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Abstract 

Background:  Nanotechnology is considered a new and rapidly emerging area in the pharmaceutical and medicinal 
field. Nanoparticles, as drug delivery systems, impart several advantages concerning improved efficacy as well as 
reduced adverse drug reactions.

Main body:  Different types of nanosystems have been fabricated including carbon nanotubes, paramagnetic 
nanoparticles, dendrimers, nanoemulsions, etc. Physicochemical properties of the starting materials and the selected 
method of preparation play a significant aspect in determining the shape and characteristics of the developed nano-
particles. Dispersion of preformed polymers, coacervation, polymerization, nano-spray drying and supercritical fluid 
technology are among the most extensively used techniques for the preparation of nanocarriers. Particle size, surface 
charge, surface hydrophobicity and drug release are the main factors affecting nanoparticles physical stability and 
biological performance of the incorporated drug. In clinical practice, many nanodrugs have been used for both diag-
nostic and therapeutic applications and are being investigated for various indications in clinical trials. Nanoparticles 
are used for the cure of kidney diseases, tuberculosis, skin conditions, Alzheimer’s disease, different types of cancer as 
well as preparation of COVID-19 vaccines.

Conclusion:  In this review, we will confer the advantages, types, methods of preparation, characterization methods 
and some of the applications of nano-systems.
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Background
Nanotechnology is the molecular-scale fabrication of 
various functioning systems. These systems have special 
physical, electrical, and optical characteristics that make 
them appealing in a variety of domains, ranging from 
materials science to biology [1]. Nanomedicine is one of 
the most well-known nanotechnology research fields. It 
uses nanotechnology to develop highly targeted medici-
nal interventions for disease detection, prevention, and 
treatment [2]. Over the last few decades, there has been 
a spike in nanomedicine research, which is currently 
being turned into commercialization activities around 

the world, culminating in the marketing of numerous 
products. Drug delivery systems now dominate nano-
medicine, with revenues accounting for over 75% of total 
sales [3]. Nanoparticles have a diameter of 10–1000 nm. 
Entrapped, encapsulated, dissolved, or linked to the 
nanoparticle matrix is the active pharmaceutical ingre-
dient (API) [4]. Nanoparticles can be made by alter-
ing the method of fabrication. Nanoparticles have been 
proven to be useful as drug delivery vehicles. Many uses 
for nanoparticulate drug delivery systems exist, including 
gene therapy, cancer therapy, AIDS therapy, and radia-
tion. It can also be used to transport proteins, antibiot-
ics, and vaccinations, as well as serve as vesicles to cross 
the blood–brain [5]. The major aims of nanoparticle 
design as a delivery system are to control particle size, 
surface properties, and drug delivery and API release so 
as to ensure site-targeted drug activity at an appropriate 
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therapeutic rate and dosing regimen. In this review, we 
will discuss the advantages of nanoparticles as drug deliv-
ery systems, different types of nanosystems and their 
applications. We will also explain different methods used 
in the fabrication and characterization of nanoparticles. 
Examples of marketed nanoparticles products will be 
provided as well.

Main text
Benefits of utilizing nanoparticles as a drug delivery 
system
The benefits of employing nanoparticles as drug vehi-
cles are because of two key characteristics: their tiny size 
and the use of biodegradable materials in the majority of 
cases [6, 7]. The effectiveness of most medication deliv-
ery methods is found to be largely reliant on particle size. 
Drug nanoparticles exhibit increased solubility and supe-
rior bioavailability which is a result of their small particle 
size and large surface area [8]. Additionally, their abil-
ity to cross the blood brain barrier, entering pulmonary 
system, endothelium of tumors and absorption through 
tight junctions of skin endothelial cells, give them added 
value. The nano-range size of these particles, in general, 
allows for effective absorption by various cell types as 
well as selective drug accumulation in the target locations 
[9, 10].

Nanoparticles also have the benefit of being more 
adequate for intravenous administration than conven-
tional microparticles. The smallest body capillaries have 
a diameter of 5–6 m. To make sure that particles do not 
cause embolism, the size of particles dispersed in the cir-
culation should be substantially less than 5 m [11]. Using 
both natural and synthetic biodegradable polymers for 
nanoparticle preparation give them the advantages of tar-
geted drug delivery, improve bioavailability and achieve 
sustained release behavior of medications from a single 
dose at the target site over a prolonged period of time; 
by adaptation of the system, endogenous enzymes can be 
prevented from destroying the drug [12].

Furthermore, typical oral or injectable medicines now 
accessible for use are not necessarily provided in the 
most suitable formulation. As a result, goods containing 
proteins or nucleic acids will require more creative car-
rier systems (nanoparticles) to improve their efficacy and 
avoid any instability [13].

Types of pharmaceutical nanosystems
Carbon nanotubes
Carbon nanotubes were first found in 1991 [14]. They 
are tubular carbon-based structures. These tubes are 
made up of cylinders of graphite sheets that are sealed 
at one or both ends by bucky balls and range in length 
from 1 to 100 nm. Single-walled nanotubes (SWNTs) and 

multiwalled nanotubes (MWNTs) are two designs that 
have recently gained popularity (MWNTs). C60-fuller-
enes are also found in typical configurations. They come 
in a variety of graphite cylinder configurations and are 
known for being cage-like and hollow (nanotubes and 
fullerenes). They are suitable for drug encapsulation 
because of their surface features and size, and they have 
crucial physical qualities. The DNA helix has a diam-
eter of half the size of SWNTs. MWNTs, on the other 
hand, have diameters that range from a few nanometers 
to tens of nanometers, depending on how many walls 
they have in their structure [15]. Chemical vapor depo-
sition, combustion procedures and electric arc discharge 
are the most common methods for producing fullerenes 
and carbon nanotubes. The strength and stability of these 
structures are used to characterize them so that they can 
be used as trustworthy drug transporters. Endocytosis 
or insertion across the cell membrane is how nanotubes 
enter cells. The structures of fullerenes were able exhibit 
tissue targeting and intracellular targeting of mitochon-
dria. Additionally, it was found that that they show both 
antioxidant and antimicrobial activity [16].

Quantum dots
Quantum dots (QDs) are made up of semi-conducting 
structures that are 2–10 nm in size. They are nanocrys-
tals with an inorganic semi-conductor core (CdSe) and an 
organic shell coated with zinc sulphide to increase opti-
cal qualities, and they are designed to glow when under 
the influence of light. The addition of a cap improves 
the solubility of QDs in aqueous buffers [17]. The parti-
cle’s radius spans from 2 to 10 nm. Several qualities have 
been attributed to the long-term tracking of intracellular 
processes, bio-imaging in  vitro, and real-time monitor-
ing. Narrow emission, strong photo-stability, broad UV 
excitation, and brilliant fluorescence are some of these 
properties [18]. Cell labelling, biomolecule detection and 
biological performance, DNA hybridization, immunoas-
says, and the creation of non-viral vectors for gene ther-
apy, carriers for cancer treatment, and transport vehicles 
for biological and non-biological agents are some of the 
diagnostic and therapeutic applications of QDs [19].

Nanoshells
Nanoshells are altered models for drug targeting, with a 
silica core and outer layer of metal [20]. Nowadays, much 
attention was gained by these nanoshells. The character-
istics of these particles can be changed by adjusting the 
ratio between the core and the shell. It is now feasible 
to formulate these nanostructures in targeted physical 
properties, like size and morphology. Because all of the 
materials cannot be formulated in the desired morphol-
ogies, nanoshells are used to create new systems with 
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a variety of morphologies. Particles of specific shapes 
could be covered with thin shell to achieve appropriate 
morphology. These shells have the advantage of being 
inexpensive since precious materials can be added to 
low-cost cores. As a result, precious material is needed 
in smaller quantities during synthesizing nanoshells [21]. 
Nanoshells targeting can be obtained by immunological 
techniques; an example for this targeting strategy is the 
gold nanoshells which were occupied with antibodies 
moieties on its outer gold surface for enhancement of the 
targeting power toward the cancer cell [22]. Nanoshells 
occupy different functions in varied areas like chemically 
stabilizing colloids, improving luminescence features and 
drug [23].

Nanobubbles
Nanobubbles are bubble-shaped particles formed at the 
nanoscale at the interface of lipophilic surfaces in liquids. 
When heated to body temperature, they mix to form 
microbubbles, which are stable at room temperature. 
They arise in supersaturated solutions as a result of gas 
nucleation at the hydrophobic surface, resulting in air 
gas trapping. There are 4 types of these nanoparticles; 
plasmonic, bulk, oscillating and interfacial nanobubbles. 
Drugs for cancer treatment were successfully loaded into 
these particles, they were able to target tumor tissues 
and increase the tumor cells uptake with the influence of 
ultrasound exposure [24, 25].

Paramagnetic nanoparticles
Magnetic nanoparticles are small particles with a diam-
eter of fewer than 100  nm that can be controlled by a 
magnetic field. Magnetic elements are used to make 
these particle materials. The magnetic sensitivity of these 
nanoparticles is used to classify them. Magnetic suscep-
tibility of paramagnetic nanoparticles is higher than that 
of typical contrast forms. These nanoparticles are utilized 
for diagnostic and treatment strategies. Paramagnetic 
nanoparticles targeting is effective for identification of 
specific organs [26].

Liposomes
Liposomes are synthetics particles made from amphi-
philic phospholipids that self-assemble. They are made 
up of spherical double layered vesicles that surround an 
aqueous core domain that can range in size from 50 nm 
to several micrometres depending on the kind. General 
biocompatibility and biodegradability are appealing bio-
logical characteristics of liposomes. Liposomes are the 
most often utilized nanosystems as drug vehicles in clini-
cal trials. They can be utilized to decrease medication 
clearance as well as reduce systemic effects and toxic-
ity [27]. For the transfer of DNA, siRNA, proteins, and 

cancer treatments, nanoscale modified liposomes have 
good pharmacokinetic characteristics.

Low loading capacity, rapid drug release and the lack 
of adjustable drug release patterns are all limitations of 
liposomes [28]. Drugs are also discharged into the extra-
cellular fluid because liposomes are unable to penetrate 
cells [29]. Following oral or parenteral administration, 
stability and structural integrity against a hostile bio-
environment can be achieved by surface modification 
[30]. Drugs can be incorporated in the water phase of 
liposomes using an ammonium sulphate gradient to 
counteract the rapid release of the drug from liposomes. 
This will allow for consistent drug trapping and minimal 
drug loss throughout circulation [31]. Liposomes have 
also been coupled to antibodies to deliver medication to 
particular targets [32].

Niosomes
Niosomes are a type of molecular cluster formed in an 
aqueous phase by the self-assembly of non-ionic sur-
factants. Niosomes have a unique architecture that allows 
them to function as a new delivery method that can 
accommodate both lipophobic and lipophilic agents [33]. 
Niosomes consist of non-ionic surfactants, they are char-
acterized by their non-toxicity, high stability and they 
are considered to be a replacement to liposomes. In vivo, 
niosomes act like liposomes; the entrapped drug’s circu-
lation is extended, and organ distribution and metabolic 
stability are changed. Characteristics of niosomes rely 
upon the bilayer, besides the preparation technique. It is 
proved that the entrapment volume during formulation 
decreases as a result of intercalation of cholesterol in the 
bilayers, and this leads to a reduction in the entrapment 
efficiency [34]. Present conclusions for the adoption of 
niosomes in the delivery of drugs are with a broad extent 
in entrapment of potent drugs [35], anticancer [36] and 
anti-viral medications [34].

Dendrimers
Dendrimers are a special category of polymers, charac-
terized by being multi-branched, with a controllable size 
and shape. The size of these dendrimers is determined by 
the degree of branching, which may be regulated. Addi-
tionally, spherical branching within dendrimers creates 
voids that can be benefited for drug entrapment and 
delivery. The free ends of dendrimers, on the other hand, 
can be changed for conjugation to other molecules [37]. 
These nanostructures are advanced in terms of surface 
functionalization and stability, making them unique drug 
delivery possibilities. There are three main fundamental 
areas in terms of construction: core, branches, and sur-
face. These networks help in the delivery of bioactives 
like medicines, genes, and vaccinations to specific tissues. 
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Solubilization, gene therapy [38], dendrimer-based drug 
delivery [39], immunoassay, and MRI contrast agent are 
only a few of the uses for dendrimers.

Polymeric micelles
Polymeric micelles are a type of micelle made up of lipo-
philic and lipophobic monomer units in a block copoly-
mer. They are made up of a center of lipophilic blocks 
that is stabilized by a corona of lipophilic polymeric 
chains. Corona-forming PEG blocks are utilized, and 
the length of a lipophilic center-forming block is similar 
to that of a hydrophilic block [40]. As a medication car-
rier, a micellar system has various advantages over con-
ventional systems. Using micelle-forming surfactants 
to promote drug solubility improves the solubility of a 
weakly water-soluble medicine. They also increase the 
permeability of medications across physiological barriers, 
which improves their bioavailability. As a result, altera-
tions in drug biodistribution occur. They help reduce 
negative side effects of critical medications. As a result of 
their reduced size and lipophilic shell, polymeric micelles 
remain in the blood for prolonged time after intravenous 
delivery, reducing their uptake by the reticulo-endothe-
lial system. Micelles can also be made target specific by 
chemically attaching a targeting component to their sur-
face. Because it is in a micellar form, the medication is 
effectively shielded from possible deterioration due to 
biological surroundings [41]. Because it is in a micellar 
form, it will find its path to the target organ or tissue.

Polymeric nanoparticles
Polymeric nanoparticles (PNPs) are mostly biodegrad-
able and biocompatible; therefore, researchers are drawn 
to biodegradable PNPs as a drug-delivery system [42, 43]. 
PNPs are subdivided into vesicular systems (nanocap-
sules) and matrix systems (nanospheres). Advance modi-
fication of natural polymers was recently explored by 
researchers which comprises synthetic polyesters. One 
of the most familiar natural polymers is chitosan. Many 
polymers reduce toxic issues with the artificial polymers 
[44]. Natural PNPs prevailed over traditional delivery 
systems, due to their higher efficiency and effectiveness. 
Nevertheless, they have some drawbacks like poor repro-
ducibility, degradation problems and potential antigenic-
ity. The encapsulated drug’s release behavior is controlled 
by the manufacturing technique. PNPs are potential 
intracellular and site-targeting systems.

Nanocapsules
Nanocapsules and nanospheres vary in that the for-
mer are carriers where the drug is contained in a core 
enclosed by a polymeric membrane, while the latter 
are structures where the drug is disseminated through 

the polymeric matrix [45]. PNPs can be thought of as a 
matrix in which the drug is equally distributed. Across 
or inside the polymeric matrix, the medication might be 
dissolved, entrapped, or encapsulated. PNPs are an excel-
lent alternative for cancer therapy and other applications 
due to their capacity to customize medication delivery 
[46].

Solid lipid nanoparticles
Solid lipid NPs (SLN) were produced as a substitute to 
emulsions, liposomes and PNPs as a colloidal drug deliv-
ery system in a controlled manner [46]. SLNs are pre-
pared from solid lipids and stabilized by surfactant(s). 
SLN offers several benefits for drug delivery over other 
particle carriers, including superior tolerability, biodeg-
radability, high bioavailability via the ocular route, and 
a targeted impact on the brain [47, 48]. The research of 
SLN has exploded in recent years, notably with the high-
pressure homogenization technique. SLN has been pro-
duced and studied for a variety of applications. The small 
size of SLN allowed them to become injected intrave-
nously and used for site-targeting of drugs.

Nanoemulsions
Nanoemulsions and self-emulsified drug delivery systems 
(SEDDS) have gained a lot of interest in recent years as 
a way to increase the bioavailability of medicines of low 
aqueous solubility. Nanoemulsions are non-homogenous 
systems made up of immiscible liquids where one is dis-
seminated as droplets in the other [49]. When integrated 
into aqueous phases under mild mixing, SNEDDS are 
isotropic mixes of oil, surfactant, co-surfactant, and drug 
that produce oil-in-water (o/w) nanoemulsions [50]. By 
a variety of processes these systems improve the oral 
bioavailability of weakly water soluble medicines. Fur-
thermore, the small size of the droplets reduces the sur-
face tension between the oil droplets and the aqueous 
medium of the gastrointestinal tract, allowing for more 
uniform and widespread drug distribution in the gut [51].

Fabrication of nanoparticles
The physicochemical characteristics of the polymer as 
well as the selected drug determine the suitable method 
for the preparation. Nanoparticles mainly have been syn-
thesized by different methods including dispersion of 
pre-formulated polymers, co-acervation of hydrophilic 
polymers and polymerization of monomers [52]. Other 
techniques have been mentioned in the literature for 
production of nanoparticles including supercritical fluid 
technology [53] and particle replication in non-wetting 
templates [54].
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Dispersion of preformed polymers
This method relies on the fabrication of biodegradable 
nanoparticles through the dispersion of biodegradable 
polymers [55–57]. Dispersion of preformed polymers can 
be utilized in different ways:

Solvent evaporation method  One of the most commonly 
used procedures for the production of nanoparticles is sol-
vent evaporation. Emulsification of the polymer solution 
in an aqueous phase is the initial stage, followed by evapo-
ration of the polymer solvent, which results in polymer 
precipitation as nanospheres. This technique is depend-
ent on the polymer’s solubility as well as the hydrophobic-
ity of the organic solvent. To produce an oil in water (o/w) 
emulsion, the drug-polymer combination is emulsified in 
an aqueous solution including a surfactant or emulsifying 
agent. The organic solvent is then evaporated by continu-
ous stirring or by reducing the pressure, once the stable 
emulsion is formed. Several factors were found to affect 
the size range of nanoparticles. Among these factors are 
the concentrations and type of both the stabilizer and the 
polymer, and the homogenizer speed [58]. Ultrasonica-
tion or high-speed homogenization may be used to fab-
ricate small particle size. Ultracentrifugation is used to 
collect nanoparticles, then they are washed using distilled 
water to remove stabilizer residue or any free drug. Nan-
oparticles are further lyophilized for storage. There are 
two modifications for this method; solvent evaporation 
method and high pressure emulsification [59]. The latter 
method involves preparation of an emulsion which was 
homogenized under high pressure followed by removal 
of organic solvent by steering. Many drugs activity were 
improved and enhanced by preparation as nano-formula-
tion using solvent evaporation method, examples include 
improved skin penetration of ibuprofen [60] and Betulinic 
acid nanoparticles as Visceral Leishmaniasis alternative 
treatment [61].

Spontaneous emulsification  This method works with 
both lipophilic and lipophobic medicines. A multiple 
w/o/w emulsion with the medication dispersed in the 
internal aqueous phase is required for lipophobic drugs 
[62].

Double emulsion and evaporation method  Many evap-
oration-based techniques have the disadvantage of poor 
hydrophilic drug entrapment. To load the lipophobic 
drug, the double emulsion approach is employed, by add-
ing drug solutions to an organic solution, containing the 
polymer, while continuously stirring to produce a w/o 
emulsion. The generated emulsion is then continuously 
incorporated into the second aqueous phase. To make the 
w/o/w emulsion, keep swirling. The solvent is then evapo-

rated, and the nanoparticles may be separated using high-
speed centrifugation. Before lyophilization, the produced 
nanoparticles must be cleaned. The quantity of integrated 
hydrophilic drug, the stabilizer concentration, the poly-
mer concentration, and the volume of aqueous phase all 
have a role in the characterization of nanoparticles in this 
procedure [63]. Some examples for drugs nano-formu-
lations prepared by double emulsion technique include 
Rose Bengal for breast cancer treatment [64] and oleuro-
pein with improved stability [65].

Salting out method  Salting-out effect depends mainly on 
the separation of a water miscible solvent from aqueous 
solution. Both the medication and the polymer are dis-
solved in a vehicle in the first phase, which is then emulsi-
fied into an aqueous gel with the salting out agent and a 
colloidal stabilizer. Salting out agents (electrolytes, as well 
as non-electrolytes) and colloidal stabilizers have been 
used [66]. This technique produces an oil/water emul-
sion, which is subsequently diluted with enough water to 
enhance solvent diffusion in the aqueous phase, allow-
ing for the formation of nanospheres. Salting out tech-
nique is used for the synthesis of ethyl cellulose, PLA and 
Poly (methacrylic) acids nanospheres. This method has 
the advantage of minimizing the stress on the protein 
included in encapsulants formation and resulted in high 
efficiency and is easily scaled up [67].

Emulsions–diffusion method  Another way to make nan-
oparticles is to use this technique. To establish the first 
thermodynamic equilibrium of both liquids, the encap-
sulating polymer is dissolved in a partly water-miscible 
solvent (such as propylene carbonate or benzyl alcohol) 
and saturated with water. The polymer-water saturated 
solvent phase is then emulsified in an aqueous solution 
containing a stabilizer, causing solvent diffusion to the 
exterior phase and the production of nanospheres or 
nanocapsules, depending on the oil-to-polymer ratio. In 
the last step, the solvent is removed by evaporation or fil-
tration, depending on its boiling point. This technique has 
several benefits, such as high encapsulation efficiencies, 
no need for homogenization, high batch-to-batch repro-
ducibility, scale up easily, simplicity, and narrow size dis-
tribution [44]. This technique was used for preparation of 
estrogen-loaded PLGA-nanoparticles [58] and synthesis 
of poly lactic acid [68].

Solvent displacement method  In this process, pre-for-
mulated polymer is precipitated in an organic solution, 
while the organic solvent is dispersed in the aqueous solu-
tion [69]. Surfactants can be added to aid the diffusion 
of organic solvent [70]. After completely dissolving, the 
solution is injected into an aqueous solution containing 
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a stabilizer while being constantly stirred. Fast solvent 
diffusion causes nanoparticles to develop spontaneously. 
The solvent is then removed from the suspensions at low 
pressure after this phase. The ratio of the organic phase 
to the aqueous phase determines particle size. It is well 
understood that raising the mixing rate of the two phases 
reduces particle size and drug entrapment [69]. This 
technique is not suitable for encapsulating of hydrophilic 
drugs but limited for those with poor solubility with an 
advantage of the ease of scaling up for industrial produc-
tion [6]. Regulating the polymer concentration in the 
organic phase has proven to be effective in the formula-
tion of smaller sized nanospheres. Nonetheless, size range 
is confined to minimum range of the polymer to drug 
ratio [44]. Examples for preparations were done by this 
technique include preparation of Boldine-loaded PLGA 
nanoparticles [71], Functionalized polyaniline nanoparti-
cles [72], N-Acetylcysteine loaded in PLGA nanoparticles 
[73] and Non-isocyanate polyurethane nanoparticles [74].

Coacervation or ionic gelation method
Ionic gelation could be utilized for the production of 
hydrophilic polymer based nanoparticles [75]. This tech-
nique is first reported by Calvo and coworkers in 1997 
[76, 77]. It depends on the great electrostatic attraction 
between positively charged amino group of chitosan as 
well as negatively charged tripolyphosphate where two 
different aqueous phases were prepared, one for polymer 
and the other is for polyanion sodium tripolyphosphate 
to formulate coacervates that have a size in nanometer 
range [78]. Other examples used this technique involve 
the preparation of advanced controlled released chitosan 
nanoparticles with improved properties of less aggrega-
tion tendency using tripolyphosphate-beta-cyclodextrin 
complex [79], levofloxacin loaded polymeric nanoparti-
cles [80], and encapsulation of anthocyanins antioxidant 
for improved stability [81].

Polymerization method
This method is done in aqueous solution by polym-
erization of monomers to form nanoparticles. Drug is 
incorporated by two different methods during polymeri-
zation process (either by diffusion in the polymerization 
medium or by adsorption onto the nanoparticles after 
complete polymerization) [82]. Ultracentrifugation can 
be utilized to separate nanoparticle suspension from dif-
ferent stabilizers and surfactants that were used during 
polymerization, followed by the re-dispersion of the nan-
oparticles in an isotonic medium free from surfactants. 
The desired size of nanoparticles can be obtained by 
optimizing concentration of the surfactants and sta-
bilizers. There are many applications and researches 
were achieved using polymerization technique include 

synthesis of super hydrophobic cotton fabrics [83, 84] 
and fabrication of nonporous polyimide silsesquioxane 
nanostructure as soft dielectric materials [85].

Nano spray drying
Spray drying is a fast, simple, reproducible, and scal-
able drying technology, which allows mild temperature 
condition suitable for heat-sensitive biopharmaceutical 
compounds. Spray drying, in comparison to other drying 
methods, is a continuous process that converts different 
liquids to solid particles while allowing for size, distribu-
tion, shape, porosity, density, and chemical composition 
adjustments. Spray drying equipment are commercially 
accessible, and the cost of manufacturing is cheaper than 
other drying methods such as freeze drying [86]. Spray 
drying involves four steps: (1) heating the drying gas, (2) 
droplet production, (3) droplet drying, and (4) particle 
collecting. Nano spray drying enables the generation of 
smaller particle sizes than conventional spray dryers that 
improves bioavailability and release of bioactive compo-
nents and drugs. Drug-loaded nanoparticles provide sev-
eral benefits, including a greater surface-to-volume ratio, 
a better rate of cell penetration, increased stability, and 
the capacity to pinpoint release [87].

Supercritical fluid technology
The previously mentioned conventional methods utilize 
organic solvents that are dangerous to the environment 
and the physiological systems. Supercritical fluid tech-
nology has been utilized as an alternative to manufacture 
biodegradable micro- and nanoparticles since supercriti-
cal fluids are ecologically friendly [88]. Even though envi-
ronmentally friendly and suitability for mass production, 
supercritical fluid technology needs specific expensive 
equipment. Supercritical fluids are fluids, when are at 
a temperature higher than its critical temperature, still 
remain homogenous, regardless of pressure. Supercritical 
CO2 (SC-CO2) is the most broadly applied supercritical 
fluid due to its moderate critical conditions, non-flam-
mability, considerable price and safety [89].

Applications of nanoparticles
Nanoparticles in the treatment of kidney diseases
In urology and nephrology, nanoparticles are utilized to 
treat renal disorders. Ferumoxytol has been included into 
nanoparticles for the treatment of patients with chronic 
kidney disease or end-stage renal disease who do not 
produce enough erythropoietin [90]. Due to the onset of 
numerous diseases from this area, PEGylated gold nano-
particles can also target the mesangium—contractile cells 
that make up the central stalk of the glomerulus of the 
kidney. Rhein, an anthraquinone derivative used to treat 
diabetic nephropathy, had its distribution and therapeutic 
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impact increased thanks to nanoparticle technology. Tri-
block amphiphilic was used to make Rhein nanoparti-
cles. Rhein nanoparticles were synthesized using triblock 
amphiphilic polymers, namely polyethylene glycol-co-
polycaprolactone-co-polyethylenimine. The size of nano-
particles prepared was about 75  nm which is optimum 
for kidney-targeted drug delivery. The results demon-
strated that distribution to kidney as well as therapeutic 
effects of the drug were improved [83].

Nanoparticles for treatment of tuberculosis by chemotherapy
The improved efficacy of the anti-TB medicines loaded 
nanoparticles was due to their changed release behavior 
following oral administration. Rifampin, isoniazid, and 
pyrazinamide, three major medicines were co-incorpo-
rated in PLG-nanoparticles. These medications’ thera-
peutic concentrations in tissues were kept for 10  days, 
but free drugs only lasted 1 day in the plasma after injec-
tion [91, 92].

Nanoparticles topical drug delivery for skin diseases
PNPs are the most extensively used nanoparticles for 
medication administration on the skin [93]. PNPs made 
from chitosan and alginate are used to treat acne, and 
as compared to benzoyl peroxide alone, they showed 
improved antibacterial efficacy against Propionibac-
terium acnes [94, 95]. In addition to polymeric nano-
particles, electro-spun fibres mats have a high surface 
area-to-volume ratio, which helps with the effective 
dispersion of both hydrophobic and hydrophilic medi-
cations and making them ideal for topical drug admin-
istration [93, 96]. Liposomes, solid lipid nanoparticles 
(SLN), and nanostructured lipid carriers (NLC) all cling 
to the surface of the skin. Liposomes, solid lipid nano-
particles (SLN), and nanostructured lipid carriers 
(NLC) bind to the skin’s surface, allowing lipid exchange 
between the stratum corneum’s outermost layers and 

the carrier for better medication penetration. Inflamma-
tory skin illnesses including psoriasis and atopic eczema 
were treated with lipid-based carrier systems containing 
glucocorticoids and T-cell suppressing drugs like cyclo-
sporin and tacrolimus. Surface modified SLNs containing 
retinyl palmitate improved the drug’s cutaneous disper-
sion when compared to neutral SLNs, according to Jeon 
et  al. [97]. Recent research has revealed that incorpo-
rating retinol into Compritol-based SLN make the drug 
released more rapidly as compared to conventional car-
rier [98–100].

Drug targeting to infectious diseases by nanoparticles
The physical and chemical properties of nanoparticles are 
being used as a tool to treat a variety of infectious dis-
orders. The use of a therapeutic medicine loaded on a 
nano-vector has boosted the efficacy of the drug against 
infectious disorders. The polyethylene glycol-modified 
carbon nanotubes are the most common type of non-
viral delivery system due to their enhanced pharmacoki-
netic and toxic characteristics. These are efficient carriers 
of bioactive molecules in the delivery of specific drugs for 
the treatment of infectious illnesses [101, 102].

Applications of nanoparticles in treating Alzheimer’s disease
Nanoparticle-mediated medication delivery is one of the 
newest approaches for increasing CNS penetration for 
the diagnosis and treatment of neurodegenerative dis-
eases like Alzheimer’s disease. PNPs are promising can-
didates among the various nanocarriers used because, in 
addition to being able to open the tight junctions of the 
Blood Brain Barrier, they effectively conceal the mem-
brane barrier confining characterizations of the drug 
molecule, prolonging drug release and protecting drugs 
against enzymatic hydrolysis [103, 104].

Table 1  Examples of FDA-approved nanomedicines

Trade name Material description Advantages Indications Approval year

Estrasorb™ Micellar Estradiol Controlled delivery of the drug Menopausal therapy 2003

Marqibo® Liposomal Vincristine Increased delivery to tumor tissue; 
decreased systemic toxicity resulting 
from side-effects

Acute lymphoblastic leukemia 2012

Onivyde® Liposomal Irinotecan Pancreatic cancer 2015

BNT162b2 vac-
cine (developed 
by BioNTech and 
Pfizer)

Nucleoside modified mRNA encod-
ing the viral spike glycoprotein of 
SARS-CoV-2, encapsulated in lipid 
nanoparticles

Protection of the non-replicating 
RNA from degradation and allow it 
to be delivered into host cells after 
intramuscular injection

Prevention of coronavirus disease 2020

mRNA-1273 vac-
cine (developed 
by Moderna)

Lipid nanoparticle-encapsulated 
mRNA-based vaccine, which encodes 
the spike protein (S protein) of SARS-
CoV-2

Lipid nanoparticles are playing a key 
role in protecting and transporting 
the mRNA effectively to the right 
place in cells

Prevention of coronavirus disease 2020
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Nanoparticles containing different anticancer agents
Nano-oncology is a new discipline of medicine that 
makes use of nanoparticles to treat cancer. The use of 
nanoparticles as an effective medication improves can-
cer cell targeting and overcomes cancer tissue multid-
rug resistance [105]. PLGA is a widely used polymer for 
making nanoparticles, and it has been utilized to make 
drug-loaded nanoparticles for cancer therapy due to its 
biocompatibility and long-term drug release. PLGA has 
been used to successfully manufacture anticancer drugs 
such as doxorubicin, 5-fluorouracil, paclitaxel, and dex-
amethasone. The FDA authorized Nutropin Depot, a 
microsphere version of Somatropin-PLGA nanoparti-
cle, in 1999 as a once-time treatment. Nutropin Depot, a 
microsphere version of Somatropin-PLGA nanoparticle, 
was approved by the FDA in 1999 as a once-per-month 
alternative to daily HGH injections [106]. Doxorubicin is 
an anticancer medication that is primarily used to treat 
a variety of cancers. This feature limits its therapeutic 
potential because it is a very toxic substance that affects 
not just tumour tissue but also the heart and kidney. The 
creation of doxorubicin in liposomes, on the other hand, 
resulted in an FDA-approved nanomedical drug deliv-
ery system [107]. This new liposomal formulation low-
ered doxorubicin transport to the heart and kidney while 
increasing doxorubicin accumulation [108].

Nanoparticles in vaccination against COVID‑19
During the year 2020 and now, all scientists and research-
ers are concentrating their efforts on creating remedies to 
combat the worldwide epidemic of the COVID-19 virus. 
In the year 2021, the importance of nanoparticle technol-
ogy in the development of therapeutic formulations for 
the diagnosis, treatment, and promotion of long-term 
human immunity against COVID-19 was highlighted 
[109]. The backbone in succession and acceleration of 
the time required for creation of COVID-19 nanoparti-
cle-based vaccines (CNPBV) was the recorded genome 
structure from Corona viruses and the pre-knowledge of 
the sequence of the protein laying the virus surface [110]. 
Spikes are present.

The presence of spike proteins on the outer surface 
of the COVID-19 virus, which have a high connecting 
tendency toward nano-formulations and a high bind-
ing tendency toward host cell receptors, was employed 
as a key characteristic in the development of CNPBV 
[111]. A promising vaccine based on nanotechnol-
ogy was approved by the food and drug administration 
(FDA) and proved its big value in prophylaxis against 
COVID-19 virus with a high percentage of 90% on the 
vaccinated population among various vaccines produced 
with moderate efficacy to fight and limit the spread of the 
COVID-19 pandemic around the world. Pfizer-BioNTech 

(BNT162b2 vaccine) and Moderna vaccine (mRNA-
1273 vaccine) are two of these vaccinations [112]. Pfizer-
BioNTech (BNT162b2 vaccine) and Moderna vaccine 
(mRNA-1273 vaccine) are two vaccines that rely on 
mRNA to encode the COVID-19 virus’s spike glyco-
protein (S) and then incorporating the modified mRNA 
(which encodes the virus glycolprotein) into lipid-based 
nanoparticles [113]. The encapsulated modified mRNA 
then aids in the transport of the protein antigen (spike 
protein) to immune cells, stimulating T cell activity and 
inducing antibody immunological responses within the 
human body [114].

FDA approved nanomedicines
In the last few decades, different nano-pharmaceuticals 
have been approved for clinical use from the food and 
drug administration (FDA). Among approved nano-
drugs, liposomal, polymeric and micelles were repre-
sented and administered using oral, intravenous and 
transdermal routes. Table  1 [115] shows representative 
examples of FDA approved nano-medicines.

Conclusions
Nanotechnology is a promising science with variety of 
advantages and applications in the medical field. It over-
came the problems associated with conventional drug 
delivery systems and took the chance to accomplishment 
in production of COVID-19 vaccines based on lipid nan-
oparticle with higher efficiency over the others conven-
tional vaccines. More efforts are needed to increase the 
number of FDA approved nano-drugs and further stud-
ies must be done to understand the development of the 
unique properties of these magical particles.
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