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Abstract 

Background:  Antibiotic resistance is on the rise, and new antibiotic research has slowed in recent years, necessitat-
ing the discovery of possibly novel microbial resources capable of producing bioactive compounds. Microbial infec-
tions are gaining resistance to existing antibiotics, emphasizing the need for novel medicinal molecules to be discov-
ered as soon as possible. Because the possibilities of isolating undiscovered actinomycetes strains have decreased, the 
quest for novel products has shifted to rare actinomycetes genera from regular environments or the identification of 
new species identified in unusual habitats.

Main body of the abstract:  The non-streptomyces actinobacteria are known as rare actinomycetes that are 
extremely difficult to cultivate. Rare actinomycetes are known to produce a variety of secondary metabolites with 
varying medicinal value. In this review, we reported the diversity of rare actinomycetes in several habitat including 
soil, plants, aquatic environment, caves, insects and extreme environments. We also reported some isolation methods 
to easily recover rare Actinobacteria from various sources guided with some procedures to identify the rare Actino-
bacteria isolates. Finally, we reported the biosynthetic potential of rare actinomycetes and its role in the production 
of unique secondary metabolites that could be used in medicine, agriculture, and industry. These microbial resources 
will be of interest to humanity, as antibiotics, insecticides, anticancer, antioxidants, to mention but a few.

Short conclusion:  Rare actinomycetes are increasingly being investigated for new medicinal compounds that could 
help to address existing human health challenges such as newly emerging infectious illnesses, antibiotic resistance, 
and metabolic disorders. The bioactive secondary metabolites from uncommon actinomycetes are the subject of this 
review, which focuses on their diversity in different habitats, isolation, identification and biosynthetic potentials.
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Background
Actinomycetes have long been recognized as a top 
source of biopharmaceuticals, particularly antibiotics 
[1, 2]. Gram-positive filamentous bacteria with a high 
G + C concentration are known as actinomycetes [3]. 

They are a key part of microbial diversity and have been 
found in a variety of habitats and unique settings. Rare 
actinomycetes are a group of actinomycetes whose isola-
tion frequency is significantly lower than that of strep-
tomyces strains obtained using traditional procedures 
[4]. Isolating and cultivating them is challenging. Due 
to their ability to produce a large variety of structurally 
diverse natural compounds with unusual bioactivity, 
these microbial groups from underexplored habitats are 
being studied in drug development [5]. They are found 
in a variety of habitats, including soil, aquatic, mangrove, 
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desert, mountains, and plants, and account for around 
10% of all isolated actinomycetes. They have shown to 
be an excellent and exciting source of novel and potent 
bioactive compounds [6]. Efforts in the past and present 
to isolate uncommon actinomycetes from underexplored 
diverse natural settings have resulted in the isolation of 
over 220 rare actinomycetes genera, with more than 50 
taxa producing 2500 bioactive compounds [5]. This num-
ber accounts for more than a quarter of all actinomycetes 
metabolites, indicating that selective isolation tech-
niques are being developed and widely used. This review 
updates all selected isolation medium, including pretreat-
ment and enrichment procedures for the isolation of rare 
actinomycetes, to aid in that discovery. It reveals several 
processes toward the discovery of novel anti-microbial 
compounds from rare actinomycetes (Fig.  2). Further-
more, this research reveals that rigorous efforts in isolat-
ing and screening rare genera of actinomycetes from new 
and underexplored habitat can increase the discovery of 
new compounds with novel scaffolds. To address the ris-
ing number of antibiotic-resistant pathogenic bacteria, 
new antibiotics are critically needed. Natural products 
continue to be the most potential source of new antimi-
crobials and bioactive compounds. Actinobacteria are 
well-known for being prolific makers of natural bioactive 
substances. Intensive efforts in isolating and screening 
rare genera of microorganisms are thought to boost the 
chances of identifying a new drug with a novel chemi-
cal structure. One strategy to break into novel bioactive 
chemical discovery is to screen rare actinomycetes and 
their hitherto underrepresented genera from unfamil-
iar settings in natural product screening collections [4]. 
The importance of unusual actinomycetes in this regard 
can also be shown in the fact that they produce several of 
the most effective antibacterial drugs now on the market. 
We want to refresh our understanding of the potential 
of rare actinomycetes by focusing on their biodiscovery 
potential; therefore, we want to give the reader a quick 
overview of the bioactive compounds from unusual 
actinomycetes. New compounds identified from these 
microbes with bioactive potential are the focus. Actino-
mycete strains that are difficult to identify are of particu-
lar interest to researchers. As a result, providing access to 
rare actinomycete strains with a high potential for pro-
ducing novel bioactive compounds is of great importance 
[7].

The so-called "rare actinomycetes" are rather numer-
ous in many habitats, according to molecular tools, and 
can be retrieved in large numbers using an appropriate 
isolation procedure [8]. We expect that investigating 
unusual actinomycetes that are difficult to isolate will 
yield a variety of beneficial compounds [9]. The distri-
bution of rare actinomycetes is influenced by a variety 

of parameters such as habitat type, ambient pH, and 
nutrient content [6]. The following genera are rare act-
inobacteria: Gordonia, Isoptericola, Jiangella, Knoellia, 
Kocuria, Krasilnikoviella, Kribbella, Actinocorallia, 
Actinomadura, Agromyces, Alloactinosynnema, Amyco-
latopsis, Beutenbergia, Cellulosimicrobium, Gordonia, 
Isoptericola, Jiangella, Knoellia, Kocuria, Krasilniko-
viella Nocardia, Nocardioides, Nocardiopsis, Nonomu-
raea, Oerskovia, Pseudokineococcus, Pseudonocardia, 
Rhodococcus, Saccharothrix, Streptosporangium, and 
Tsukamurella [10].

It is challenging to isolate unusual actinomycetes 
using traditional dilution plate procedures. Isolation, 
preservation, and cultivation are all demanding pro-
cedures. The reason for this is that they are frequently 
obscured by fast-growing organisms including bacteria, 
fungus, and common Streptomyces [11]. Pretreatments 
such as dry heat, calcium carbonate, phenol, thermal, 
microwave, and sonication are required for the iso-
lation of uncommon actinobacteria. One or more of 
these are done before plating the sample on appropri-
ate media such as humic acid agar with vitamins (HVA) 
and oatmeal agar (ISP3), with 50  mg/L nalidixic acid 
and 100 mg/L of cycloheximide incubating at 30 °C for 
at least 7 days [12, 13]. These treatments remove non-
filamentous bacteria from samples and restrict fungal 
growth, allowing slow-growing uncommon actinomy-
cetes to thrive [12]. For fostering the growth of rare 
actinomycetes while suppressing bacterial and fungal 
contamination, appropriate selective media containing 
macromolecules such as casein, chitin, and humic acid 
are essential.

Diverse habitats for sourcing rare actinomycetes
Soil and plants
Actinomycetes populations have been thoroughly inves-
tigated in soil, and the majority of the rare actinomycetes 
reported so far have come from various types of soil [6]. 
Table 2 shows that the isolation of several novel and rare 
taxa mentioned in this analysis came from a variety of soil 
types. Many unusual actinomycetes are now being iso-
lated from plants [14, 15], often to uncover new microbial 
resources for screening of potential bioactive compounds 
[16]. Endophytic habitats were used to isolate Saccha-
ropolyspora, Dietzia, Blastococcus, Dactylosporangium, 
Promicromonospora, Oerskovia, Actinocorallia, and Jian-
gella species [17]. Endophytic Actinomycetes, such as the 
Frankia genera, can fix nitrogen, which is an important 
function in ecological systems [18]. Rare actinomycetes 
belonging to the Micromonospora, Microbispora, Actino-
planes, and Streptosporangium genera have been isolated 
consistently from numerous Korean soils [4].
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Table 1  Different rare actinomycetes and their isolation media

S/N New species of rare 
actinomycetes

Family Sample source Isolation medium References

1 Nocardioides marinquilinus Nocardioidaceae Coastal seawater Marine agar [35]

2 Saccharomonospora amisosensis Pseudonocardiaceae Deep marine SM3 medium [55]

3 Nocardia spp, Nocardioidaceae Zingiber officinale (root, stem) Humic acid vitamin (HV) agar [56]

4 Saccharothrix xinjiiangensis Pseudonocardiaceae Algerian soil Chitin-Vitamin B medium supple-
mented with nalidixic acid and 
actidione

[57]

5 Saccharomonospora oceani Pseudonocardiaceae Marine sediment Trypticase soy broth agar [55]

6 Nocardioides salsibiostraticola Norcardioidaceae Sea water R2A agar [35]

7 Micromonospora haikouensis Micromonosporaceae Sanai desert of Egypt Starch casein and Humic acid 
vitamin agar plates supple-
mented with cycloheximide

[1]

8 Nocardioides rotundus Nocardioidaceae Sea water Modified ZoBell 2216E agar, ISP2 
medium

[58]

9 Verrucosispora andamanensis Micromonosporaceae Marine sponge Starch casein nitrate sea water 
agar

[59]

10 Micromonospora spongicola Micromonosporaceae Marine sponge Starch casein nitrate agar [59]

11 Prauserella corallicola Pseudonocardiaceae Marine coral Galaxea fascicularis Yeast extract agar in 1L of sea 
water

[60]

12 Saccharopolyspora spongiae Peudonocardiaceae Scopalina ruetzleri M1 medium amended with 
cycloheximide and nystatin at 
25 µg/mL each

[38]

13 Microbacterium aureliae Microbacteriaceae Moon jellyfish Aurelia aurita Zobell marine agar and Tryptic 
soy agar

[61]

14 Marmoricola aquaticus Nocardioidaceae Marine sponge Glodia cortico-
stylifera

MI agar [62]

15 Arthrobacter echini Micrococcaceae Purple sea Heliocidaris crassispina Marine agar 2216 [63]

16 Ornithinimicrobium algicola Intrasporangiaceae Ulva sp. Modified R2A medium [64]

17 Nocardia xestospongiae Nocardioidaceae Marine sponge Xestospongia sp. Modified starch casein nitrate sea 
water agar

[65]

18 Rubrobacter aplysinae Rubrobacteraceae Aplysina aerophoba Tryptone soy agar [66]

19 Actinokineospora spheciospongiae Actinosynnemataceae Marine sponge Spheciospongia 
vagabunda

ISP2 medium [67]

20 Williamsia spongiae Gordoniaceae Marine sponge Amphimedon 
viridis

Tryptic soy agar [37]

21 Myceligenerans cantabricum Promicromonosporaceae Sea sediment Tryptic soy agar supplemented 
with antifungal cycloheximide 
80 µg/mL and nalidixic acid 
20 mg/mL

[68]

22 Saccharomonospora amisosensis Pseudonocardiaceae Deep sea sediment SM3 medium [69]

23 Saccharomonspora oceani Pseudonocardiaceae Marine sediment Tryptic soy broth agar [55]

24 Actinophytocola sediminis Pseudonocardiaceae Marine sediment Starch casein nitrate agar 
medium

[70]

25 Pseudonocardia sediminis Pseudonocardiaceae Sea sediment DSMZ 621 medium [71]

26 Amycolatopsis flava Pseudonocardiaceae Marine sediment CMKA medium [72]

27 Saccharopolyspora griseoalba Pseudonocardiaceae Marine sediment CMKA medium [40]

28 Nocardioides litoris Nocardioidaceae Beach sediment Starch casein agar [73]

29 Streptomonospora nanhaiensis Nocardiopsaceae Marine sediment Starch casein agar [34]

30 Agromyces marinus Microbacteriaceae Marine sediment NBRC medium [74]

31 Microbacterium enclense Microbacteriaceae Marine sediment Marine agar [75]

32 Microbacterium nanhaiense Microbacteriaceae Sea sediment Yeast extract-malt extract agar [76]

33 Glycomyces sambucus sp. nov Glycomycetaceae Stem of Sambucus adnata Humic acid vitamin agar [77]

34 Leifsonia ginseng sp. nov Actinobacteridae Root of Panax ginseng Humic acid vitamin agar, TWYNE 
agar

[44]
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Extreme environments
High and low temperatures, salt, alkaline and acidic 
pH, radioactivity, and high pressure are all examples of 
unique growth conditions found in extreme habitats. 
Microorganisms from harsh habitats have gotten a lot of 
attention because of their unique processes for adapting 
to their extreme surroundings and their ability to create 
uncommon bioactive compounds [19]. Despite the inter-
est, actinomycetes that live in harsh settings have yet 

to be extensively studied since the discovery of pioneer 
Actinopolyspora halophila by chance [5]. Researchers 
have been looking for unusual actinomycetes in a vari-
ety of habitats, including salt soil, alkaline soil, salty seas, 
and the ocean [20]. Researchers have isolated Naxibac-
ter, Actinopolyspora, Amycolatopsis, Citricoccus, Halo-
monas, Isoptericola, Jonesia, Kocuria, Kribbella, Liuella, 
Marinococcus, Massilia, Microbacterium, Nesterenko-
nia, Nocardia, Nocardiopsis, Prauserella, Rhodococcus, 

Table 1  (continued)

S/N New species of rare 
actinomycetes

Family Sample source Isolation medium References

35 Glycomyces artemisiae sp. nov Glycomycetaceae Root of artemisia sp. nov Humic acid vitamin agar, Cza-
pek’s agar

[78]

36 Pseudonocardia serianimatus sp. 
nov

Pseudonocardiaceae Leaves of artemisia annua TWYE agar, Humic acid vitamin 
agar

[79]

37 Pseudonocardia oroxyli sp. nov Pseudonocardiaceae Root of Oroxylum indicum Humic acid vitamin agar [80]

38 Zhihengliuella flava Micrococcaceae Sea sediment NBRC medium 802 [81]

39 Kocuria indica Micrococcaceae Marine sediment Marine agar 2216 [82]

40 Nesterenkonia alkaliphila Micrococcaceae Deep sea sediment Modified ISP1 agar [83]

41 Luteococcus sediminum Propionibacteriaceae Sea floor sediment Marine agar 2216 [84]

42 Mariniluteicoccus flavus Propionibacteriaceae Deep sea sediment HP agar medium [85]

43 Nocardia jiangsuensis Nocardiaceae Costal sediment Starch arginine agar [86]

43 Lysinimicrobium pelophilum Demequinaceae Mud of mangrove NBRC medium 802 supple-
mented with 5% w/v NaCl, 
0.005% w/v cycloheximide and 
0.002% w/v nalidixic acid

[87]

44 Lysinimicrobium rhizosphaerae Demequinaceae Soil of mangrove NBRC medium 802 supple-
mented with 5% w/v NaCl, 
0.005% w/v cycloheximide and 
0.002% w/v nalidixic acid

[87]

45 Micromonospora wenchangensis Micromonosporaceae Mangrove soil Glucose-peptone-tryptone 
agar supplemented with 
nystatin 50 mg/L, cycloheximide 
50 mg/L, novobiocin 25 mg/L 
and nalidixic acid 20 mg/L

[88]

46 Actinoallomurus acanthiterrae Thermomonosporaceae Rhizosphere soil of Acanthus 
ilicifolius

Oatmeal agar supplemented 
with 25 µg/mL novobiocin, 
30 µg/mL nystatin and 10 µg/mL 
nalidixic acid

[89]

47 Ornithinimicrobium algicola Intrasporangiaceae Green alga Ulva sp Modified R2A medium [64]

48 Sinomonas humi Micrococcaceae soil Starch casein agar supplemented 
with cycloheximide 25 µg/mL 
and nystatin 10 µg/mL

[90]

49 Nocardiopsis mangrovei Nocardiopsaceae Mangrove sediment Humic acid vitamin agar [91]

50 Kocuria pelophila Micrococcaceae Rhizosphere soil of mangrove NBRC medium 802 [92]

51 Mumia flava Nocardioidaceae soil ISP2 medium supplemented 
with cycloheximide 25 µg/mL 
and nystatin 10 µg/mL

[93]

52 Monashia flava Intrasporangiaceae soil Starch casein agar supplemented 
with cycloheximide 25 µg/mL 
and nystatin 10 µg/mL

[94]

53 Kineococcus mangrovi Kineosporiaceae Mangrove sediment Starch casein agar supplemented 
with nalidixic acid 25 µg/mL and 
ketoconazole 100 µg/mL

[95]

54 Nocardia sp. Nocardiaceae Leaves Zingiber officinale plant Humic acid vitamin agar (HVA) [56]
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Saccharomonospora, Saccharopolyspora, Sphingomona 
from extreme environments [19]. Rare halophilic actino-
mycetes, such as Nocardiopsis strains, have been found to 
contain a high frequency of non-ribosomal peptide syn-
thase (NRPS) genes, which could be linked to their great 
capacity for synthesizing huge numbers of physiologically 
active compounds [19].

Caves
Caves offer low nutrition, temperature, and light inten-
sity as a microbiological environment, but high humidity 
[21]. These conditions may increase competition, which 
could boost the development of antibiotics and hydro-
lytic enzymes that stop other microbes from growing 
[22]. Spirillospora, Nonomuraea, Catellatospora, Non-
omuraea, Micromonospora, isolated members of the Acti-
nomadura, Saccharopolyspora, Actinoplanes, Gordonia, 
Microbispora, Micromonospora, Nocardia, and Nonomu-
raea, among others, have been isolated from caves. These 
findings support the idea that caves could be rich in rare 
actinomycetes that produce new compounds [22–26].

Insects and birds
The insect kingdom is yet another uncharted terri-
tory for discovering unique and unusual actinomycetes 
[27]. Some insects, such as Pseudonocardia and Amy-
colatopsis, kill weeds due to their natural ability to pro-
duce antimicrobials through a symbiotic interaction with 
actinomycete bacteria [28]. Insect-associated actino-
mycetes have been found to produce a few numbers of 
antifungal compounds. Pseudonocardia species isolated 
from lower attines Apterostigma dentigerum produced 
dentigerumycin, whereas Streptomyces species isolated 
from higher attine ants belonging to the genus Acromyr-
mex produced candicidin, a well-known antifungal [29, 
30]. Antifungal activity was also observed in Pseudono-
cardia isolated from Acromyrmex octospinosus, although 
no antifungal compounds have been extracted or identi-
fied [29]. A Pseudonocardia species was recently discov-
ered in the ant Acromyrmex octospinosus that produced 
a unique polyene antifungal metabolite [31]. Switching 
the search from explored to undiscovered areas could 
boost the discovery of new bioactive compounds [32]. 
Streptosporangium, Actinomadura, Saccharopolyspora, 
Thermoactinomyces, and Nocardia have recently been 
isolated from soils in the nests of solitary wasps and swal-
low birds [33]. Insects and birds are quickly becoming 
important sources for finding unique and novel bioactive 
compounds in Actinomycetes.

Aquatic habitat
In rivers, lakes, oceans, and marine habitats, rare actino-
mycetes are common. Actinoplanes with sporangium and 
zoospores will grow in moist environments and survive 
in dry environments as spores. Micromonospora spp. is a 
naturally occurring bacterium found in freshwater lakes 
and mud that can be isolated from lake sediments. Rep-
resentatives of Thermoactinomyces, Streptomyces, and 
Rhodococcus have been found to be predominantly iso-
lated from aquatic habitats, according to researchers [34]. 
Actinoplanes, Actinomadura, Microbispora, Micropo-
lyspora, Microtetraspora, Mycobacterium, Nocardiopsis, 
Nocardia, Promicromonospora, Rhodococcus, Saccha-
romonospora, Saccharopolyspora, Streptosporangium, 
Thermoactinomyces, Thermomonospora, and Thermopol-
yspora are examples of rare genera of actinomycetes iso-
lated from aquatic habitat [35].

Pretreatment of samples for isolation of rare 
actinomycetes
The discovery of humic acid vitamin agar (HVA) was 
a watershed moment in the isolation of uncommon 
actinomycetes. It is made entirely of soil humic acid, 
which is an excellent source of carbon and nitrogen for 
recovering rare actinomycetes from natural samples. 
Although humic acid is a highly heterogeneous cross-
linked polymer that resists biological degradation and 
inhibits the formation of non-filamentous bacteria col-
onies, it is an exceptionally heterogeneous cross-linked 
polymer [4]. To limit duplication of isolation, different 
natural samples used for the isolation of unusual actin-
omycetes are frequently treated before the isolation to 
remove common actinomycetes like streptomyces and 
undesirable bacteria. For the isolation of rare actinomy-
cetes from samples, a variety of pre-treatment methods 
and isolation media (Table 1) are used, including dilu-
tion and mixing with sterile natural decoction water 
from plant samples, seawater [36], artificial seawater, 
saline solution, and deionized/distilled water supple-
mented with NaCl for sea or marine sediment samples 
[37, 38]. A variety of pre-treatment procedures have 
been used to isolate uncommon actinomycetes selec-
tively. Most researchers use drying and moist heating 
of sample materials [39], because actinomycetes spores 
are resistant to desiccation and heating, they can be 
used to screen against Gram-positive bacteria [39]. 
Because actinomycetes’ spores are resistant to a vari-
ety of substances, including benzethonium chloride, 
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chlorhexidine gluconate, phenol, sodium dodecyl sul-
fate, and antibiotics, they are commonly used to iso-
late actinomycetes. These compounds can reduce or 
prevent the growth of aerobic Gram-negative bacteria, 
endospore-forming bacilli, and pseudomonads when 
treated with the samples for 30  min, improving the 
chances of isolating actinomycetes selectively [40]. The 
following sub-headings are used to discuss these pre-
treatment techniques:

Heat treatments
Most researchers propose using these pretreatment pro-
cesses (wet and dry heat) in combination with selected 
isolation media for the selective isolation of novel and 
rare actinomycetes [4]. Most actinomycete genera’ air-
borne spores are resistant to desiccation and have a sig-
nificantly higher resilience to wet or dry heat than their 
vegetative hyphae [4]. The growth of Streptosporangium 
spp. is considerably aided by a dry heat treatment (120 °C 
for 1  h) of natural samples. Following surface steriliza-
tion and continuous drying at 100  °C for 15 min before 
directly plating on different selective media, numerous 
strains belonging to the genera Pseudonocardia, Nocar-
diopsis, Micromonospora, Microbispora, Acitinomadura 
and Streptosporangium were isolated [17]. Dry heating 
of samples treated with chemicals like 0.01 percent benz-
ethonium chloride, 0.03 percent chlorhexidine gluconate, 
0.05 percent sodium dodecylsulfate (SDS), 6 percent 
yeast extract, and 1.5 percent phenol and supplemented 
with different selective antibiotics like leucomycin and 
nalidixic acid on HVA has greatly increased the selectiv-
ity of rare actinomycetes [6, 41]. Pretreatment with moist 
(50  °C for 6  min) and dry (120  °C for 1  h) heating and 
1.5 percent phenol reduced the quantity of unwanted 
bacteria and improved the selective separation of Actin-
oplanes, Actinomadura, Saccharopolyspora, Gordonia, 
Microbispora, Micromonospora, Nocardia, and Nonomu-
raea [26].

Phenol treatment
Alternative approaches for the selective isolation of 
uncommon actinomycetes include adding chemicals such 
as phenol to natural samples [41]. Because 1.5 percent 
phenol is poisonous to bacteria, fungus, and streptomy-
cetes, it increases the chances of isolating rare actinobac-
teria. As a result, 1.5 percent phenol treatment reduces 
the quantity of such organisms by removing sensitive 
species [42]. By pretreating samples with 1.5 percent 
phenol and then plating on HVA, several non-streptomy-
cetes, including the rare genera Actinomadura, Microbis-
pora, Micromonospora, Nocardia, Polymorphospora, and 
Nonomurea, were isolated [41, 43].

Selective antimicrobial agents
Several rare  actinomycetes  are resistant to a wide spec-
trum of antibiotics. Thus, several antibiotic molecules 
have been used in selective media to inhibit the compet-
ing bacteria including fast-growing actinomycetes. Selec-
tive isolation plates containing novobiocin significantly 
increased the numbers of Micromonospora-like colonies 
while gentamicin is also one of the selective agents used 
to access Micromonospora  spp. [44]. Isolating media are 
mostly modified with nalidixic acid (50  mg liter−1) and 
nystatin (100 mg liter−1) to suppress the growth of Gram-
negative bacteria and fungi [17].

Calcium carbonate treatment
The use of calcium carbonate to treat natural habitat 
samples enhanced the populations of rare actinomycetes 
genera [45]. Although the process is unknown, research-
ers discovered that mixing natural samples with calcium 
carbonate powder alters the pH in favor of actinomy-
cete propagule growth, and the presence of calcium ions 
encourages the development of aerial mycelia in actino-
mycetes [46]. Actinokineospora spp., Saccharopolyspora, 
Dietzia, Blastococcus, Dactylosporangium, Promicromon-
ospora, Oerskovia, Actinocorallia, and Jiangella species 
have all been successfully isolated using a combination 
of calcium carbonate rehydration and centrifugation [46, 
47]. For the isolation of rare actinomycetes genera from 
natural samples, a combination of the calcium carbonate 
process and additional selective isolation procedures is 
usually recommended [45]

Microwave irradiation
The usage of microwave energy is commonly used to 
sterilize soil [48]. Total fungal and total prokaryote 
counts in soil extracts were lowered after microwave irra-
diation [49]. Micromonospora, Micropolyspora, Norcar-
dia, Actinomadura, Streptosporangium, and Lentzea spp. 
are among the rare actinomycetes that have been isolated 
by microwave irradiation [48, 49]. Other physical agents 
are used to isolate rare actinomycetes in a selective man-
ner. Electric pulses, electromagnetic radiation, super high 
frequency radiation, ultrasonic waves, and extremely 
high frequency radiation are some of the methods used 
[26, 50, 51]. The use of these techniques has resulted in 
a large rise in the overall number of isolated uncommon 
actinomycetes.

Centrifugation method
Another physical method is centrifugation, which 
removes Streptomycetes and other non-motile Actino-
mycetes from the liquid phase, allowing for the selective 
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growth of rare motile actinomycetes [46, 52]. Endophytic 
uncommon actinobacteria Pseudonocardia, Nocardiop-
sis, Micromonospora, Amycolatopsis, Nocardia, Nonomu-
raea, Actinomadura, Gordonia, Promicromonospora, and 
Mycobacterium species were isolated using a combina-
tion of enzymatic hydrolysis and differential centrifuga-
tion [53]

Chlorination and chemo‑attractants
Selective isolation of sporulating actinomycetes known 
to produce motile spores can be done using xylose, 
chloride, γ-collidine, bromide and vanillin which act 
as chemo-attractants for accumulating spores of rare 
actinomycetes such as Actinoplanes, Dactylosporan-
gium and Catenuloplanes [6]. The use of chloramine 
treatment has been used to selectively isolate rare 
genera Herbidospora, Microbispora, Microtetraspora 
and Streptosporangium. This is because chlorination is 
believed to suppress growth of contaminant bacteria 
but promote the growth of rare actinomycetes upon 
plating on humic acid vitamin media [6, 54]. Gener-
ally, rare actinomycetes are selectively isolated from 
natural habitats using combined physical and chemical 
treatments [45]. Several new Actinobacteria species are 
recovered from different sources using various media 
types (Table 1).

Isolation of rare actinomycetes
Collected samples (soil, marine sediment, plant parts) 
undergo series of pretreatments to promote the possi-
bility of isolating rare actinomycetes and suppress the 
growth of often isolated streptomyces [96]. These phys-
ical and chemical pretreatments include the use of dry 
heat, phenol treatments, sucrose gradient centrifuga-
tion and sodium dodecyl sulfate treatment [42, 97]. In 
case of isolating endophytic actinobacteria, plant sam-
ples are subjected to surface sterilization and are frag-
mented (8 × 8 mm) before deposition onto petri dishes 
containing the isolation media [98, 99]. Starch casein 
agar (SCA) and humic acid vitamin agar (HVA) supple-
mented with nalidixic acid (50  μg/mL) and cyclohex-
imide (100  μg/mL) are mostly employed for selective 
isolation of rare actinomycetes [99]. The media are sup-
plemented with a pinch of nalidixic and cycloheximide 
to inhibit unwanted bacterial and fungal contamina-
tion, respectively. An aliquot of 0.1  ml sample would 
be serially diluted up to 10–9 and a pour plate tech-
nique would be performed and incubated for 30 days at 
28 °C and would be examined daily for the presence of 
colonies. The actinomycetes colonies are mostly iden-
tified by their chalky, powdery colonies and leathery 
texture [100]. These colonies would be sub-cultured 

and maintained at 4  °C for further characterization. 
It is well established that several other antimicrobial 
agents such as anisomycin, gentamicin, kanamycin, 
novobiocin, nystatin, penicillin, primaricin, polymyxin, 
rifampicin, streptomycin, tunicamycin and vancomycin 
can also be added to the isolation media to promote the 
selective isolation of rare actinobacteria [54, 101].

Morphological identification of actinomycetes
Different culture media are employed to assess the 
macro-morphological characteristics of actinomycetes. 
These include: Agar yeast-malt extract (ISP2); Oatmeal 
Agar (ISP3); Agar Starch and inorganic salts (ISP4); Glyc-
erol Asparagine Agar (ISP5), Soya bean meal agar, Glu-
cose -Yeast Malt extract agar, Czapeks agar, Luria Bertani 
Agar (LBA), Starch casein agar and nutrient agar [102]. 
Each media would be sterilized, poured into sterile petri 
dishes and then left to solidify. Each strain would be 
aseptically streaked on the media surface and incubated 
at 28–30 °C for 7–21 days. The morphological character-
istics to be examined among isolates include their color 
or soluble pigment, surface morphology, type of aerial 
hyphae, formation of aerial and substrate mycelia. These 
features are observed and compared using colour chart 
[102].

Microscopic characterization and biochemical tests 
for identification of actinomycetes
There are several microscopic and biochemical tests that 
are employed in identification of actinobacteria. They 
include Gram staining, starch hydrolysis test, casein 
hydrolysis test, urea hydrolysis test, lipase test, gelatin 
hydrolysis test, salt tolerance test, oxidase test, milk coag-
ulation and peptonization test [103]. Most biochemical 
tests investigate the ability of the actinobacteria to pro-
duce different enzymes [104–106]. For example, coagula-
tion and peptonization of milk test investigate the ability 
of the actinobacteria to produce protease enzyme, starch 
hydrolysis investigates their ability to produce certain 
exoenzymes like α-amylase and oligo-1,6-glucosidase 
while cellulose hydrolysis test checks the ability of actino-
bacteria to produce cellulase enzyme [107, 108].

Molecular and species level characterization
Sequel to morphological, microscopic and biochemi-
cal characterization, the isolated actinobacterial strains 
are subjected to species level identification done by 16S 
rRNA gene sequencing. The genomic DNA would be 
extracted using DNA extraction kit and the 16S rRNA 
gene amplified using pair of primers like (27F, 5′-AGA​
GTT​TGATCMTGG​CTC​AG-3′; 1492R, 5′-GGT​TAC​
CTT​GTT​ACG​ACT​ T-3′) and 9F(5′GAG​TTT​GAT​CCT​
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GGC​TCA​G3′); 1541R (5′AAG​GAG​GTG​ATC​CAGCC3′) 
[109, 110]. The amplified fragment for each strain would 
be sequenced utilizing the primers (forward and reverse). 
High-quality sequences would be assembled to produce 
the partial 16S rRNA contig for each strain. National 
Center for Biotechnology Information (NCBI) server are 
used to check the similarity for each contig against the 
available 16S rRNA genes data to determine the closest 
homologs. The  homology  search can be performed by 
comparing the sequence with thus present in the public 
database (NCBI) using the standard Basic Local Align-
ment Search Tool (BLAST) program. The 16S rRNA gene 
sequence of the selected strains would be submitted in 
the NCBI database to get GenBank accession numbers. 
For phylogenetic analysis, a neighbour joining tree based 
on the 16S rRNA gene sequences of the actinobacterial 
strains and their closely related type strains would be 
constructed at 1000 bootstrap replicates using by Molec-
ular Evolutionary Genetic Analysis (MEGA) software 
[111, 112].

Genomic mining and omic based screening of rare 
actinomycetes
In rare actinomycete research, genome mining is an 
important bioprospecting tool. The fast advancement in 
genome sequencing, followed by mining of the genome 
using bioinformatic methods, including the identifica-
tion of secondary metabolite gene clusters, has resulted 
in the finding of genetic machinery encoding for novel 
natural compounds from microbes that have yet to be 
chemically identified [113]. Polyketides (PK), non-ribo-
somally synthesized peptides (NRP), ribosomally and 
post-translationally modified peptides (RiPPs), and ami-
noglycosides are all encoded by most of these gene clus-
ters [113]. Silent secondary metabolite gene clusters can 
also be discovered via bioinformatic analysis of genomes, 
which are not expressed under typical laboratory settings 
[114]. So far, more than 23,000 PK and NRP have been 
documented, many of which are discovered in actinomy-
cetes and are being evaluated for pharmaceutical pur-
poses [115, 116]. This method has also been utilized to 
discover novel antibiotic scaffolds in marine sediments 
from uncommon actinomycetes genera [117]. Due to rev-
olutionary developments in genome- and metagenome-
based approaches for drug discovery [118], the number 
of new biosynthetic gene clusters and corresponding 
compounds will undoubtedly increase in the near future, 
and it is likely that omics-based screening for novel bio-
active compounds will overtake microbial isolation as the 
most efficient method for first identification of bioactive 
compounds [119].

The genes involved in the manufacture of bioactive 
secondary metabolites are found in the actinobacte-
rial genome in the form of gene clusters, according to 
the literature [120]. Genome mining tools have made it 
more convenient to look for innovations in natural prod-
uct discovery with majority of the bioactive compounds 
biosynthetic pathway of polyketides governed by a com-
plex enzyme system, called polyketide synthase encoded 
by PKS gene cluster [121, 122]. Available whole genome 
draft of endophytic actinobacteria also revealed the 
presence of PKS and NPRS genes suggesting that these 
microbes are the possible source for many novel bioac-
tive compounds [123, 124]. Screening for the presence 
of bioactive secondary metabolites in actinobacteria 
can be done using a high throughput method based on 
gene clusters. The antiSMASH (antibiotics & Secondary 
Metabolite Analysis Shell) pipeline is the first to identify 
biosynthetic loci across the whole spectrum of known 
secondary metabolite compound classes (polyketides, 
non-ribosomal peptides, terpenes, aminoglycosides, 
aminocoumarins, indolocarbazoles, antibiotics, bacteri-
ocins, nucleosides, beta-lactams, butyrolactones, sidero-
phores, melanins and others). It integrates or cross-links 
all previously existing secondary-metabolite specific gene 
analysis methods in one interactive view and aligns the 
detected regions at the gene cluster level to their nearest 
relatives from a database including all other known gene 
clusters [125].

Biopharmaceutical significance of rare 
actinomycete
Actinomycetes are major members of the soil microbial 
community, and their ability to create pharmaceutically 
useful compounds is of great interest to humans. Their 
interaction with rhizosphere soils has demonstrated 
their potential use as plant disease biocontrol agents. 
Their role as bioactive compound producers is well-doc-
umented. They are interesting prospects for the develop-
ment of antimicrobials with medical and pharmaceutical 
applications [126].

Actinomycetes are known makers of antimicrobial 
compounds, which are significant medications in health 
care. Antibiotics could be produced by the genera Strep-
tomyces and Micromonospora have shown to possess 
powerful therapeutic and acceptable pharmacokinetic 
qualities for clinical use [3]. Several substances derived 
from uncommon actinomycetes have been studied for 
their potential as antibacterial agents. Munumbicins were 
found to be efficient against Mycobacterium tuberculo-
sis and Bacillus anthracis [127]. Actinomycetes produce 
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peptide antibiotics called kakadumycins, which have 
shown to be effective against B. anthracis [3]. Actinomy-
cete-produced coronamycin was effective against pythia-
ceous fungi as well as the human pathogen Cryptococcus 
neoformans [128]. Maklamycin, an antibacterial polyke-
tide discovered in the culture filtrate of Micromonospora 
isolated from the Thai medicinal plant Abrus pulcellus, 

has been proven to be active against Gram-positive path-
ogens [129].

It is crucial to remember that biodiversity is the key 
to bioprospecting natural products. The isolation and 
discovery of new compounds with various chemical 
structures has frequently resulted from the diversity of 
microorganisms in unique habitats. When testing a mol-
ecule for a certain biological activity, multiple strains are 

Table 2  Rare actinomycetes with their bioactive compounds

S/N Bioactive compound Chemical class Source organism Activity Reference

1 Taromycin A Lipopeptide Saccharomonospora sp. Anti-MDR pathogen [147]

2 Retimycin A Quinomycin-peptide Salinispora sp Cytotoxic [148]

3 Sioxanthin Carotenoid Salinispora sp Iron chelating [149]

4 Lobosamide A-C Polyene compound Micromonospora sp Anti-protozoan [150]

5 Tetrocarcin N & O Glycosides Micromonospora sp. Antibacterial [151]

6 Nenestatin A Benzofluorene Micromonospora echinospora Antibacterial [152]

7 Thiasporines A-C Thiazine Actinomycetospora chlora Cytotoxic [153]

8 1,4-Dioxane Dioxane Micromonospora sp Antibacterial [154]

9 α-Pyrones 1–8 Pyrones Nocardiopsis sp Antibacterial [154]

10 Glycerol 1-hydroxy-2,5-di-
methyl benzoate

Salicylic derivative Verrucosispora sp Anti-MRSA [155]

11 Nocapyrones O-S α-Pyrones Nocardiopsis sp Cytotoxicity [155]

12 Nocazine F Piperazine Nocardiopsis sp Cytotoxicity [155]

13 Bramycin B Macrolide Pseudonocardia carboxydivorans Antibacterial [155]

14 Cyanogranide Alkaloid Actinoalloteichus cyanogriseus MDR-reversing [153]

15 Actinosporin A O-glycosylated angucyclines Actinokineospora sp Anti-trypanosomal [156]

16 Solwaric acids A & B Aromatic acids Solwaraspora sp Antibacterial [156]

17 Seriniquinone Quinones Serinicoccus sp Anticancer [156]

18 Farozoline A Polyketide Actinomadura sp Anti-candida [156]

19 Amycolactam Indole alkaloid Amycolatopsis sp Cytotoxic [153]

20 Dermacozines H Phenazine Dermacoccus abyssi Antioxidant [156]

21 Microbacterins A & B Peptaibols Microbacterium sediminis Cytotoxic [154]

22 Salinipostins A-K Phosphotriester Salinospora sp Anti-malaria [154]

23 Saccharothrixones A-D Aromatic polyketides Saccharothrix sp Cytotoxic [154]

24 Telavancin Glycopeptide Amycolatopsis orientalis Antimicrobial [157]

25 Fidaxomicin Tiacumicin Dactylosporangium aurantiacum Antimicrobial [157]

26 Salinosporamide A ß-lactone-γ-lactam Salinispora tropica Anticancer [158]

27 Arenamide A &B Peptide Salinispora sp Anti-inflammatory [159]

28 Anthracimycin Polyketide Streptomyces sp Anti- anthrax [160]

29 Halomadurone A Pyrones Actinomadura sp Anti-proliferative [156]

30 Levantilide C Macrolides Micromonospora sp Anti-proliferative [156]

31 Nocardiamide A, B Hexapeptide Nicardiopsis sp Antimicrobial [153]

32 Telithromycin Macrolide Saccharopolyspora erythraea Antimicrobial [157]

33 Biapenem Carbapenem Streptomyces cattleya Antimicrobial [157]

34 Ertapenem Carbapenem Streptomyces cattleya Antibacterial [157]

35 Daptomycin Lipopeptide Streptomyces roseosporus Antibacterial [157]

36 Tigecycline Tetracycline Streptomyces aureofaciens Antimicrobial [157]

37 Dalbavancin Glycopeptide Nonomuria sp Antimicrobial [157]

38 Oritavancin Gycopeptide Amycolatopsis orientalis Antimicrobial [157]

39 Tazobactam ß-lactamase inhibitor Actinomycete sp Antimicrobial [157]
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screened against a wide range of targets, and the posi-
tive result is referred to as the "lead." Deciphering the 
pathways involved in secondary metabolite production 
has proven valuable in determining a strain’s metabolite-
producing capacity. The polyketide synthase (PKS) and 
non-ribosomal peptide synthetase (NRPS) enzymes are 
encoded in the actinomycete genome. The ability of a 
strain to create secondary metabolites by the identifica-
tion of these genes is reported using recognized prim-
ers [79]. This method eliminates the requirement to test 
many strains’ fermentation products for bioactivities. The 
positive strains should be subjected to the metabolite-
producing potentials in either case, as some of the genes 
encoding these pathways may not be functional or neces-
sitating different growth conditions [15]. Bioactivities of 
several secondary metabolites isolated from uncommon 
actinomycetes have been examined, including:

Antimicrobial effect
Antibacterial activity of actinomycetes strains was sig-
nificant and varied against Gram-negative and Gram-
positive bacteria [130]. Because numerous bioactive 
compounds were secreted rather than a single inhibitory 
molecule, many actinomycetes possessed a diverse range 
of activities including antimicrobial activity [131]. Rare 
actinomycetes have been shown to have antifungal and 
antagonistic activities against human pathogens in recent 
decades [130]. Rare actinomycetes of the genera Nocar-
dia and Micromonospora have been shown to be efficient 
against a variety of pathogenic yeasts, but the species 
Nonomuraea has shown only mild antibacterial action 
[132]. Furthermore, antimicrobial substances produced 
by uncommon actinomycetes of the genera Micromono-
spora and Nocardia had previously been discovered to 
have broad-spectrum activity against both bacterial and 
fungal infections [133, 134]. The emergence and spread 
of multi-resistant bacteria have affected practically all 
antimicrobial agent classes [135]. This necessitates a call 
for urgency in the quest for novel antimicrobials. Anti-
microbial-resistant microorganisms have been identi-
fied as a serious global public health problem, resulting 
in increased morbidity, mortality, and healthcare costs 
[135]. Antibiotic misuse is frequent in many underdevel-
oped countries, resulting in large outbreaks of antimicro-
bial-resistant bacteria and a lack of surveillance and data 
collection. Antibiotics with novel structures derived from 
unusual actinomycetes are urgently needed to combat 
multidrug-resistant pathogenic bacteria. Natural prod-
ucts continue to be the best source of new antibiotics. 
Rare actinobacteria are known to be prolific producers 
of natural bioactive chemicals, hence, screening unusual 
actinomycetes isolates can be used for new antibiotic 

discovery. We believe that intense efforts in isolating and 
screening rare genera of microbes can boost the chances 
of identifying a new drug with a novel chemical structure. 
One technique to do this is to screen rare actinomycetes 
and their previously under-represented taxa from unfa-
miliar settings in natural product screening collections 
[136]. Several bioactive substances derived from actino-
mycetes have been shown to suppress multidrug resist-
ant pathogens such as vancomycin resistant Enterococci, 
methicillin resistant Staphylococcus aureus, Shigella 
dysenteriae, Klebsiella sp., Escherichia coli, and Pseu-
domonas aeruginosa [101, 137].

Antioxidant effect
To date, several actinobacterial antioxidants have 
been identified, including dihydroherbimycin A, 
N-carbamoyl-2,3-dihydroxybenzamide, 2-acetamido-
3-(2,3-dihydroxybenzoylthio) propanoic acid, 2-ally-
loxyphenol, phenazines, and saccharomonopyrone A 
[138–142]. The genus Streptomyces has produced most 
physiologically active antioxidant compounds among 
actinobacteria [138]. Less prevalent or culturable 
strains of actinobacteria, such as rare genera, should 
be targeted for the discovery of new bioactive com-
pounds due to the high likelihood of finding already 
known antioxidant metabolites (re-isolation of known 
antioxidant chemicals) [5]. UTMC 537 Saccharothrix 
ecbatanensis is a valuable source for the development 
of multipotent antioxidant compounds [143].

Anticancer/cytotoxic effect
Despite major advancements in the treatment of malig-
nant tumors, cancer remains a primary cause of death 
and a public health issue around the world. The pros-
pect of microbial secondary metabolites represents 
an effective source for the development of therapeutic 
leads, among the keyways for the discovery of new bio-
active molecules [144]. Many secondary metabolites 
from rare actinomycetes have been extracted and tested 
for anticancer activity in a variety of carcinoma cell 
lines, including K562 (Human acute myelocytic leuke-
mia), HeLa (cervical carcinoma), AGS (Human gastric), 
MCF-7 (breast adenocarcinoma), and HL-60 (Human 
acute promyelocytic leukemia). The discovery of taxol, 
a strong anticancer agent derived from endophytic 
fungi, sparked an interest in microbes as a source of 
possible antitumor agents. The anticancer potentials of 
rare actinomycetes’ staurosporine and kigamicin have 
also been investigated, with promising results [144].
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Fig. 1  Chemical structures of some bioactive compounds from rare actinomycetes
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Insecticide/pesticide/herbicide
Pesticides made from natural products have grown in 
popularity around the world because to their excel-
lent efficacy, environmental friendliness, and positive 
safety profile. This rise in popularity is reflected on the 

development of polyketide insecticides derived from 
actinomycetes in recent decades. Avermectins, spino-
syns, polynactins, tetramycin, and analogues of these 
pesticides have all been used successfully in crop protec-
tion [145]. Furthermore, biotechnology’s advancement 

Fig. 1  continued
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has resulted in ongoing improvements in the research 
and production procedures. Actinomadura, Nocardi-
opsis, Dactylosporangium, Kibdelosporangium, Micro-
bispora, Kitasatospora, Planomonospora, Planobispora, 
Salinispora, Marinispora, Serinicoccus, and Verrucosis-
pora are among the less well-known uncommon taxa. 
These consequences highlight the importance of continu-
ing study in this domain, and investments in uncommon 

actinomycetes can be deemed totally justified. PKSI, 
PKSII, and NRPS gene clusters were found in endophytic 
actinobacteria isolated from Artemisia annua, which had 
herbicidal activity against Echinochloa crusgalli [146]. 
Various antimicrobials and other bioactive compounds 
are obtained from rare actinomycetes (Table 2).

Several newer compounds isolated from rare actino-
mycetes include but not limited to Neomaclafungi A, 

Fig. 1  continued
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Maklamicin, chaxamycin D, Macrolactin AI, Gilvocarin 
HE, RSP 01, Formicamycin J, Isoikarugamycin, Agelo-
line A, Arenimycin C, 5-hydroxynovobiocin, citreamy-
cin A, Salinamide F, Arylomycin A6, Kibdelomycin, 
Kocurin, actinomadurol, Kibdelomycin (Fig. 1). Neoma-
clafungi A is a metabolite product of Actinoalloteichus 
sp. with potent antimicrobial activity. Kibdelomycin is 
got from a rare actinomycete of genus Kibdelosporan-
gium. Chaxamycin is a product of Streptomyces sp. strain 
C34. Maklamicin, salinamide F, Kocurin, actinomodurol, 
citreamycin A and Formicamycin J are respectively from 
Actinomodura sp TP-AO878, Streptomyces sp, Kocuria 
palustris, Actinomodura sp., S. caelestis and S. formicae 
[161–164].

Considerable factors affecting bioactive molecule 
production in rare actinomycetes
The ability of actinomycete cultures to form these bioac-
tive products is not a fixed trait; it can be considerably 
enhanced or completely lost depending on nutrition and 
cultivating conditions [165, 166]. This is because anti-
biotic biosynthesis is a unique feature of bacteria that is 
highly dependent on growth conditions. Manipulation of 
the nutritional and physical characteristics of the culture 
environment can be used to improve growth and antibi-
otic production. As a result, media composition is criti-
cal to the efficiency and profitability of the final process. 
Therefore, choosing the right fermentation medium is 
crucial in the generation of secondary metabolites [165]. 
Antibiotic biosynthesis in actinomycetes has been shown 
to be affected by changes in the nature and type of carbon 
and nitrogen sources [167]. Several culture parameters 
like as pH, cell density, microbial strain, incubation time, 

and temperature also play significant roles in the forma-
tion of bioactive metabolites [168]. When it comes to get-
ting the best antibacterial output, cell density is crucial 
[169]. There are many natural products to be discovered 
from rare actinomycetes. Screening uncommon actino-
mycetes for novel bioactive metabolites is the first step in 
the search for useful antibiotics. This is followed by opti-
mization of growth conditions for optimum antimicro-
bial compound production. Then comes antibiotic assay, 
chemical characterization, and identification of antibiotic 
compounds [101]. The amount and kind of actinomycetes 
present in the niche is influenced by ecological param-
eters such as environmental temperature and pH, habitat 
type, culture, organic matter concentration, exposure to 
air, and moisture content. Alkaliphilic actinomycetes, on 
the other hand, are extensively spread and easily isolated 
from their maritime environments [100, 169] (Fig. 2).

Conclusions
Rare actinomycetes have consistently produced a small 
number of novel bioactive compounds, but their promise 
in this field has been largely untapped. Due to the diffi-
culty in cultivating most naturally occurring microorgan-
isms, microbiologists have been severely limited in their 
research of natural microbial communities until recently. 
The search for unique biosynthetic potential species in 
unusual settings must be expanded. Microorganisms 
that are yet to be found or are rare may hold the key to 
developing new antibiotics to treat multidrug-resistant 
human infections and emerging fatal diseases. Using 
selective isolation and enhanced techniques, new rare 
bioactive producing actinobacteria can be discovered in 
previously unexplored environments. A combination of 

Sample collection Sample enrichment
Morpholigcal 

identification of 
isolates

Molecular characterization Anti-microbial 
screening Biomolecule extraction MIC determination Bioactive compound 

characerization
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• Air drying
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• Rehydration
• Centrifugation
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Fig. 2  Flow chart for selective isolation of rare actinomycete for anti-microbial production
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pretreatment procedures, appropriate selective isolation 
media, and enrichment culture supplemented with spe-
cific antibiotics allowed the isolation of rare and unique 
actinomycetes that produced unusual bioactive com-
pounds and new enzymes. Rare actinobacteria have new 
genomes and structural diversities that are just waiting to 
be identified and applied in biotechnological and phar-
maceutical industries.
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