (DmChDp and DmChDa)
have less activity than the standard antibiotic ampicillin,
they showed appreciable growth-inhibitory power. The
diameter of the zone of inhibition exhibited by ampicil-
lin in S. aureus was 30 mm, while the Schiff bases
DmChDp and DmChDa exhibited 26 mm and 25 mm
respectively, at 500 pg disc™* concentration. The zone of
inhibition was found to be increasing with the

Page 6 of 9

concentration of the compounds. Thus, they can be con-
sidered good antibacterial agents for S. aureus.

Lipinski rule of five

According to this rule, an orally active drug must have
less than two violations [35]. Results showed that the
Schiff bases DmChDp and DmChDa have only one vio-
lation and hence they obey the Lipinski rule, suggesting
that these compounds have the potential to behave as an
orally active drug.

Docking studies of Schiff bases with targets in
Staphylococcus aureus

Docking studies of DmChDp with 2W9S

From Table 3, it is clear that the Schiff base is more effect-
ive in sites 2 and 3 of the target 2W9S with a maximum
binding energy of — 9.9 and — 10.3 kcal/mol, respectively.
The interaction pattern showed that DmChDp interacted
with the target 2W9S through 2 hydrogen bonds in active
site 2 (LEU20, SER49 residues) and 1 hydrogen bond in
active site 3 (ALA7 residue). In active site 2, the first
hydrogen bond is formed between the nitrogen atom of
the Schiff base (-C=N-) and H of LEU20. The second was
originated from phenolic H to the N of SER49. In site 3,
the hydrogen bond is formed between phenolic oxygen of
the ligand and the H atom of ALA7 (2.24 A).

The other interactions present in site 2 were carbon H
bond (GLN19), alkyl interaction (LEU20, ILE50), pi-alkyl
interaction (LYS29), and unfavourable acceptor-acceptor
interaction (ILE14). In site 3, apart from conventional H
bond, non-classical H bond, van der Waals, and hydro-
phobic interactions were also observed.

PHE92 and ILE5 residues present in site 3 of 2W9S
interacted by means of pi-pi T-shaped and amide-pi
stacked interactions, respectively. The amino acid

Fig. 3 3D interaction diagrams of a DmChDp in site 3 of 2W9S and b DmChDa in site 2 of 2W9S
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Fig. 4 2D interaction diagrams of a DmChDp in site 3 of 2W9S and b DmChDa in site 2 of 2W9S

residues LEU20 and ILE50 formed two alkyl interactions
each and the residues ALA7, ILE31, ILE5, and PHE92
form pi-alkyl interactions. Considering binding energy
and interactions, it is derived that DmChDp has more
binding affinity towards site 3 of the protein target
2W9S. Thus, the inhibition mechanism of S. aureus by
DmChDp may involve deactivation of the function of
the dihydrofolate reductase enzyme.

Docking studies of DmChDa with 2W9S

DmChDa is also more effective in sites 2 and 3 of the tar-
get 2W9S with a maximum binding energy of - 10.5 and
- 9.5 kcal/mol, respectively. In site 2, there is a conven-
tional hydrogen bond interaction with SER49 residue
(imine N with H of SER49, 2.06 A), whereas in site 3,
hydrogen bond interaction was absent. In both sites, there
are three alkyl interactions (ILE50, LEU20), three pi-alkyl
interactions (ILE14, ALA7, ILE5) and a pi-sigma inter-
action (ILE31). The van der Waals interaction is with
ILE14 and PHE92 residue in sites 2 and 3, respectively. In
addition to these interactions, there is an amide-pi stacked
interaction with ASN18 in site 2. Based on the values of
binding energy and interactions, it can be stated that
DmChDa has more binding affinity towards site 2 of the
target 2W9S. Thus, DmChDa also deactivates the dihy-
drofolate reductase enzyme preferentially than the other
five enzymes.

In brief, out of the 6 target proteins selected for dock-
ing study, the Schiff base compounds are more active
against dihydrofolate reductase enzyme and the growth-
inhibitory power against S. aureus is attributed to the
high binding affinity towards this enzyme. Also, the
amino acid residues LEU20, ILE50, and PHE92

interacted with the cyclohexanone ring when both the
compounds docked with the target 2W9S. 3D and 2D
interaction diagrams of Schiff bases are shown in Figs. 3
and 4, respectively.

Conclusion

Schiff base compounds DmChDp and DmChDa have ap-
preciable growth-inhibitory power on comparing with
the inhibitory power of the standard antibiotic ampicillin
against the pathogenic bacteria S. aureus. Maximum
zone of inhibition of about 26 mm and 25 mm were
shown by DmChDp and DmChDa, respectively, at a
concentration of 500 pg disc™'. Both of them obeyed
Lipinski’s rule of five and possess drug-like property.
Among the target proteins selected for study, both the
Schiff bases showed good binding affinity in sites 2 and
3 of the target protein dihydrofolate reductase enzyme
(PDB ID: 2W9S). Maximum binding energies of — 10.3
and — 10.2 kcal/mol were observed for DmChDp and
DmChDa docked with 2W9S, respectively, which clearly
establish that the appreciable growth-inhibitory power of
these Schiff bases against the pathogenic bacteria S. aur-
eus is mainly due to deactivation of the enzyme, dihy-
drofolate reductase.

Abbreviations

DmChDp: 2,2-(5,5-dimethylcyclohexane-1,3-diylidene)bis(azan-1-yl-1-
ylidene)diphenol; DmChDa: N,N'-(5,5-dimethylcyclohexane-1,3-
diylidene)dianiline
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