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Abstract 

Background:  Researchers now have a new avenue to investigate when it comes to miRNA-based therapeutics. 
miRNAs have the potential to be valuable biomarkers for disease detection. Variations in miRNA levels may be able to 
predict changes in normal physiological processes. At the epigenetic level, miRNA has been identified as a promising 
candidate for distinguishing and treating various diseases and defects.

Main body:  In recent pharmacology, plants miRNA-based drugs have demonstrated a potential role in drug 
therapeutics. The purpose of this review paper is to discuss miRNA-based therapeutics, the role of miRNA in phar-
macoepigenetics modulations, plant miRNA inter-kingdom regulation, and the therapeutic value and application 
of plant miRNA for cross-kingdom approaches. Target prediction and complementarity with host genes, as well as 
cross-kingdom gene interactions with plant miRNAs, are also revealed by bioinformatics research. We also show how 
plant miRNA can be transmitted from one species to another by crossing kingdom boundaries in this review. Despite 
several unidentified barriers to plant miRNA cross-transfer, plant miRNA-based gene regulation in trans-kingdom gene 
regulation may soon be valued as a possible approach in plant-based drug therapeutics.

Conclusion:  This review summarised the biochemical synthesis of miRNAs, pharmacoepigenetics, drug therapeutics 
and miRNA transkingdom transfer.
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Background
MicroRNA (miRNA) and gene expression regulation 
have paved the way for new therapeutic approaches. 
miRNA has the ability to control effects of various types 
of mutation, gene dysregulation, and incorrect function 
of cellular, biological, metabolic, and physiological path-
ways [1, 2].

Main text
miRNA is a class of small non-coding RNAs (ncRNAs) 
that can be up to 22 nucleotides long and regulate mul-
tiple target genes at the post-transcriptional level [3, 4]. 
The majority of miRNAs are expressed as primary miR-
NAs (pri-miRNAs), which are transcribed from DNA 
sequences and can be further processed to become pre-
cursor miRNAs (pre-miRNAs) and then mature miR-
NAs [5] (Fig. 1). Because of their well-known regulatory 
effects on human diseases, there has been a surge of 
interest in ncRNA research in the last decade. ncRNAs 
function post-transcriptionally via messenger RNA 
(mRNA) disruption [6]. The purpose of this review paper 
is to understand the progress in miRNA-based therapeu-
tics, discuss the medicinal value of plant-based miRNA 
and inter-species transfer. This review also discusses the 
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mechanism and function of miRNA and plant-based 
miRNA in disease management. We have summarised 
key aspects of the experimental and computational meth-
ods used to evaluate the therapeutic value of miRNA and 
natural compound-based miRNA.

miRNA biochemical synthesis
miRNAs regulate biological processes such as cell 
growth, death, development, and differentiation [7]. 
According to various studies, miRNA travel between dif-
ferent regions of the cell to estimate the translation and 
transcription processes [8]. It has the potential to act as 
a guide molecule in post-transcriptional gene regula-
tion. The complexity of gene regulation includes not only 
genes and mRNAs but also miRNAs [9]. In gene regu-
lation mechanisms, the first and primary mechanism is 
mRNA cleavage which initiates translational repression 
and mRNA degradation processes [10]. RNA binding 
proteins (RBPs) play an important role in a process called 
miRNA-mediated translational repression by associating 
with argonaute family protein (Ago) directly or indirectly 
[11, 12]. Ago protein regulates mRNA target degrada-
tion through endonucleolytic cleavage. This pathway is 
also influenced by another process in which RBPs bind to 
various mRNA protein complexes. Exonucleoside degra-
dation and restricted translational initiation also regulate 
mRNA expression [13].

Processing and transcriptional regulation 
of miRNA
Before becoming a functional miRNA complex, miRNAs 
must go through several steps of processing [14]. miRNA 
processing is divided into canonical and non-canonical 

pathways. The canonical pathway engaged four chrono-
logical sequences in miRNA transcriptional regulation. 
The miRNA gene is first converted into pri-miRNA 
by RNA polymerase II, then the microprocessor com-
plex converts pri-miRNA into precursor miRNA (pre-
miRNA) further, the exportin 5 (EXP5/XP05) protein 
transports pre-miRNA from the nucleus to the cyto-
plasm, and finally the dicer enzyme aids in the formation 
of mature miRNA from the pre-miRNA [15]. The canoni-
cal pathway begins with the formation of the pri-miRNA 
transcript [16, 17]. Once miRNA is bound to the RNA-
induced silencing complex (RISC), RNA polymerase II/
III participates in this process post-transcriptionally or 
co-transcriptionally [18, 19]. The stem loop is dissociated 
off by the microprocessor machinery, Drosha complex, 
to constitute 60–100 nucleotide extended pre-miRNA 
that is further processed into 22 nucleotide long mature 
miRNAs by Dicer, an RNase III enzyme [20]. After that, 
pre-miRNA is exported to mature miRNA, duplex for-
mation occurs in the cytoplasm with the help of expor-
tin5/RanGTp. The Ago family proteins are loaded either 
5′ or 3′strend on mature miRNA duplexes by a miRNA-
induced silencing complex (miRISC) arrangement [21, 
22]. In non-canonical pathway miRNA biogenesis is 
divided into two categories: Drosha/DGCR8-independ-
ent and Dicer independent pathways. Different pro-
tein combinations, such as Drosha, Dicer, exportin, and 
Ago2, are associated with the non-canonical pathway. In 
the absence of the Drosha/Dgcr8 complex, pre-miRNAs 
are processed in the nucleus. The Dicer enzyme is used 
for miRNA biogenesis in Drosha/DGCR8-independent 
pathway. Whereas miRNAs are cleaved in the presence 
of Drosha in the Dicer-independent pathway. These 

Fig. 1  With the help of a microprocessor complex in the nucleus, pri-miRNA is transformed to pre-miRNA. After that, pre-miRNA is transferred 
to the cytoplasm by exportin 5 and miRNA duplex formation occurs. Then, using RISC assembly, the miRNA duplex was transformed into mature 
miRNA
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pre-miRNAs are associated with Ago2 for maturation 
after cleavage [23, 24]. After cleavage miRNAs trans-
ported with the help of XPO complex. Thus, Drosha or 
Dgcr8 occupancy benefits the canonical pathway but 
prevents non-canonical miRNA biogenesis. After that, 
miRISC complex binds to target mRNA to inhibit trans-
lation in both canonical and non-canonical pathway [4]. 
It is estimated that by targeting miRNAs, one-third of 
human genes can be directly regulated. Thus, the unique 
arrangement of miRNAs in different cell types regulates 
thousands of mRNAs under specific conditions [9, 25].

Post‑transcriptional regulations and gene silencing
The term ’epigenetic’ refers to reversible changes in 
gene inheritance. DNA methylation, histone modifica-
tions, and small ncmiRNAs all play a role in epigenetic 
gene regulation. Small ncmiRNAs exert control over 
targeted gene expression through targeted mRNA deg-
radation and translational inhibition [26]. According to 
Piletic et al., there is a strong link between miRNA dys-
regulation, epigenetic changes, and disease development. 
Almost half of the miRNA genes have been identified as 
having correspondence to cytosine-phosphate-guanine 
(CpG) islands, which are modulated by the DNA meth-
ylation mechanism. Furthermore, miRNA expression 
may differ in diseased conditions compared to normal 
physiological conditions, indicating that miRNA has a 
disease-specific methylation pattern. Hyper- and hypo-
methylation of miRNA promoters has a direct impact on 
disease pathophysiology and pathogenesis in a number of 
disorders, including neurological, cardiovascular, auto-
immune, and cancer. As a result, there is an unmistakable 
link between epigenetic changes, miRNA gene regula-
tion, and disease development [27].

Pharmacoepigenetics
Pharmacoepigenetics and pharmacoepigenomics are cur-
rent epigenetic variation-based studies that describe the 
role of epigenetic mechanisms in regulating drug absorp-
tion, distribution, metabolism, and excretion (ADME) in 
terms of gene expression. miRNAs influence gene expres-
sion and ADME properties. miRNA contributes post-
transcriptionally by binding to the 3′-untranslational 
regions (3′UTRs) of mRNA, influencing the performance 
of cellular processes and drug response at the genetic 
level [28–30].

Drug metabolic cascade regulation of miRNA
The drug metabolic cascade is primarily divided into 
three phases in epigenetic pharmacotherapy. Changes 
in enzyme catalysed reactions such as oxidation, reduc-
tion, and hydrolysis are included in Phase I. Biotransfor-
mation or conjugation reactions are included in Phase II. 

Phase III includes drug uptake and elimination via mem-
brane transporter proteins [31]. These drug metabolic 
phases govern a drug’s efficacy and affinity. A genetic 
change may alter drug response and metabolic mecha-
nisms [32]. Given the changes in drug ADME properties, 
methylation at the CpG promoter region, acetylation at 
the histone region, and miRNA mutation may all influ-
ence gene expression at the post-transcriptional level. 
Subordinating miRNAs influences epigenetic remodel-
ling, drug metabolism, and drug response [33]. miRNA 
plays an important role in drug response by participat-
ing in the drug-metabolizing process and influencing the 
cytochrome P450 family (CYP) enzymes [34].

Endogenous and xenobiotics (drugs) regulations of miRNA
Understanding drug efficacy and variability requires 
knowledge of drug-metabolizing enzymes (DMEs) and 
drug transporters (DTs). It is discovered that miRNA 
has an impact on post-transcriptional gene regula-
tion in DMEs and DT. miRNAs may play a role in drug 
absorption, metabolism, and deposition [33]. Several 
miRNAs play critical roles in driving drug-metabolizing 
gene expression. In a carcinoma cell line, miRNA27-b 
and miRNA-378 suppress the expression of cytochrome 
P450 (CYP) cascade enzymes, CYP1B1 and CYP2E [35]. 
miRNA27-b and mmu-miR-298 also influence CYP3A4 
expression. The CYP7A1 mechanisms are directed by 
miRNA-122a and miRNA-42a. miRNA-125 and miRNA-
126 regulate the enzymatic mechanisms of CYP24A1 
and CYP2A3 [36]. miRNAs also regulate the activity of 
drug transporters such as ATP binding cassette (ABC) 
and solute carrier (SLC) transporters. These transport-
ers are used to control the absorption, distribution, and 
elimination of drugs [37]. ATP-binding cassette, subfam-
ily B, member 1 (ABCB1/MDR1/P-gp) capable of trans-
porting abundantly synthesised and naturally occurring 
molecules. It may also serve as a vehicle for chemothera-
peutic drugs, steroids, different dyes, and peptides [38]. 
There are numerous miRNAs that are responsible for 
ABCB1/MDR1/P-gp variation such as miR-331-5p and 
miR-451 by direct regulation and miR-21 and miR-125b 
by indirect regulation [39]. miRNA up-regulation and 
down-regulation can cause changes in mRNA expression, 
which can lead to drug resistance in a variety of diseases. 
According to the research, miRNA-451, miRNA-27a, 
and miRNA-3315p target ABCB1 mRNA, resulting in 
negative regulation and drug resistance in various cancer 
cell lines. ABCB9 transporter expression is known to be 
regulated by miRNA-31. miRNA-326, miRNA-1291, and 
miRNA-134 are associated with ABCC1 effect modu-
lation and are involved in drug resistance. The inter-
ference of miRNA-379, miRNA-9, and miRNA-128 in 
various cancer malignancies reduced the expression of 
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ABCC2, ABCC3, and ABCC6, as well as the appearance 
of ABCC4, ABCC5 targets. Furthermore, drug resist-
ance was observed in ABCG2 transporter modulation 
with interrelationships through several miRNAs such as 
miRNA-519c, miRNA-520h, miRNA-328, miRNA-212, 
miRNA-181a, and miRNA-487a in various cancer condi-
tions [36, 40] (Table 1).

miRNA‑based therapeutic strategy
According to human genome research, RNA transcripts 
outnumber protein-coding genes. This significant find-
ing challenges the central dogma that one RNA produces 
one protein. Non-protein-coding RNAs (ncRNAs) such 
as miRNA, natural antisense transcripts, piwi-interact-
ing RNA (piRNAs), and long non-protein-coding RNAs 
(lncRNAs) are being developed as therapeutics [41]. 
The ability of miRNAs to drive the expression of billions 
of genes demonstrates the multi-targeting capacity of 
miRNA therapeutics. miRNAs have evolved as a prog-
nostic biomarker for disease prediction, such as cancer, 
viral infection [42], neurodegenerative disease [43, 44], 
cardiovascular disorder [45, 46], diabetes [47] and mus-
cular disorders [48].

miRNA inhibition
miRNA therapeutics are thought to be divided into two 
categories: miRNA inhibition and miRNA replacement 
[49]. miRNA inhibition is a technique that employs syn-
thetic, chemically modified single-stranded antisense oli-
gonucleotides that are complementary to the 3′ end of a 
mature miRNA. It regulates miRNA action by inhibiting 
and suppressing the disease mechanism. Locked nucleic 
acids (LNA), chemically modified antago-miRNAs, phos-
phorodiamidate morpholino oligonucleotides (PMOs), 
and peptide nucleic acids (PNA) are examples of anti-
miRNA oligonucleotides (AMOs). miRNA sponges or 
miRNA masking, a CRISPR/Cas9-based genome editing 
technique that modifies the genome of cancer cells, and 

small molecule miRNA inhibitors can also be used as 
miRNA therapeutics [50].

miRNA inhibition through anti‑miRNA oligonucleotide 
(AMOs) or antisense‑oligonucleotides (ASOs)
This method was used successfully for multiple miRNA 
targeting. LNA has a bi-cyclic structure with a locked 
furanose ring, and it serves as a platform for other ana-
logues to improve binding capacity [51, 52]. The LNA 
structure is built around mixmers and gapmers. In 
mixmers, LNA and DNA nucleosides are dispersed 
throughout the oligonucleotide sequence, whereas gap-
mers have two LNA fragments separated by a DNA/
Phosphorothioate (PS) nucleoside gap at both ends of 
the oligonucleotide. Because gapmers have DNA/PS link-
ages, they recruit the RNA-cleaving enzyme RNase H and 
fascinate to downregulate mRNA expression, resulting in 
decreased protein translation [53, 54]. Single-strand anti-
sense molecules are used in this mechanism to diversify 
mature miRNA activity via remodelling approaches. The 
methylene bond between the 2′-O and 4′-C of ribose in 
the LNA structure improves LNA stability and hybridiza-
tion [55]. Various modifiers, such as 2-O-me, 2′F, 2′NH2, 
2′H, phosphorothioates, and locked nucleic acids, com-
bine with the miRNA mimic to increase its half-life. 
Modifications to protein binding characteristics can be 
in the form of sugar bases, nucleotide, or inter-nucleotide 
bond transformation. This modifier group stimulates 
miRNA hybridization, inhibition, target specification, 
endonuclease resistance, and seed strand melting tem-
perature. These types of oligonucleotide corrections 
increase binding capacity, nuclease resistance, the deliv-
ery system, and support endocytic transport [56, 57]. 
Chemical modification improves pharmacokinetic prop-
erties, and phosphorothioate backbone modification 
protects oligonucleotides from degradation and increas-
ing binding affinity with plasma proteins. This reforma-
tion, like 2′-methoxy or methoxyethylene modifications, 
increases the stability of oligonucleotides at lower doses 

Table 1  The association of miRNA with the drug metabolising cascade

miRNA Drug metabolizing cascade References

miRNA 27-b, miRNA 378 CYP1B1andCYP2E1 [35]

miRNA 122a, miRNA422a CYP7A1 [210]

miRNA 125, miRNA 126 CYP24A1, CYP2A3 [211, 212]

miRNA-451, miRNA 27a miRNA-3315p ABCB1 [39, 213]

miRNA 31 ABCB9 [214]

miRNA 326, miRNA 1291 and miRNA 134 ABCC1 [215, 216]

miRNA 379, miRNA 9 miRNA 128 ABCC2, ABCC3 and ABCC6, ABCC4, ABCC5 [217–219]

miRNA 519c, miRNA 520h, miRNA 328, miRNA 212, miRNA 181a 
miRNA 487a

ABCG2 [40]



Page 5 of 20Saiyed et al. Future Journal of Pharmaceutical Sciences            (2022) 8:24 	

[58]. AntagomiRNAs primarily target oncomiRNAs in 
order to develop potential treatments for oncogenesis 
as well as other diseases [59]. Several in vivo and in vitro 
experiments confirm miRNA-based inhibition for the 
establishment of chemical modification-based drug 
delivery. HeLa cells were the first to be used in the study 
of sequence-specific inhibition of miRNA activity using 
2′-O methyl (2′-O-Me) modified RNA oligonucleotides 
paired with mature miRNAs. Using antimiRNA oligo-
nucleotides 3′ cholesterol-conjugated antagomiRNAs, 
miRNA silencing has been reported to be successful in a 
variety of animal disease models [50]. A 2′-O Me group-
modified oligonucleotide has been identified as a potent 
inhibitor in a variety of cancer cell lines [60]. Some ASOs 
are in clinical trials, such as MRX34, a synthetic double-
stranded RNA oligonucleotide that works on miRNA-34 
and repairs its mechanism on the p53/wnt cellular path-
ways. Chemically modified nucleotides with phosphoro-
thioate linkage, cholesterol-conjugated single-stranded 
RNA analogues antagomirs’ paired with miRNA-122 
strand significantly regulate liver disease mechanisms 
and can function as a miRNA-based inhibitory therapeu-
tic target for antiviral approach destruction [61]. Peter 
Sarnow coined the phrase "miRNA-122 targets the 5′ 
non-coding region (NCR) of the HCV genome and up-
regulates viral RNA activity" in 2005. Numerous studies 
have confirmed the role of miRNA 122 in liver diseases. 
Miravirsen (also known as SPC3649), an LNA-based anti-
sense molecule against miR-122 developed by Santaris 
Pharma A/S (Horsholm, Denmark) in Phase 1 and Phase 
2a clinical trials for the treatment of hepatitis C (HCV) 
[62]. The LNA-mediated drug cobomarsen (also known 
as MRG-106) is being tested in clinical trials for the treat-
ment of cutaneous T-cell lymphoma (CTCL), diffuse 
large B-cell lymphoma, chronic lymphocytic leukaemia, 
and mycosis fungoides (MF) [63, 64]. In another xeno-
graft murine model-based metastatic breast cancer study, 
blocking of miRNA 10b activity via intravenous delivery 
of specific antagomiRNAs leads to a significant reduc-
tion in the development of lung metastasis [65]. Phos-
phorodiamidate morpholino oligonucleotides (PMOs) 
are single-stranded DNA oligonucleotides derived from 
AMO that have additional morpholine rings linked with 
phosphorodiamidate linkages. PMOs inhibit the mRNA 
cascade by coupling with the corresponding sequence of 
target mRNA via Watson and Crick base conformation. 
PMOs are stable oligonucleotides that are susceptible to 
a variety of biological enzymes, increasing their thera-
peutic potential. The US Food and Drug Administra-
tion has now approved EXONDYS 51TM (Eteplirsen), a 
PMO-based antidote that works in Duchenne Muscular 
Dystrophy (DMD). This drug works on a mutated dystro-
phin protein to repair its function by removing exon 51 

via RNA splicing [66]. Peptide Nucleic Acids (PNA) are 
composed of N-2-aminoethyl glycine components that 
have been conjugated with peptide bonds. PNAs nucleo-
tide corresponds to recognise complementary sequences 
in a specific gene by the fascinating transcriptional pro-
cess in the antigene approach [67]. PNAs with the ability 
to form a stable triplex structure, as well as a strand inva-
sion or strand displacement complex with DNA. These 
structures have the ability to disrupt or chunk RNA 
polymerase activity. Antisense nucleic acid analogues are 
possibly designed for identifying mRNA sequences for 
translation inhibition. PNA-dependent antisense therapy 
works by sterically inhibiting either the RNA mecha-
nism or translation. Antisense delivery systems are being 
developed [68]. Formiversen is the first antisense-based 
drug approved to treat cytomegalovirus retinitis (CMV) 
in AIDS patients. Several antisense-based treatments 
are currently being tested in clinical trials. For example, 
Geasense, an antitumour activity antisense drug with 
active Genta targeting BCL 2, is in phase III trials [53, 69]. 
PNAs, when compared to other oligonucleotide thera-
peutics, are ineffective at entering the cell membrane and 
have low intracellular delivery due to their neutral charge 
[70]. AMOs-based delivery systems for targeting mature 
miRNA have proven to be effective. Chemical modifica-
tion of oligonucleotides provides a more powerful tool 
for AMOs-based target identification in miRNA biology 
(Table 2).

miRNA inhibition through miRNA sponges/miRNA masking
miRNA sponges (miR-SP) are another vector-based con-
cept with 4–10 multiple binding sites complementary 
to the seed area of the target miRNA [71, 72]. miRNA 
sponges are linked to the transcriptome category, which 
has been identified as competing for endogenous RNA 
(ceRNA). This ceRNA serves as a socking up and control-
ling miRNA expression by directing the RISC capacity 
and decreasing mRNA target efficiency [73, 74]. Chemi-
cally modified antisense oligonucleotides have the same 
inhibitory ability as miRNA sponges [75]. Sponge types in 
the miRNA sponge-based inhibition mechanism include 
target mimics, miRNA decoys, miRNA target sequences, 
miRNA erasers, lentiviral-mediated antagomiRNAs, and 
non-viral delivery systems [71]. miRNAsong is a compu-
tational tool that has been developed to predict miRNA 
sponges. miRNA sponges are created for specific miR-
NAs, and binding potentialities for specific organisms 
have been identified. This web-based programme con-
tains 35,528 miRNA sequence collections that serve as 
the foundation for sponge structure construction [76]. 
miRNA masking, like miRNA sponges, is another ave-
nue for miRNA-based inhibition. Unfavourable miRNAs 
block their target mRNA in the masking technique, and 
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thus, target gene expression may be inhibited. This mask-
ing strategy employs a gene-specific method of binding 
with miRNA targets in a perfectly complementary mode 
[77]. Masking and sponge strategies collaborate to fur-
ther inhibit multiple miRNA binding sites, resulting in 
protein synthesis suppression. Sponge miRNA masking 
is moderately coupled with target complementary, so this 
combination has low gene target selectivity, but it may be 
advantageous for targeting all genes that are linked to the 
same binding lineage of miRNA group [78–80]. Using a 
viral-based delivery approach, the systemic application of 
miRNA sponges has shown great promise in the eye [81], 
skeletal muscle [82], in vivo study model for heart disease 
[83] and carcinogenesis [84]. Meng et al., summed it up as 
sponge’s block. miRNA-9 expression is generally respon-
sible for regulating or suppressing various oncogenes 
such as KLF17, CDH1, and LASS2 using circular sin-
gle-stranded DNA (cssDNA) by binding with miRNA-9 
target sites and helping to repair the expression of these 
oncogenes [85]. A liposome-based miRNA sponge mimic 
is currently being tested in a phase I trial for primary 
liver tumours [45]. These miRNA sponges or decay pros-
pects could also be useful in regenerative medicine [86]. 
Using an ex vivo model, lentiviral particles were designed 
for bone marrow cells to deliver anti-miRNA sponge tar-
get sequences for miRNA-144 and miRNA-451. These 
findings indicate that lentiviral coded anti-miRNA stud-
ies can be carried out successfully [87]. Another animal 
model for autoimmune encephalomyelitis (EAE) in mice 
shows decreased activity of interleukin-17 secreted by 
Th-17 cells by introducing a lentiviral sponge for miRNA-
326 [88]. The concept of miRNA sponges is also useful 
for chronic disease prevention, such as diabetes [89]. 
Another method for generating a maximum removal of 
endogenous miRNA is to use a miRNA eraser. miRNA 
erasers have two binding sites and are delivered to cells 
via recombinant adenovirus. This miRNA eraser mecha-
nism is useful for engineered transgenic models and 
may be useful for in  vivo therapeutic miRNA targeting 
[90]. It is critical for the translation of miRNA-based 

inhibition sponges, erasers, masking decoys to have an 
effective design model but be inconclusive about its 
safety, efficacy, and off-target effects [91]. Nonetheless, 
sponge-based inhibition is a compelling approach, but 
clinical translation of this concept will be difficult. Fur-
thermore, the toxicity of nanoparticles liposome-based 
therapy, specified delivery in tissue, low cellular uptake, 
uncertainty in animal-based experiments, control vector 
system, and the toxicity of nanoparticles liposome-based 
therapy are major concerns [86].

miRNA inhibition through CRISPR/Cas9‑based genome 
editing
Genome editing is now widely accepted as a molec-
ular technique for modifying genes and their 
expression. Clustered regularly interspaced short pal-
indromic repeats (CRISPRs) and CRISPR-associated 
protein 9 (Cas9) are potential gene targeting technolo-
gies that allow modifications at the DNA level with pre-
cise chromosomal locations in cells and animal models 
[92]. CRISPR/Cas elements have an adaptive antivirus 
immunity system, which is found primarily in archaea 
and bacteria. This system operates on the basis of self 
and foreign recognition. Spacers are foreign DNA frag-
ments that fit into the CRISPR compartment. This con-
struct transcribed and proceeded with the formation 
of CRISPR RNA (crRNA), which can easily target and 
cleave genomic sites associated with plasmids or viruses 
[93]. The CRISPR/Cas mechanism is divided into three 
stages: spacer acquisition, crRNA biogenesis, and target 
interference [94]. There are three types of unique feature 
genes in CRISPR-Cas: Cas-3 in the type I system, Cas-9 
in the type II system, and Cas-10 in the type III system 
[95]. The CRISPR-Cas9 system influences tumour hall-
marks such as cell growth and proliferation, migration, 
invasion, and apoptosis in cancers such as hepatocellular 
carcinoma, renal cell carcinoma, pancreatic cancer, ovar-
ian tumour, and chronic myeloid leukaemia. In vivo and 
in vitro experiments yielded significant results for a vari-
ety of targeted miRNAs and their regulating pathways 

Table 2  Approved miRNA-based drugs for miRNA therapeutics

Drug Clinical trial miRNA inhibition Disease References

MRX34 Phase I ASOs (2-O′ methyl modifier) P53/wnt pathway [61]

Miravirsen (SPC3649) Phase I and Phase IIa phosphorothioate linkage, choles-
terol-conjugated AMOs

HCV [62]

Cobomarsen (MRG-106) Phase II LNA based Various lymphomas [63]

Formiversen Phase III PNA based CMV [220]

EXONDYS 51TM Approved drug PMO based Duchenne muscular dystro-
phy (DMD)

[66]

Geasense Phase III PNA based BCL2 [53, 69]
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[96]. Lu et  al. conducted a CRISPR-cas9-based clinical 
trial, and CRISPR-Cas9 modified T cells were recently 
introduced to lung cancer patients for treatment pur-
poses [97, 98]. Furthermore, CRISPR-Cas9 tools are 
applicable for HIV-1 strains, as CISPR-Cas9 acts on both 
HIV-1 and proviral DNA in in  vivo and in  vitro mod-
els. The CRISPR-Cas9 method inhibits HIV viral gene 
expression and viral replication. This technique is sim-
ple, has a high efficiency, and has a low off-target effect, 
making it a potential and hopeful treatment for HIV-1/
AIDS [99]. Currently, miRNA-based inhibition with 
LNA/PNA modifications, blocking by miRNA sponges, 
and knockdown approaches through genomic editing are 
expanding research in the drug delivery system [100] and 
CRISPR-Cas may be useful as a therapeutic platform for 
gene therapy [101, 102]. Despite its powerful genome-
editing system, there are numerous gaps, such as success, 
safe, and efficient target distribution in human subjects. 
[103].

miRNA inhibition through small molecule inhibitors 
of miRNAs
Small-molecule inhibitors of miRNAs (SMIRs) are 
emerging as nucleotide analogues to target miRNA and 
modulate their activity in the development of miRNA 
therapeutics [9]. Melo and Calin et al. pioneered the use 
of SMIRs [104, 105]. SMIRs are a potential option that 
could be an effective concept for the direct inhibition of 
disease-associated miRNAs by binding with a precursor 
or mature miRNA [105]. AC1MMUR2 inhibits the mat-
uration of pre-miRNA-21 in the in  vivo mouse model, 
resulting in tumour suppression [106]. Gumireddy et al. 
strained over 1000 organic compounds and discovered 
that diazobenzene and its derivatives precisely inhibit 
pre-miRNA-21 transcriptional activity by interfering 
with the miRNA pathway’s subsequent process [107]. 
SMIRs with promising pharmacodynamic and phar-
macokinetic properties are followed by a concise clini-
cal application regarding their toxicity and distribution. 
Because of their cost-effectiveness, SMIRs stand out 
as potential candidates for drug targeting due to their 
intriguing output [75, 100].

miRNA replacement
miRNA replacement therapy is gaining traction around 
the world. Synthetic miRNA or miRNA mimics are 
incorporated with diseased tissue/cells to restore normal 
functions such as cell proliferation, cell apoptosis, cell 
cycle, and other cellular and physiological activity [108]. 
miRNA replacement therapy is classified as either viral or 
non-viral delivery [109].

Viral vector‑based miRNA replacement
Retroviral, lentiviral, and adeno-associated viral (AAV) 
vectors are used in viral vector-based transportation for 
miRNA administration, which encodes an RNA molecule 
and can transfect all cell types because it affects both 
dividing and non-dividing cells. Because of its low tox-
icity and limited off-target delivery, an adeno-associated 
viral vector has an idealistic effect [110, 111]. AAV vec-
tors with genomic sizes of up to 4.7 kb were found to be 
shorter than other viral vectors. It aimed at both divid-
ing and non-dividing cells in order to deliver viral vectors 
[112]. AAV also has a protein capsid with single-stranded 
DNA [113]. In an animal model of miRNA replacement 
therapy, Kota et  al., discovered that miRNA-26a com-
bines with AAV and is introduced into hepatocellular 
cancerous cells. They discovered that increased miRNA-
26a expression leads to a significant reduction in tumour 
growth and induced cell apoptosis. This demonstrates 
a potential targeting technique for future applications 
[114]. Retroviruses have a lipid layer that contains two 
copies of a linear non-segmented single-strand RNA mol-
ecule that is transcribed into double-stranded DNA in 
the cytoplasm before being passed into the nucleus and 
assimilated with host chromosomes [115–117]. Retrovi-
ruses have a genomic size of 7–11  kb and the ability to 
construct vectors of up to 8 kb for interest gene transfer. 
These viruses only affect dividing cells because they affect 
the mitotic phase of the cell cycle. In comparison with 
retroviruses, lentiviruses can create a space for genomic 
transfer of up to 8  kb but can affect both differentiated 
and non-differentiated cells. Lentiviruses are a subgroup 
of retroviruses that have a protein-protecting shell and 
the ability to duplicate a copy of their single-stranded 
RNA genome [118, 119]. A recent animal model-based 
study concluded that the lentiviral vector was designed 
with miRNA-133b for the restoration of spinal cord func-
tion [120]. Despite being favoured as an excellent thera-
peutic representative, viral-based delivery failed due to 
low loading capacity, high toxicity, limited packing ability, 
difficulties in viral and vector production, and extreme 
immunogenicity [103]. Non-viral vector-based delivery 
systems have been elevated to overcome all of these chal-
lenges (Table 3).

Non‑viral vector‑based miRNA replacement
There are two types of delivery approaches in non-viral 
therapeutics. Oligonucleotide-based miRNA mimics are 
delivered chemically via liposomes, nanoparticles, con-
jugation-based, and antibody-based methods. miRNA 
are delivered by gene gun, electroporation, hydrody-
namic, ultrasound, and laser-based energy in the physical 
approach [121]. Because of its membrane-like structure 
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and capsulated cover, lipid or nucleic acid is frequently 
used as a carrier for miRNA in liposome-dependent ther-
apy. Liposomes are classified as cationic, anionic, or neu-
tral lipids based on their electrical charge [122]. Cationic 
charged lipid complexes have a higher absorption capac-
ity because electrostatic interactions effectively adhere to 
anionic plasma membranes [123]. Nanoparticles (NPs) 
can be used as a carrier for miRNA in the chemical-based 
concept for miRNA delivery. NP degrade slowly by endo-
nucleases and avoid non-specific binding with other pro-
tein targets [124]. miRNA delivery via lipids, polymers, 
and inorganic nanoparticles has been used [125]. Lipid 
conjugated dsRNAs containing palmitic acid, lauric acid, 
and cholesterol are used in the delivery of nonviral miR-
NAs via conjugation. These lipids have been modified at 
the 5′ end of the sense strand in order to improve cellular 
uptake and add efficacious miRNA delivery [126]. For the 
development of miRNA-based therapeutics, conjugation 
linked targeting employs peptides, antibodies, and bioac-
tive molecules. In the antibody-dependent approach, the 
antibody-based targeting carrier was shown to be effec-
tive for both systemic and cell-specific delivery of oligo-
nucleotides by targeting cell surface receptors [127].

The physical method of gene transfer is used in gene 
therapy in a variety of cell types both in vitro and in vivo. 
These methods rely on causing transient dispersion in 
the cell membrane by applying mechanical, electrical, 
ultrasonic, hydrodynamic, or laser-based energy to the 
desired DNA as it diffuses into host cells [128]. The gene 
gun is a physical device used to inject the DNA particle. 
Plasmid DNA is coated with gold and tungsten particles 
before being delivered to host or target cells using a high-
speed pressurised gas. This biolistic technique, which 
was originally developed for plant transgenesis, is now 
used in mammalian cell gene delivery in the in vitro and 
in vivo settings.

One of the most widely used gene delivery methods 
is electroporation. Skin, skeletal muscle, liver, tumour 
tissues, retina, brain, spinal cord, kidney, cardiac mus-
cle, and cornea were successfully transfected in  vivo 
using the electroporation technique [129]. miRNAs 
were packed into extracellular vesicles and electropo-
rated into target cells for successful gene delivery [130]. 
UMTD (ultrasound-targeted microbubble distrac-
tion) is a non-invasive method for miRNA and gene 

delivery. Yanlei et  al. investigated the effect of UMTD 
on miRNA-133a for breast carcinoma treatment in 
MCF-7, MDA-MB-237, as well as on in  vivo model 
and reported that miRNA-133a suppressed cell pro-
liferation in  vivo model tumour growth has been sup-
pressed significantly at low frequency (10 MHz) [131]. 
In another study, Jennier et al. suggest that by deliver-
ing UMTD miRNA-122 loaded nanoparticles, the con-
centration of interleukin-12 and 17 on lymph nodes 
of treated and contralateral tumours in hepatocellular 
carcinoma was reduced [132]. Another study looked at 
UTMD-mediated miRNA delivery in cancer stem cells 
and found that it could be a platform for cancer stem 
cell (CSC) therapy [133]. Gene delivery systems have 
been widely used in a variety of diseases, including ocu-
lar diseases [134], cardiovascular dysfunction [135], 
neurodegenerative diseases [136] and inflammatory 
disorders [137]. Magnetofection is another method for 
delivering miRNA. The molecules were delivered into 
the target cells using magnetic fields. The magneto-
fection method efficiently examines all types of oligo-
nucleotides, DNA, RNA, and viruses in a wide range 
of cell lines. According to one of the studies, magnetic 
nanoparticle neuromeg was discovered to be used to 
transport oligonucleotides for miRNA inhibition via 
magnetofection. This neuromeg complex is capable of 
successfully knocking down miRNA-134 expression 
in the rat brain region, as well as reducing the content 
of overexpressed specific miRNAs for brain disorders. 
[138]. Hydrodynamic pressure aids in the formation of 
pores in the hydrodynamic strategy, allowing genes of 
interest to enter the cell through these pores [139].

Hence, miRNAs play an important role in therapeu-
tics and may become a future medicine. Currently, small 
RNA-based therapeutics are a hotbed of innovation 
and an important area for obtaining patent rights. The 
study discovered 87,700 patents related to miRNA using 
"Google patent". Another quick search of US and Euro-
pean patent databases revealed that the number of pat-
ents related to "miRNA and cancer" was disproportionate 
to other diseases [140]. Traditional and complementary 
medicines have been globally accepted as an alternative 
form of therapy for various chronic disorders and dis-
eases, according to the WHO Traditional Medicine Strat-
egy 2014–2023 [141] (Fig. 2).

Table 3  Involvement of vectors in miRNA-based delivery

Vector Size Structure Influence on cells

AAV ~ 4.7 kb Protein capsid with ss DNA Dividing and non-dividing cells

Retroviruses ~ 7 to 11 kb Lipid layer ss RNA Only dividing cells

Lentiviruses ~ 8 kb Protein capsid ss RNA Dividing and non-dividing cells
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Plant miRNA in therapeutics and its biogenesis
Plant miRNAs have 22 nucleotide RNAs. Because of 
the lower diversity in linage classification, the biogen-
esis and mechanism of these plant miRNAs show less 
discrimination when compared to animal miRNAs. 
Plant miRNA differs from animal miRNA only in terms 
of miRNA stem-loops; plant-predicted fold backs are 
larger than animal miRNAs [28]. According to Axtell 
and Meyers, plant miRNA are derived from distinct 
stem regions containing single-stranded hairpin pre-
cursors. It covers all biological and physiological pro-
cesses. It also regulates environmental stress [142]. The 
plant genome transcribed a large number of miRNA 
genes [143, 144]. The RNA polymerase II enzyme is 
responsible for the transcription of primary miRNAs 
(pri-miRNAs) in plants. In the nucleus, DICER-LIKE 
1 (DLC1) converts pri-miRNAs into stem-loop pre-
miRNAs. These pre-miRNAs were transported into 
the cytoplasm by the plant exportin 5 orthologue, 
HASTY, and other unknown factors. Mature miRNAs 
are formed from the strands of pre-miRNAs and meth-
ylated by a small RNA methyltransferase called HUA 
Enhancer 1 (HEN1) [145]. The response to miRNA 
silencing is carried out by AGO-containing RNA induce 
silencing complex proteins that work on the guide 
miRNA strand [42, 146, 147]. Animal miRNAs lack a 
2′O-methyl group on their 3′-terminus, which is found 
in plant miRNAs. miRNA forms near-ideal or ideal 
base-pair complementarity for target identification in 

plants. According to the ’seed rule,’ animal miRNAs 
lack this complementarity [145]. miRNAs play a role in 
plant development, plasticity, abiotic/biotic responses, 
and symbiotic/parasitic interactions in plant-environ-
ment relationships [148].

Application of plant miRNA in cross‑kingdom 
regulation
A wide range of bioactive compounds have pharmacolog-
ical functions that can be classified by screening various 
phytochemicals [149]. Medicinal plants and their second-
ary metabolites are used as remedies in the form of foods 
and pharmaceuticals. Secondary bioactive metabolites 
such as polyphenols, alkaloids, saponins, and tannins 
are important in drug therapeutics. Although the syn-
thetic medicinal plant variants are not same as the com-
plex plant components [150]. Plant miRNAs influence 
biosynthesis processes and have emerged as therapeutic 
markers for a variety of diseases. A novel and contentious 
hypothesis suggests that miRNAs can be transferred 
from one species to another and can potentially regulate 
target genes in distant species [151]. When it comes to 
miRNA transfer from plants to humans or animals, the 
situation becomes more convoluted. This is due to a 
number of unanswered questions and contradictory find-
ings concerning plant miRNA stability, abundance, mode 
of action, and validation of potential targets in human 
cells [152–154].

Fig. 2  The diagram depicts the divisions of miRNA-based delivery therapies
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Bioinformatics validations of plant miRNA 
in trans‑kingdom systems
Plant miRNA is involved in a variety of biological pro-
cesses. It not only regulates plant processes, but it also 
has a noticeable effect on the activity of other species. 
This suggests that plant miRNAs play a role in inter-
species regulation. There are numerous bioinformat-
ics tools and software available for the anticipation of 
bioinformatics studies such as plant miRNA design, 
implementation, validation, target prediction, line of con-
duct within the mammalian host cell environment, and 
understanding complementarity between cross-kingdom 
interactions [155, 156]. There are four main characteris-
tics that are commonly used when designing herb-based 
miRNA for mammalian genes. Base-pairing between the 
’seed’ region and the target gene, low free energy estima-
tion (genuine paring with miRNA target), target predic-
tion (potential binding sites required for cross-kingdom 
transfer), and site accessibility are examples of these. For 
the prediction of plant-based miRNA transfer in mam-
malian genes, these rules are well-founded [157].

There are several bioinformatics databases for plant and 
animal miRNA prediction, and miRNEST2.0 is one of 
the comparative tools used for plant and animal miRNA. 
This application recognises, develops, and integrates 
miRNA data. It also incorporates miRNA sequences 
from other databases and prepares miRNA annotation 
for the selected species [158]. Another computational 
tool for identifying plant miRNA sequences and biologi-
cal precursors is miRBase. It also provides information 
about genome coordinates and context, as well as refer-
ences to the literature, deep sequencing expression data, 
and community-driven annotation [159]. MiRanda [160], 
TargetScan [161], PITA [162], PicTar [163] and COMIR 
[164] are tools for miRNA-mRNA interactions. miRU 
is a well-known tool for analysing plant miRNA targets 
[165]. psRNATarget is a tool for determining the reverse 
complementarity between small RNA and target tran-
script and target-site. It also assesses target accessibility 
by computing unpaired energy (UPE) [166].

In‑silico predictions for the natural compound 
in cross‑kingdom pass‑over
Maulik et  al. conducted a recent study on O. basilicum 
miRNA concerning plant miRNA pass-over in the human 
system and in silico investigation. The study identifies 
eight conclusive miRNAs and 87 predicted target genes 
that are linked to a regulatory pathway. It has cross-
kingdom effects on the RAS/MAPK signalling cascade, 
cardiomyopathy, HIV, breast cancer, lung cancer, Alzhei-
mer’s, and several neurological disorders [167]. The com-
putational characterization of Bacopa monnieri revealed 

that it performs effective regulatory tasks. In this study, 
12 B. monnieri miRNAs were found to have physiological 
functions and target 68 human genes, indicating certain 
transducing cascades such as NF-kB and MAPK, reveal-
ing miRNA-mediated cross-kingdom gene regulation 
[168]. Furthermore, Gmelina arborea miRNA cross-king-
dom transfer appears to be a key regulator of a number 
of human abnormalities. It is effective for stomach, liver, 
gynaecological disorders, fevers, and skin problems. 
There are six accepted miRNAs and 73 G. arborea asso-
ciated genes. Bioinformatics analysis has become accus-
tomed to influencing human processes such as signal 
transduction and apoptosis [169]. A comparable in vitro 
study confirms that G. arborea bark and fruit extract have 
antioxidative properties on liver culture cells by down-
regulating oxidative-induced damage in liver cells [170]. 
Other studies on Moringa oleifera show that its miRNAs 
have the potential to target a variety of human genes. It 
also stated that its miRNAs have anti-oxidative and anti-
tumour activity [171, 172]. With cross-kingdom target 
prediction, eight presumed plant miRNAs of M. oleifera 
were identified through in silico investigation. M. oleifera 
miRNA-168a regulates the SIRT1 gene, which works in 
tandem with the p53 gene to regulate metabolism, stress 
signalling, cell survival, cell cycle control, and genome 
stability. Furthermore, a synthetic mimic of M. oleifera 
miRNA-168a was transfected in the human hepatoma 
cell line G2 (HEPG2), and its pharmacological properties 
need to be investigated for a better understanding of dis-
ease regulation [173, 174]. The anti-cancer effects were 
attributed to the Viscum album, L. Several in  vivo and 
in vitro studies have shown that V. album extracts have 
potent cardioprotective [175], hypoglycemic and anti-
hypertensive vasodilator effects [176]. A total of 14,559 
target genes for 44 potential novel miRNAs were iden-
tified in the study of the V. album transcriptome. Using 
the bioinformatics engine, these miRNAs were identified 
as pharmacologically potent for targeting human genes 
and regulating pathways [177]. Noopur Singh et al. con-
ducted a bioinformatics analysis on Curcuma longa and 
discovered that sixteen miRNAs from Zingiber officinale 
narrate gene modulation with 86 human targets. These 
target annotations are involved in a wide range of cellu-
lar and biological processes [178]. Another in silico study 
by Rashmi et al. discovered eight out of 12 miRNAs that 
play a role in gene silencing by stimulating various tar-
gets of signal transduction and apoptosis by admiring 
disease inhibition such as diabetes mellitus type 2, car-
diovascular disorders, Alzheimer, cancer thalassemia. 
[179]. Similarly, Camptotheca acuminate is commonly 
referred to as a happy tree. Bioinformatics has been used 
to facilitate this plant’s cross-kingdom association. Out 
of 53,294 C. acuminate miRNAs in the EST database, 
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33 highly stable predicted miRNAs were detected for 
human gene target associations, with 14 miRNAs identi-
fied to govern the 152 human target genes via prominent 
pathways such as focal adhesion, lipolysis regulation, 
and mTOR signalling. These pathways play an important 
role in cancer regulation. C. acuminate miRNAs may be 
an important clue for targeting cancer progression, but 
more research is needed [180]. In context to our find-
ings, a total of 89 unique miRNA were discovered using 
miRbase against using expressed sequence tags (ESTs) in 
Curcuma longa. This shows direct target on anti-cancer 
and anti-immunosuppression activity. In our other study 
on miRNAs of Persea americana (Avocado), a total 243 
putative miRNAs were disclosed and its predicted targets 
significantly involved in metabolic and cellular processes 
[181, 182]. Despite the fact that a large number of bioin-
formatics studies have been conducted to investigate the 
link between plant miRNA and trans-kingdom transfer, 
experimental validation and further in-depth research 
are recommended to fill the gap.

miRNA therapeutics value in inter‑kingdom 
regulation
Plants as a source of medicine have proven to be 
extremely useful in human life. They are used as a pre-
ventive medicine in treatment. There are approximately 
252 drugs that play an important and fundamental role 
in human health, with plant-derived natural medi-
cines accounting for 11% of the total. There is a wealth 
of information available about the chemically modified 
plant-based drug [183]. Nutritional elements such as 
vitamins and secondary plant metabolites are critical in 
driving the cellular mechanisms that maintain miRNA 
expression. Food-derived nutritional components such 
as vitamin D, vitamin E, folate, curcumin, resveratrol, 
epigallocatechin gallate, quercetin, and isothiocyanates 
have been recognised as miRNA moderators [184, 185]. 
Plant miRNAs regulate cross-kingdom gene expression, 
but the evidence for inter-species coordination is mixed 
[186]. Several recent discoveries show cross-kingdom 
gene efficiency by plant miRNAs in the model of cross-
kingdom mechanism [187]. This aids in the investigation 
of the current disagreements surrounding this concept 
[188].

Plant miRNA interactions: grassland to mammals
Plant miRNAs in the form of food can theoretically be 
absorbed by intestinal epithelial cells [160, 189]. Although 
the exact pathway of the plant’s miRNAs from gut to 
intestinal cells is unknown. Several groups have dem-
onstrated the potential mechanism and uptake of plant 
miRNA in mammals. According to Zhang et  al., diet-
derived plant miRNA was found in the circulation and 

organs of humans and mice, and it was capable of regu-
lating the expression of human mRNAs. Rice-derived 
miRNA-168a regulates gene expression effectively and 
has been shown to target low-density lipoprotein recep-
tor adapter protein (LDLRAP) 1, a gene involved in cho-
lesterol metabolism [190, 191].  Andrew et  al. identified 
plant miRNA-159 as a dietary source in human sera and 
further recognised its potency to inhibit cell prolifera-
tion by pointing tcf7, which expressed wingless-related 
integration site (Wnt) signaling-associated transcription 
factor, prominent to a down-regulated myc gene regu-
lation in breast cancer cells. Furthermore, in a mouse 
modal in  vivo experiment, a mimic of miRNA-159 sig-
nificantly inhibited xenograft breast cancer. Plant miRNA 
was found to be capable of controlling cancer growth 
in mammals in an in  vitro experiment. [192].  Liu et  al. 
describe how miRNA-2910 was discovered in human 
sera through the investigation of plasma sRNA sequenc-
ing datasets in the continuation of these cross-kingdom 
pieces of evidence. The data were removed from the miR-
Base domain, however, because it was an existing frag-
ment of large subunit ribosomal RNA[193]. miRNA-172 
from Brassica oleracea was found in the blood, spleen, 
liver, and kidney for up to 36  h, indicating the stability 
of miRNA, according to Liang et al. [194]. When human 
monocyte-derived dendritic cells were treated with 
fvmiRNA-168 and inflammatory agents such as lipopoly-
saccharide (LPS) or polyinosinic: polycytidylic (poly I: C) 
acid, a positive downregulation of inflammatory response 
was observed. Furthermore, fvmiRNA-168 could reduce 
class II immune-histocompatibility complex (HLA-DR), 
various CD markers, and T-cell proliferation [153]. Plant 
miRNA’s medicinal properties will be prominent in the 
prevention of human maladies Wang et al. created a gene 
knockout mouse model that demonstrated that exog-
enous miRNA-451 can pass through circulation and the 
digestive system and up-regulate antioxidant activity via 
the Foxo3 pathway [195]. Plant miRNAs and their effects 
on cross-kingdom gene regulation provide evidence. 
Despite the unknown aspects of their delivery, potential-
ity, sustainability, toxicity, and function, researchers were 
faced with a number of challenges (Table 4).

Plant miRNA transportation in mammals
Several issues remain unresolved regarding the trans-
port of plant miRNA into an animal system [196]. In 
terms of plant miRNA stability, it may be jeopardised 
by a variety of factors such as enzyme degradation and 
the establishment of miRNAs in target cells [197]. Plant 
miRNAs are stabilised in mammalian cells by the 2′-O-
me groups on the ribose of the last nucleotide [145]. As 
a result, the deterioration ratio of plant miRNAs is kept 
to a minimum. Several defence mechanisms, such as the 
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Table 4  Plant miRNAs in gene regulation: a cross-species comparison

miRNA Source Year Target of interest Method Disease application References

miRNA-168a
miRNA-156a
miRNA-166a

Oryza sativa 2012 Human, Mouse, 
Rat, Calf, Hoarse, 
Sheep

HTS, qRT-PCR, NB, WB Low-density lipoprotein 
receptor adaptor protein-1 
(LDLRAP1)

[190]

miRNA1_GA_CONTIG1 
miRNA2_GA_CONTIG1
miRNA3_GA_CONTIG1
miRNA4_GA_CONTIG1
miRNA5_GA_CONTIG1
miRNA6_GA_CONTIG1

Gmelina arborea 2013 Human genes Bioinformatics analysis Signal transduction and 
apoptosis regulation

[169]

08 predicted miRNA Curcuma longa 2013 Human genes Bioinformatics analysis Diabetes mellitus type 2, 
cardiovascular disorders, 
alzheimer, cancer, thalas-
semia

[179]

miRNA-172 Brassica oleracea 2014 Mice qRT-PCR Not mentioned [194]

miRNA-2911 Honeysuckle 2014 Mice qRT-PCR, HTS, NB, 
florescent labelled 
tracing assay

Not mentioned [204]

miRNA-29b, 200c Milk derived 2014 Human, Mice qRT-PCR Not mentioned [157]

miRNA-2911 Lonicera japonica 2015 Mice qRT-PCR, HTS, NB, 
florescent labelled 
tracing assay

Influenza A virus [121]

miRNA-375 Milk derived 2015 Mice qRT-PCR, NB, HTS Not mentioned [221]

miRNA-168a Moringa oleifera 2016 Human genes, Bioinformatics analysis Stress signalling, cell sur-
vival, cell growth, cell cycle 
and genome stability

[174]

miRNA-166a
miRNA-159

Brassica campestris 2016 Mice HTS, qRT-PCR Not mentioned [222]

miRNA-159 Arabidopsis thaliana 2016 Mice qRT-PCR Breast cancer/transcrip-
tion factor 7

[192]

miRNA-159 Glycine max 2016 Mice qRT-PCR Breast cancer/transcrip-
tion factor 7

[192]

miRNA-159 Broccoli 2016 Mice qRT-PCR Breast cancer/transcrip-
tion factor 7

[192]

miRNA-14 Curcuma longa 2016 Human Bioinformatics analysis Rheumatoid arthritis [178]

miRNA-160 miRNA-2673 Brassica oleracea 2016 qRT-PCR Not mentioned [223]

miRNA-2910 Populous euphratica 2017 Human Bioinformatics analysis JAK-STAT pathway [193]

44 potential miRNA found Viscum album 2017 Human genes Bioinformatics analysis Cancer, cardiovascular 
diseases and neurological 
disorders

[177]

14 potential miRNA Camptotheca acuminate 2017 Human genes Bioinformatics analysis Focal adhesion, lipolysis 
regulation and mTOR 
signalling

[180]

miRNA-156a Cabbage, spinach and 
lattuce

2018 Human qRT-PCR Cardiovascular diseases [224]

miRNA-414 and miRNA-
869.1

Ocimam basilicum 2019 Human genes Bioinformatics analysis Rheumatoid arthritis, 
Diabetes mellitus, Gesta-
tional diabetes, Cataract, 
Alzheimer’s disease, Infant 
death syndrome, Infantile 
achalasia and Cantu 
syndrome

[167]
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blood–brain barrier (BBB) and other physiological bar-
riers, influence plant miRNA absorption in mammals. 
As a result of plant miRNA absorption, the intestine’s 
epithelial cells incorporate with miRNAs via various 
processes, plant miRNA reach gut cells, are delivered to 
specific physiological sub-compartments and different 
body systems, and modulate gene expression. The mul-
tispatial transmembrane proteins SID-1 and SID-2 pro-
mote siRNA uptake in Caenorhabditis elegans. A SID-1 

could direct the passive diffusion of dsRNA via channel 
formation. SID-2 is required for environmental RNAi. 
Despite their extensive articulation, SID-1 and SID-2 
are restricted to the apical membrane and expressed in 
the intestine, where they may play a role in the endocy-
tosis of dsRNA from the lumen [198]. In mammals, an 
RNA transporter protein is present on the cell surface, 
which facilitates the transport of plant miRNA across 
the intestinal lumen (Fig. 3).

Table 4  (continued)

miRNA Source Year Target of interest Method Disease application References

Bmn-miRNA-167h
Bmn-miRNA-168
Bmn-miRNA-396g
Bmn-miRNA-156
Bmn-miRNA-172d
Bmn-miRNA-171d-3p
Bmn-miRNA-399h-3p
Bmn-miRNA-399f
Bmn-miRNA-444b.1
Bmn-miRNA-403e
Bmn-miRNA-159
Bmn-miRNA-857

Bacapa monnieri 2019 Human genes Bioinformatics analysis Involvement in Nf-kB and 
MAPK pathway

[168]

Plant miRNA

Cross-kingdom transfer

Interaction with target 

Passing through defence
mechanism and absorbed in gut 

cells

Fig. 3  Plant miRNAs cross-defence mechanisms such as the blood–brain barrier. The RNA transporter protein aids in the absorption of miRNA 
through gut cells. SID1-2 promotes miRNA uptake and interacts with targets such as (cardiovascular disease, cancer cells, Alzheimer diseases, 
rheumatoid arthritis and so on)
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In silico and in vivo approaches for plant miRNA 
absorption
Nutrichem2.0 is a plant-based food software that con-
nects protein targets to FDA-approved drugs and 
small molecules found in plant-based nutrients. There 
are 428 drugs and 339 foods that have been shown to 
interact with protein targets. These in-silico approaches 
collect data on chemical bioactivity and allow for the 
comparison of activity concentrations between drugs 
and phytochemicals [199]. miRNA is still necessary to 
recognise in order to identify a potential transporter 
protein in mammalian cells for a plant. Synthesized 
plant miRNAs-34a, 143,145 act as tumour suppressor 
miRNAs in the in vivo model, reducing colon cancer by 
removing oncogenesis [200]. The turbulence surround-
ing the plant miRNA metabolism mechanism by mam-
malian liver cells revealed that miRNAs loaded with 
fluorescently labelled microvesicles were transported 
in target cells. miRNAs are protected from degrada-
tion by RNases after being packaged in microvesicles 
or exosomes. Phagocytosis and carrier-mediated regu-
lation were used to transport these exosomes. Because 
milk is a bioactive food resource, a cow is the primary 
consumer, and bovine-milk-derived miRNA can travel 
the human intestinal tract via kinetic mechanism and 
reject surface exosome proteins. According to a recent 
pharmacokinetic study, cow milk acquired miRNA 
miRNA-29b and miRNA-200c to manage gene net-
working by targeting RUNX2 (runt-related transcrip-
tion factor 2). Furthermore, these bovine-derived 
miRNAs aid gene modelling in human leukocytes, in 
vitro kidney cells, and mouse liver. However, the acti-
vation, stabilisation, and post-transcriptional mecha-
nisms of miRNA remain a mystery [201].

Hypotheses are also generated regarding the sig-
nificance and association of miRNA, as well as their 
potential maternal–fetal transfer for strong immunity 
and cell–cell communication. According to research, 
maternal breast milk contains a high concentration of 
miRNA. More than 65% of human breast miRNAs are 
involved in metabolic and immune processes. miRNA-
181a and 155 coordinate B- and T-cell proliferation in 
order to improve adaptive immunity [202, 203]. As pre-
viously stated, miRNA-168a inhibits the low-density 
lipoprotein receptor adapter protein 1 (LDLRAP1), 
which inhibits cholesterol transport [190]. Further-
more, the author identifies the anti-viral property of 
honeysuckle miRNA-2911 as having an effect on influ-
enza-affected mice models [204]. Many questions were 
raised as a result of the justification for plant miRNAs 
as nutritional mechanisms in mammals, such as post-
transcriptional regulators (Fig. 4).

Plant miRNA and SARS‑CoV‑2
COVID-19 has been confirmed in 281,808,270 cases in 
223 countries, with 5,411,759 deaths, according to the 
global status as of December 2021. South-East Asia has 
44,933,587 confirmed cases, making it the third most 
affected region after America and Europe [205]. SARS-
CoV-2 is a coronavirus with a genome size of 26–32 kb 
that belongs to the β-subfamily identical  to SARS-CoV 
and MERS-CoV. The SARS-CoV-2 virus was divided into 
four structural proteins: a spike, a membrane envelope, 
and a nucleocapsid [206]. 2019-nCoV’s single-stranded 
RNA genome contains 29,891 nucleotides that encode 
9889 amino acids [207]. miRNAs have the ability to 
inhibit messenger RNA translational activity and stability 
(mRNAs). These miRNAs play a role in a variety of cel-
lular processes, including inflammation, cell cycle regula-
tion, stress response, cell differentiation, migration, and 
apoptosis. The most effective interacting agents with 
coronavirus gRNA were identified as miRNA-4778-3p, 
miRNA-6864-5p, and miRNA-5197-3p. As a result, cel-
lular miRNAs may be the best candidates for developing 
miRNA-based therapies for coronavirus diseases [208]. 
A cross-kingdom analysis reveals that plant miRNA may 
inhibit SARS-CoV-2 replication. miRNA-2911 from hon-
eysuckle may be significantly absorbed in human serum, 
and in clinical studies, patients who received miRNA-
2911 had a higher negative status than patients who 
did not receive miRNA-2911 treatment. This finding 
may shed light on the additional value of plant miRNA-
based therapeutics, as well as their potential role in viral 
growth inhibition [209]. Despite several limitations, 
plant-derived miRNA therapeutics would establish a new 
promising area in plant-based therapeutics in the near 
future.

Conclusions
Growing evidence suggests that miRNA have impor-
tant biological functions in the cellular homeostasis. 
When miRNA regulation is disrupted, it can lead to the 
development of a variety of disease phenotypes. miR-
NAs have enormous clinical applications because they 
can be detected in blood, serum, tissues, and fine nee-
dle aspirate specimens (FNA). miRNA could be used as 
a non-invasive biomarker for a variety of diseases, and it 
can regulate cellular, metabolic, and physiological path-
ways in both normal and diseased conditions. The most 
appealing aspect of miRNA-based therapy is that a sin-
gle miRNA can be used to target multiple genes that are 
dysregulated in diseases. Several plant miRNAs are also 
important in inter-kingdom gene regulation. As a result, 
the therapeutic value of plant-based miRNA is cur-
rently being researched for a variety of dysfunctions. If 
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plant-based therapeutic miRNAs overcome checkpoints 
to become phyto-drugs, they will be less toxic, have pre-
cise target identification, and have a valid application 
to regulate various diseases. miRNA therapeutics and 
plant-based miRNA therapeutics are less explored in the 
current scenario, but in the near future, miRNA-based 
therapeutics will be a new hope for disease identification 
and regulation. In conclusion, miRNA have the potential 
to provide diagnostic, prognostic, and therapeutic tar-
gets. As the field develops, miRNA-based therapeutics 
may lead to the development of a new class of drugs for a 
variety of diseases.
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