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Abstract 

Background:  The loss of dopamine neurons in the substantia nigra, as well as other mostly catecholaminergic neu-
rons, causes many of the motor symptoms that define Parkinson’s disease. Parkinson’s disease is commonly thought 
of as a movement disorder, the significant prevalence of psychiatric complications such as cognitive impairment, and 
psychosis suggests it should be considered a neuropsychiatric illness, and all behavioral complications are linked to 
growing disability and the medication.

Main body:  Apart from the disease-induced abnormalities, there are several other side effects of the disease and 
also from the medication used to prevent the disease. This article focuses on the pathogenesis of Parkinson’s disease 
and also the behavioral abnormalities caused by the disease and its medication. The study’s data were gathered by 
searching several review articles and research papers from a variety of sources, including Elsevier, PubMed, Research 
Gate, Journal of Pharmaceutical Science, etc., from the year 1985 to 2021. Parkinson’s disease is a neurodegenerative 
disease caused by a variety of complex processes. It is responsible not just for motor symptoms, but also for a variety 
of behavioral symptoms that can arise as a result of the disease and/or medication.

Conclusion:  Only symptomatic drugs are available; thus, finding treatments that directly address the disease mecha-
nisms causing Parkinson’s disease is essential. To alleviate the disease’s burden on patients and their families, better 
treatments for the neuropsychiatric repercussions of Parkinson’s disease are required.
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Background
“Neurodegeneration” etymologically consists of the 
prefix “neuro”, which means the neurons or the nerve 
cells, and “degeneration”, which means the loss of the 
structure and the function. So overall, neurodegenera-
tion is a process of the loss of the structural and func-
tional efficacy of the neurons. However, although it is 
a generally used word with a basic definition, the pre-
cise definition and depth of this term are considerably 
more. As a result, neurodegeneration is a collection of 
many degenerative dysfunctions that predominantly 
impact the body’s neurons. As a neurodegenerative 
condition progresses, individuals experience a variety 
of symptoms. There are hundreds of neurodegenerative 
diseases estimated currently with few of them overlap-
ping with each other pathologically and clinically [1].

Main text
Parkinson’s disease
Parkinson’s disease (PD) is a common adult-onset neu-
rodegenerative disease that is regarded as the second 
most chronic and progressive condition. It is marked by 
continuous degeneration of nigrostriatal dopaminergic 
neurons. Dopamine (DA) deficiency is considered the 
main cause of Parkinson’s disease [2–4].

The typical clinical symptoms of Parkinson’s dis-
ease are the combination of motor disorders such as 
tremor, bradykinesia, loss of posture, and muscle rigid-
ity [5]. Apart from the motor symptoms, many people 
with Parkinson’s disease have other symptoms that are 

categorized as non-motor. Anxiety, fatigue, sleep dis-
turbances, sadness, constipation, bladder and other 
autonomic abnormalities, sensory complaints, reduced 
thinking capability, diminished motivation and apathy, 
sensory complaints, and a decreasing cognition that 
can proceed to dementia are some of these symptoms. 
Parkinson’s disease is a slowly progressing condition 
that commences slowly and gradually transforms into 
severity. It usually affects one side of the body before 
spreading to the opposite side. The disease progression 
is slow, but if it is left untreated over time, it results in 
severe immobility. Before the substantia nigra (SN), 
other brainstem regions, such as the olfactory nucleus, 
are subjected to pathological changes; the cerebral cor-
tex is impacted later in the disease [6]. Parkinson’s dis-
ease is increasingly recognized as a cause of cognitive, 
behavioral, sensory, and autonomic abnormalities, in 
addition to its well-known mobility condition. Cogni-
tive impairment is now acknowledged as a prevalent 
symptom of Parkinson’s disease [7], notwithstanding 
James Parkinson’s original claim that intellectual func-
tion was retained in the "shaking palsy" [8]. Cognitive 
deficits are present in a high proportion of individu-
als with Parkinson’s disease at the time of diagnosis, 
and they affect the majority of patients as the disease 
progresses.

However, the pathogenic pathways that cause Parkin-
son’s disease are well established yet under progression, 
many researchers have considered a few factors such as 
the biochemical and genetic factors as the main cause 
of the disease. Mutations in particular genes, such as 
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α-synuclein and parkin, observed in rare, family cases 
of Parkinson’s disease, suggest abnormal protein aggre-
gation, whereas the mitochondrial dysfunction has 
been linked to biochemical factors.

Parkinson’s disease also known as primary parkin-
sonism is the most common cause of parkinsonism as 
opposed to the other three types of parkinsonism such as 
drug-induced parkinsonism also known as postencepha-
litic parkinsonism. Secondary parkinsonism plus other 
neurological features are also known as Parkinson-plus 
syndromes, and lastly, heredodegenerative disorders in 
which parkinsonism is merely one symptom of a heredi-
tary degenerative illness [9].

Pathogenesis of Parkinson’s disease
Parkinson’s disease is now commonly recognized as a 
multifactorial, complicated disease influenced by a vari-
ety of genetic, biochemical, and environmental factors. It 
affects numerous functional systems, not just the motor 
system, and multiple neurotransmitter systems, not just 
the dopaminergic system. The pathophysiology in each 
of the targeted neuron groups is identical, with intraneu-
ronal Lewy body inclusions and lower numbers of surviv-
ing neurons, oxidative stress, mitochondrial dysfunction, 
excitotoxicity, and altered chemical conductance  imply-
ing a consistent neurodegenerative mechanism. Mito-
chondrial dysfunction has been implicated as a key 
illness component because the majority of genetic PD 

loci are directly linked to mitochondria, whereas oxida-
tive stress and inflammation all play a role in the etiology 
of Parkinson’s disease, according to epidemiological and 
experimental research.

Mitochondrial dysfunction in Parkinson’s disease
Mitochondria are  clusters of free-floating organelles in 
the cytosol, also known as the cell’s powerhouse. Mito-
chondria’s primary job is to produce energy in the form of 
adenosine triphosphate (ATP). Mitochondria play a role 
in lipid and amino acid metabolism. They also store pyru-
vate oxidation intermediates and Krebs cycle products 
[10, 11]. PD is caused by defects in mitochondrial respi-
ration. The discovery that MPP+ , the active metabolite 
of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) 
which selectively inhibits complex I of the mitochondrial 
electron transport chain, induces an acute parkinsonian 
illness has emphasized the significance of mitochondria 
in PD [12–14] (Fig. 1).

Various environmental toxins also act by inhibit-
ing complex I and cause defects in the mitochondrial 
electron complex and reduction in the mitochondrial 
movement. This leads to an increase in mitochondrial 
permeability. ‘Electron leaks’ can also be seen at numer-
ous points along the mitochondrial electron transport 
chain. These electrons further react with the molecular 
oxygen and the reactive oxygen species (ROS) of various 
types such as hydrogen peroxide (H202) and superoxide 

Fig. 1  The MPP + caused mitochondrial dysfunction. MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; CoQ, Coenzyme Q10; Cyt c, cytochrome 
complex; e−, electron; O2, oxygen; O−, singlet oxygen; MnSOD, manganese superoxide dismutase; GSHPx, glutathione peroxidase
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are also formed. The reactive oxygen species easily react 
with the DNA, proteins, and lipids, resulting in oxidative 
damage [15, 16]. Complex I activity is diminished in the 
platelets, skeletal muscles, and substantia nigra of Parkin-
son’s disease patients [17].

Complex I abnormalities, as well as other flaws, play 
a key part in the death of dopaminergic neurons. Com-
plex I structural alterations caused by a lack of apoptosis-
inducing factors do not result in neurodegeneration due 
to dopaminergic cell death, but they do make dopaminer-
gic neurons more vulnerable to neurotoxins [18].

Genetic mutations implication in mitochondrial 
dysfunction
Specific gene aberrations that trigger dopaminergic 
apoptosis have aided the mitochondrion’s function in 
the progression  and pathogenesis of Parkinson’s dis-
ease. In familial PD, pathogenic mutations in Parkin, 
PTEN-induced kinase1, α-synuclein, DJ-1, LRRK2, 
UCHL-1, vacuolar protein sorting 35, and HtrA2 support 
mitochondrial dysfunction (Fig. 2) [19, 20].

SNCA (α‑synuclein)
α-Synuclein (α-Syn) is a 140-amino acid polypeptide 
encoded by α-synuclein. The principal component of 
Lewy bodies, α-Syn, was originally linked to Parkinson’s 
disease, and SNCA was later found as the first heredi-
tary familial Parkinson’s disease gene [21]. Increased 

levels of the wild form of α-syn generate fragmenta-
tion in the mitochondrion and the generation of ROS. 
The mitochondrial and endoplasmic reticulum disso-
ciate when mutant or wild-type α-syn is overworked, 
decreasing mitochondrial energy output and limiting 
Ca2+ exchange [22].

Parkin
Parkin is a cytosolic E3 ubiquitin ligase that encodes for 
465 amino acid cytosolic protein and also  ubiquitinates 
target proteins. It regulates the production and death of 
mitochondria via mitophagy, which helps to keep them 
healthy. Parkin gene mutations have been reported as a 
factor of Parkinson’s disease in autosomal recessive fami-
lies [23, 24]. Parkin’s proclivity for misfolding hints that it 
may be more prominent in the pathophysiology of spo-
radic PD. The development of non-native, non-functional 
parkin can be influenced by a variety of pathogenic muta-
tions as well as high oxidative stress. The substantia nigra 
of sporadic PD patients has misfolded parkin [25–28].

PINK1
PINK (PTEN-induced putative kinase 1), a protein with 
a mitochondrial targeting sequence is encoded by this 
gene. PINK1 mutations are the second leading cause of 
autosomal recessive early-onset PD [29]. In autosomal 
recessive PD, various  homozygous mutations have been 
identified in family PD patients. Mutations in PINK1 

Fig. 2  Cell death pathways mediated by a mitochondrial malfunction in PD due to various compounds such as, α-synuclein mutation, and LRRK2, 
PINK1, and DJ1. Cyt c, cytochrome complex; TFAM, transcription factor A; HTRA2, high temperature requirement protein A2; TRAP1, tumor necrosis 
factor receptor-associated protein; AIF, apoptosis-inducing factor; NAD, Nicotinamide adenine dinucleotide; ATP, adenosine triphosphate; PAR1, 
polymerase-1
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cause a decrease in ATP synthesis, a decrease in mito-
chondrial respiration, and an increase in the aggregation 
of an α-synuclein. Parkin translocates out from cytosol to 
the mitochondrion when the mitochondrial membrane 
potential drops. For mitochondrial localization, PINK1 
needs mitochondrial translocase, and its phosphoryla-
tion of serines promotes Parkin migration, which leads to 
mitophagy. As a result, PINK1 dysfunction causes locali-
zation mistakes as well as impaired mitophagy [30].

LRRK2
Leucine-Rich Repeat Kinase 2 (LRRK2) is a multifunc-
tional protein kinase. Its mutations induce an alternately 
penetrant autosomal dominant form of Parkinson’s 
disease and are the most common cause of familial PD 
[31]. Increased LRRK2 activity leads to mitochondrial-
dependent apoptosis, whereas LRRK2 deletion protects 
neurons from mitochondrial dysfunction [32]. Overex-
pression of wild-type or mutant LRRK2 with elevated 
kinase activity promotes mitochondrial fragmentation 
and dysfunction in multiple neurons, as well as increased 
ROS generation and H2O2 sensitivity [33–35].

Another process involves LRRK2 interacting with 
PRDX3 (peroxiredoxin 3), which is  a mitochondrial 
member of the thioredoxin peroxidase antioxidant fam-
ily. Phosphorylation of PRDX3 is enhanced by mutations 
in the LRRK2 kinase domain, resulting in increment of 
the ROS generation,  reduction in the activity of peroxi-
dase, and increased cell death [36].

DJ‑1
DJ-1 is an anti-inflammatory, anti-apoptotic, and anti-
oxidant  neuroprotective protein. It accomplishes these 
health efficacies by acting as a transcriptional coactivator, 
as well as a ROS quencher [37, 38]. Variations in the DJ-1 
gene are attributed to autosomal recessive, early-onset 
PD. Exhaustion of DJ-1 makes cells more vulnerable to 
oxidative stress. DJ-1 mutations do not safeguard against 
H2O2, 6-OHDA, H2O2, or MPTP whereas  an excess 
wild-type DJ-1 does [39, 40].

Oxidative disbalance in Parkinson’s disease
Oxidative disruptions have been considered a vital part 
of the progression of Parkinson’s disease. When the vol-
ume of ROS produced exceeds the biological system’s 
capability to destroy specific reactive intermediates, oxi-
dative stress occurs, resulting in a harmful state that con-
tributes to cellular damage. Numerous critical metabolic 
activities in the body create oxidative stress. Overpro-
duction, on the other hand, has the potential to be detri-
mental to the body [41]. Approximately 20% of the body’s 
oxygen supply is consumed by the brain, with a large per-
centage of that oxygen being converted to ROS. ROS can 

arise from a wide range of regions in the brain. The elec-
tron transport chain serves as the primary source at the 
mitochondrial level in the production of ROS. Additional 
ROS sources include NADPH oxidase, monoamine oxi-
dase (MAO), and other enzymes, as well as NO [42, 43]. 
ROS development can further destroy Complex I, result-
ing in both complex I damage and ROS formation.

The production of oxygen-reactive species harms the 
substantia nigra by protein peroxidation, DNA oxidation, 
and lipid peroxidation occurs in the pathogenesis of the 
PD. The main causes of this phenomenon are the changes 
in brain iron content, activation of MAO, mitochondrial 
dysfunction, and even changes in the antioxidant system 
[44–46].

Dopamine metabolism
Auto-oxidation of dopamine leads to the formation of 
free radicals and dopamine quinones. Enzymes such as 
catechol-o-methyltransferase and MAO are involved in 
dopamine metabolism [47].

Normally, MAO-A modulates dopamine levels through 
oxidative metabolism, which is predominantly found in 
catecholaminergic neurons [48]. In Parkinson’s disease, 
however, when neurons die, MAO-B levels in glial cells 
rise, making it the predominant enzyme for dopamine 
metabolism [49, 50]. 3,4-dihydroxy phenyl-acetaldehyde, 
H2O2, and an ammonium molecule are the results of 
dopamine metabolism mediated by MAO-B. H2O2 inter-
acts with Fe2+ in dopaminergic neurons to generate 
hydroxyl radicals [51, 52]. Transporting and storing DA 
increases the formation of ROS. The storage of dopamine 
necessitates transportation via the vesicular monoamine 
transporter 2. As a result, VMAT2 (Vesicular monoam-
ine transporter 2) modulates cytoplasmic dopamine lev-
els, minimizing the generation of ROS. Upregulation of 
VMAT2 guards against [53].

Excitotoxicity
Excitotoxicity is a pathogenic phenomenon in which 
glutamatergic receptors are overstimulated, causing 
neurons to be damaged and destroyed. Intracellular 
activities that elevate the oxidative burden and trig-
ger apoptosis, such as calcium excess and bioenergetic 
changes, generate excitotoxicity. The bulk of excitatory 
signals are produced by glutamate [54]. If cellular ATP 
levels are low as a result of complex I failure, cellular 
homeostasis can be impaired. The Na+ /K+ ATPase 
would be hindered if ATP was depleted, leading to con-
siderable neuronal depolarization and a reduction in 
the voltage-dependent Mg2+ blocking of the NMDA 
(N-methyl-D-aspartate)  glutamate receptor. In such 
environments, relatively minimal quantities of glutamate 
stimulation can induce excitotoxic NMDA receptor 



Page 6 of 14Wal et al. Future Journal of Pharmaceutical Sciences            (2022) 8:33 

stimulation and massive intracellular calcium transients. 
Due to energy deficit, insufficient mitochondrial calcium 
storage, and inadequate calcium ATPase activity may 
prolong or intensify these calcium transients. Reduced 
nigrostriatal dopaminergic input promotes overactiv-
ity of the subthalamic nucleus, which delivers excitatory 
glutamatergic projections to previously injured nigros-
triatal neurons. As a result of the altered route, nigros-
triatal neurons may be more vulnerable to excitotoxic 
shocks [55, 56].

Lewy bodies
In Parkinson’s disease, areas of neuronal loss are accom-
panied by the appearance of Lewy bodies. Lewy bod-
ies are proteinaceous accumulations of neurofilaments, 
parkin,  α-synuclein fibrils, proteasomal elements  ubiq-
uitin, ubiquitin carboxyl terminal, and hydrolase L1 
(UCHL1)  and a large number of proteins, most of 
which are likely unidentified. They are seen in the sub-
stantia nigra of PD patients [57]. The Lewy bodies are 
enormous intracytoplasmic inclusions with "halos’ 
’ and cores that lack a confining membrane. Struc-
tures are likely to be a little "sticky." The identification 
of α-synuclein mutations in familial PD and the evi-
dence that Lewy bodies  were highly immunoreactive 
in sporadic disease for wild-type α-synuclein as well as 
numerous other proteins in their normal or damaged 
forms renewed interest in Lewy bodies [58]. According 
to genetic variations attributed to familial PD, altered 
protein organization and/or disintegration could play a 
pivotal part in the progressive decline in sporadic PD. 
Defective protein breakdown has lately been identified 
as a key component in the degenerative process associ-
ated with Parkinson’s disease [59].

Endoplasmic reticulum stress
Endoplasmic Reticulum (ER) stress has been found in 
body cells taken from Parkinson’s disease individuals in 
a few studies. Increased expression of mutated α-Syn 
mimics stimulation of the unfolded protein response 
in cellular models of Parkinson’s disease, resulting in 
chronic ER response to stress linked to neurodegenera-
tion [60]. Furthermore, ER stress may respond to boost 
α-Syn agglomeration [61, 62], implying a chain reaction 
between ER stress and α-Syn aggregates. Kinetic stud-
ies have shown that the presence of toxic α-Syn oligom-
ers at the ER correlates with the occurrence of ER stress 
and disease progression in mutant α-Syn transgenic mice. 
More importantly, α-Syn accumulation at the ER is also 
observed in post-mortem human brain tissue from PD 
patients [63].

Blood–brain barrier alterations
The blood–brain barrier (BBB) is a critical component 
of the neuronal interaction with the brain vascular sys-
tem. The passage of ions, chemicals across brain cells and 
the circulation is strictly regulated by it [64]. The BBB is 
critical for separating neurotransmitters and neuroactive 
substances that govern the brain environment. The role 
of BBB alteration in Parkinson’s disease has been heavily 
debated [65]. Clinical research has lately revealed evidence 
of BBB breakdown in Parkinson’s disease patients. Blood–
Brain Barrier breakdown has been observed in a variety 
of toxin-induced PD studies, notably 6-OHDA-treated 
rats and MPTP-treated rats [66] (Fig. 3). Parkinson’s suf-
ferers have a lower P-gap (glycoprotein) functioning in the 
center of the brain, which has been linked to a BBB break-
down [67, 68]. Notably, some studies have found that as 
people grow older, their BBB P-gap functioning decreases 

Fig. 3  Depicts the disturbances caused due to the alterations in the blood brain barrier. Increased in the permeability caused to breakdown in the 
BBB leads to the increase in the level of toxins in the brain leading to neurodegeneration
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in numerous brain regions, indicating that they are more 
sensitive to the build-up of toxic chemicals in the brain. 
Given that α-synuclein deposition is linked to PD patho-
genesis, it’s conceivable that a decrease in P-gap is linked 
to an increase in α-synuclein levels in the brain [69]. How-
ever, more research is required to determine the role of 
the P-gap in this mechanism.

Mechanisms of apoptosis
Apoptosis is the primary cause of neuronal cell death in 
Parkinson’s disease, as indicated by autopsy studies that 
found DNA segregation and apoptotic chromatin altera-
tions in dopaminergic neurons of Parkinson’s disease 
sufferers [70]. Furthermore, autopsy and in  vitro inves-
tigations revealed significant growth of caspase-3 and 
higher expression of active caspase-3 in the substantia 
nigra, confirming the significance of apoptosis in the eti-
ology of Parkinson’s disease [71, 72]. Moreover, overpro-
duction of anti-apoptotic proteins inhibits dopaminergic 
neurodegeneration in Parkinson’s disease cell lines [73]. 
Caspase antagonists have also been demonstrated to pre-
vent neurons from dying in Parkinson’s disease cell lines, 
bolstering the theory that apoptosis is the primary cause 
of neuron loss in the condition.

Role of genetics in Parkinson’s disease
While the precise pathological pathways causing dopa-
minergic neuron deterioration in the substantia nigra 
and clinical PD are unknown, it has long been established 
that PD runs in families. In keeping with this discovery, 
genetic analysis over the last two decades has demon-
strated that DNA sequence variants do have a role in 
the disease’s progression [74–76]. Five "causal" genes 
namely, SNCA, PINK1, LRRK2, PARK2 and PARK7 
(DJ-1) that are involved in the disease’s progression have 

been uncovered through investigation over the previous 
decade. These genes have been identified as potentially 
damaging in PD because they are responsible for dysreg-
ulation of multiple physiological mechanisms (e.g., kinase 
signaling, mitochondrial respiratory chain function, 
ubiquitin-mediated protein degradation) [24, 77, 78].

PARK 1–10 are the ten monogenic variants of Parkin-
son’s disease that have been identified, with genes identi-
fied in five of them. They come in two forms: autosomal 
dominant and autosomal recessive. The autosomal dom-
inant form can only be found in a minority of families. 
Causative mutations in PARK1/PARK4 and PARK8 are 
linked to autosomal-dominant illness. The autosomal 
recessives, especially PARK2, are substantially more com-
mon, albeit they are still uncommon. PARK2, PARK6, 
and PARK7 are all autosomal-recessive genes. Even 
though these gene mutations are all very uncommon in 
the overall PD population, they are likely to be responsi-
ble for a significant part of early-onset PD (Table 1).

PARK1, which is linked to the A53T causal mutation in 
the α-synuclein gene. The α-synuclein protein is a critical 
feature of Lewy bodies in both sporadic PD and PARK1 
sufferers. The A53T mutation causes levodopa-respon-
sive parkinsonism that emerges early in life, lasts longer, 
and has a reduced tremor recurrence [79].

PARK2 (parkin), although there is a gradual loss of 
SN neurons, PARK2, the parkin gene, is inherited as an 
autosomal recessive illness with no Lewy bodies. PARK2 
mutations have been found in people over the age of 50, 
indicating that it is not limited to young-onset PD. Par-
kin mutations are currently the most prevalent genetic 
cause of early-onset Parkinson’s disease. Parkin has been 
discovered as a ubiquitin E3 ligase 61,62 that binds short 
ubiquitin peptide chains to proteins, likely to target them 
for breakdown via the ubiquitin/proteasome pathway 
[21, 80, 81].

Table 1  Summarizes the list of genes and their details associated with the PARK loci in Parkinson’s disease [86, 87]

S. nos. Name Chromosome Gene Inheritance Protein name Mutation

1. PARK 1 4q21-q22 α-Synuclein Autosomal dominant α-Synuclein Lewy body and protein aggre-
gation

2. PARK 2 6q25.2-q27 Parkin Autosomal recessive Parkin E3 ligase Cause functional mutation

3. PARK 3 2p13 – Autosomal dominant – –

4. PARK 4 4q Copies of α-synuclein Autosomal dominant – Triplications of chromosomal
Region that contains wild-type 
α-synuclein gene

5. PARK 5 4p14 Ubiquitin C-terminal hydrolase L1 Autosomal dominant 9ubiquitin-carboxyl-
terminal-hydrolase L

–

6. PARK 6 1p35-p36 – Autosomal recessive PINK1 protein kinase –

7. PARK 7 1p36 DJ-1 Autosomal recessive DJ-1 –

8. PARK 8 12p11.2-q13.1 – Autosomal dominant Dardarin –
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PARK4 is triggered by the triplication of regions on 
chromosome 4 that comprise the α-synuclein gene and 
17 other putative genes. Rather than being a distinct 
gene, PARK4 is an allelic variant of PARK1 [82]. PARK5, 
also abbreviated as UCHL1 (9 ubiquitin-carboxyl-termi-
nal-hydrolase L), is a heterozygous I93M mutation that 
is autosomal dominant. UCH-L1 may serve a function in 
the ubiquitin–proteasome mechanism, and parkin muta-
tions have been associated with Parkinson’s disease. The 
ubiquitin-protein ligase UCH-L1 can act as a ubiquitin-
protein ligase [83].

PARK6 (PINK1), the PARK6 gene was first discovered 
on chromosome 1p35–36. Two homozygous mutations 
in the phosphatase and tensin PINK1 gene were discov-
ered during gene analysis. A decrease in ATP synthesis, a 
decrease in mitochondrial respiration, and an increase in 
the aggregation of an α-synuclein are all caused by PINK1 
mutations. The putative protein kinase domain is affected 
by both of the first known PINK1 mutations: W437OPA 
defragments the final 145 amino acids of the C-terminus, 
while G309D alters a highly conserved amino acid posi-
tion [84].

Another early-onset autosomal recessive mutation, 
PARK7, the DJ-1 gene, is characterized by modest pro-
gression and high sensitivity to levodopa. DJ-1 The oxi-
dation of a cysteine residue has been postulated to cause 
DJ-1 to migrate to mitochondrial outer membranes and 
confer antioxidant action by direct free radical scav-
enging. Cells with cysteine residue mutations that pre-
vent oxidation are also more sensitive to mitochondrial 
injury [29, 29]. PARK8 (LRRK2) is an autosomal domi-
nant form of Parkinson’s that was initially connected to 
the 12p11.2–q13.1 chromosomes. LRRK2 mutations are 
frequently linked to the later onset of PD. Pathogenic 
mutations in the new LRRK2 gene have been discovered, 
indicating that PARK8 is a key locus for PD, causing far 
more disease than PARK1 [85].

Symptoms associated with Parkinson’s disease
While the clinical syndrome of Parkinson’s disease was 
initially attributed to dysfunction of the basal ganglia, 
various research and findings have  revealed that non-
dopaminergic neurons in other brain (such as the raphe 
nuclei, vagus dorsal motor nucleus, and locus coeruleus) 
play a significant role [88]. It is now well known that non-
dopaminergic pathways play a role in the progression of 
PD, as evidenced by the rising recognition of non-motor 
symptoms that have a negative influence on patients’ 
quality of life [89, 90]. Henceforth, the symptoms are 
divided into two categories namely, motor symptoms and 
non-motor symptoms together which increase the com-
plexity of the disease and also contribute to the discom-
fort to the patient.

The depletion of dopaminergic neurons is the chief rea-
son for motor complaints. It is estimated that nearly 80% 
of dopaminergic cells in the nigrostriatal pathway are dis-
rupted before the cardinal motor characteristics of PD 
manifest. The following is a list of the most well-known 
and noteworthy motor symptoms (Table 2).

Non-motor symptoms, such as rapid eye movement 
disorder, olfactory problems,  depression and consti-
pation, are associated with increasing age and disease 
severity, though some non-motor symptoms, can appear 
early in the disease. The non-motor symptom complex’s 
involvement and impact on the disease’s progression. 
Even more than motor issues, non-motor symptoms can 
harm one’s quality of life. Sensory dysfunction, sleep dis-
orders, cognitive and mental disturbances,  are all non-
motor symptoms (Table 3).

Behavioral complications associated with Parkinson’s 
disease and its medication
Parkinson’s disease is predominantly a motor disease, 
although neuropsychiatric problems such as mood and 
anxiety disorders, lethargy, apathy, psychosis, cognitive 
impairment, dementia, sleep disturbances, and addic-
tions frequently exacerbate the illness’s progression. It 
might be caused by complicated interactions between the 
illness’s gradual and broad pathologic changes, emotional 
reactions to Parkinsonism, and treatment-related adverse 
effects, or it can be caused by the disease itself (Fig.  4). 
Complications of the nervous system are prevalent [93]. 
Current knowledge on behavioral side effects of anti-par-
kinsonism therapy is summarized further in this article.

Depression in Parkinson’s disease
One of the most prominent psychological issues men-
tioned by Parkinson’s disease sufferers is depression. 
Despite this, it is usually overlooked. Depression affects 
20–35% of those living with Parkinson’s disease. From 

Table 2  Motor symptoms associated with Parkinson’s disease 
[91]

S. nos. Motor symptoms

1. Bradykinesia

2. Muscular rigidity

3. Postural instability

4. Tremor

5. Hypomimia (expressionless face)

6. Speech disturbance

7. Sialorrhea

8. Dystonia

9. Scoliosis

10. Dysphagia
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the premotor to the late stages of the disease, it might hit 
at any time [94, 95]. Depression does not appear to be a 
straightforward reaction to the degree of physical impair-
ment in Parkinson’s disease, even though it has been 
postulated as a natural consequence of a worsening neu-
rodegenerative illness [96].

The majority of Parkinson’s disease patients report 
mild-to-moderate depression, with serious depression 
occurring less frequently. A complicated collection of 
neurotransmitters (mostly dopamine, serotonin, and nor-
epinephrine) abnormalities is thought to be the origin of 
depressive illness in Parkinson’s disease. It has been sug-
gested that an allelic difference in serotonin transporters 
predisposes to mood disorders [97]. The following are 
the diagnostic criteria for major depression: persistent 

and widespread negative moods, loss of interest and 
delight, as well as a spectrum of cognitive and physical 
symptoms. Optimizing dopaminergic medication for 
improved motor symptoms is key to managing depres-
sion in Parkinson’s disease. Furthermore, levodopa, dopa-
mine agonists, and selegiline have been examined as mild 
antidepressants and are thought to have modest antide-
pressant effects. Although additional research is needed, 
counseling, psychotherapy, and psychosocial support are 
also beneficial [98–100].

Psychosis
As early PD symptoms, psychosis emerges as transient 
hallucination and illusion. Based on their phenomeno-
logical properties, psychotic disorders can be categorized 

Table 3  Categories and prevalent non-motor symptoms of PD [92]

S. nos. Non-motor symptoms

1. Autonomic
Disturbance

Dizziness
Visual disturbances
Impaired cognition

Bladder disturbances
Urgency
Nocturia

2. Neuropsychiatric disturbance Depression
Anxiety
Anhedonia
Hallucination

Illusion
Delusions
Dementia
Delirium

3. Sensory
Disturbance

Pain
Paraesthesia

Akathisia
Olfactory disturbance

4. Sleep
Disturbance

Rapid eye movement
Excessive daytime somnolence
Vivid dreaming

Restless legs and 
periodic limb move-
ments
Insomnia
Sleep disordered 
breathing

5. Others Fatigue
Diplopia

Seborrhoea
Weight loss

Fig. 4  Illustration of various behavioral complications caused by disease and side effects of the medication used for the treatment of the disease
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into two kinds. Visual illusions or hallucinations harm 
only one set of people, whereas auditory and other hal-
lucinations can occur infrequently. Delusions include 
guilt, envy, and robbery, to name a few [101]. Visual hal-
lucination has a prevalence of 22–38%, while aural hal-
lucination has a prevalence of 0 to 22%. Psychosis affects 
anywhere from 26 to 82.7% of the population. The exist-
ence of a Lewy body in the amygdala, a drop in the levels 
of dopamine in the retina, and a huge portion of amyloid 
parietal, and hippocampus areas are some of the essential 
pathophysiologic mechanisms of psychosis in Parkinson’s 
disease sufferers [96].

Around 30% of people on long-term dopaminergic 
treatment develop psychosis as a result of their medica-
tion. When it comes to treating psychosis in Parkinson’s 
disease patients, decreasing their PD medication is often 
the first step. In persons with Parkinson’s disease, dopa-
minergic treatment has been attributed to the emergence 
of psychosis. If PD psychosis does not improve when the 
dose of PD drug is reduced, atypical antipsychotics are 
frequently considered [102]. Risperidone and olanzapine 
have been proven to aggravate Parkinson’s disease; hence 
they are not encouraged. Consultation with a specialist is 
advised.

Anxiety
Anxiety is underrecognized and undertreated in PD 
patients due to clinical inaccuracy, symptom overlap with 
motor and cognitive elements of the disease, and diagno-
sis difficulty. Anxiety disorders are extremely prominent 
in Parkinson’s disease patients, with rates ranging from 
19.8 to 67% [103]. Anxiety symptoms may be caused by 
degeneration of subcortical nuclei and ascending dopa-
mine pathways, along with norepinephrine and serotonin 
channels inside the frontal–basal ganglia circuits [104]. 
Panic disorder, generalized anxiety disorder, and social 
phobia are the most frequent anxiety disorders in peo-
ple with Parkinson’s disease. The biggest predictors of 
low quality of life are anxiety and depression. They can 
appear before the beginning of motor symptoms or in the 
latter stages of Parkinson’s disease. Selective serotonin 
reuptake inhibitors, buspirone, and benzodiazepines are 
the most common pharmacological therapies. Cognitive-
behavioral therapy, for example, is a nonpharmacological 
treatment approach.

Dementia and cognitive impairment
Dementia is widespread with Parkinson’s disease, espe-
cially in its later stages. Modest cognitive impairment of 
PD is a term used to signify mild cognitive impairment 
in people with PD who do not have dementia. Cognitive 
impairment linked with idiopathic PD can take years to 
manifest and may be caused by the disease’s pathogenesis 

[105–107]. Patients with Parkinson’s disease and demen-
tia (PDD) are more likely to experience neuropsychiatric 
symptoms. There is currently no defined diagnosis for 
dementia in Parkinson’s disease. Dementia in Parkin-
son’s disease appears as a mix of subcortical and cortical 
dementia. The slowness of the mind, decreased working 
memory, executive dysfunction, and deficiencies are all 
subcortical characteristics. Memory impairment and lan-
guage dysfunction are two cortical traits.

Dementia can be triggered by Lewy body syndrome in 
the posterior cortical areas. The loss of dopamine trans-
porters in the striatum, as well as aging and a decrease in 
cortical cholinergic markers, all promote the dementing 
cycle in Parkinson’s disease [108]. After all other causes 
of dementia have been ruled out, the definitive diagnosis 
of dementia caused by Parkinson’s disease must be con-
firmed. Treatments for PDD are mostly symptomatic. 
The parts of cognitive impairment that are exacerbating 
should be removed first (dehydration, metabolic fac-
tors). Additionally, any non-essential medications (e.g., 
anticholinergic or sedative drugs) should be stopped. 
Studies have looked at the efficacy of donepezil, galan-
tamine, rivastigmine, and memantine as treatments. Only 
rivastigmine has been proven to be effective in dementia 
linked with Parkinson’s disease [109, 110].

Altered sexual behavior
In Parkinson’s disease patients, sexual interest revival is 
a well-known side effect of dopaminergic medication. 
Increased sexual function frequently entails a return to 
regular sexual activity as well as improved motor func-
tion. Hypersexuality, on the other hand, is a topic that has 
received less attention. Although the exact cause of this 
obsessive behavior is obscure, it could be linked to either 
increased sexual drive or a lack of sexual impulse control. 
Both rely on dopaminergic regulation. As the drug dos-
age is dropped, the sexual changes generally drift away 
[111, 112].

Sleep disorder
Sleep disturbances are prevalent in people with Par-
kinson’s disease, and they can be caused by the disease, 
drugs, or comorbidities (pain, mood disorders, and cog-
nitive impairment). Sleep disturbance has a severely 
detrimental effect on their quality of life. Daytime symp-
toms, overnight sleep disturbance, sleep-related move-
ment disorders, and parasomnias are all common sleep 
issues in people with Parkinson’s disease. Difficulty get-
ting asleep, inability to maintain sleep, and excessive day-
time sleepiness are all examples of sleep disorders. The 
motor issues that PD patients acquire, such as bradykin-
esia, stiffness, and rest tremor, may make it difficult to fall 
asleep or stay asleep [113].
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Insomnia is defined as a state of weariness caused by 
a perception of inadequate or poor-quality sleep. Issues 
with going back to sleep, sleep fragmentation, and wak-
ing up early in the morning are all part of it. A multitude 
of circumstances might obstruct the onset and preserva-
tion of sleep.

Insomnia is frequently caused by motor signs of Par-
kinson’s disease (stiffness, tremor, inability to move in 
bed, and dystonic movements) and nocturia. Other sleep 
disorders, such as restless legs syndrome, periodic limb 
movement disorder, and obstructive sleep apnea syn-
drome, as well as certain drugs, have been reported to 
disrupt regular sleep [114]. Hypersomnia is a condition 
characterized by excessive daily weariness and sleep epi-
sodes. Excessive daytime sleepiness in Parkinson’s disease 
can be influenced by a series of factors, including diffi-
culty sleeping at night, progression of the disease, the 
influence of dopaminergic and other pharmaceuticals, 
and comorbid disorders such as depression or dementia. 
All dopamine agonists, as well as levodopa alone, have 
been linked to sleep attacks [115].

The term "parasomnia" refers to indications and symp-
toms that occur during sleep. Many patients with Par-
kinson’s disease report vivid dreams, panic attacks, 
nightmares, nocturnal vocalizations, sleepwalking, sleep 
talking, and rapid eye movement. Changing PD drugs to 
improve mobility or lessen dyskinesias could be enough 
to enhance sleep.

Conclusions
Parkinson’s disease is a neurological disorder that affects 
adults and is distinguished by the depletion of nigros-
triatal dopaminergic neurons. A condition wherein the 
brain does not make adequate dopamine is known as 
dopamine inadequacy. Parkinson’s disease has a clear 
link to mitochondrial malfunction and oxidative stress 
in its etiology. Identifying treatments that directly 
address the disease processes underlying PD or prevent 
the spread of disease onset is crucial, as only sympto-
matic medications are presently accessible. In Parkin-
son’s disease, α-synuclein is linked to mitochondria and 
LRRK2. In PD brains and cell models, LRRK2 combines 
with α-synuclein. Parkin and PINK1 are engaged in 
mitophagy, and DJ-1 is vital in reducing oxidative stress-
induced toxicity within the mitochondria. In Parkinson’s 
disease, mutations in these genes induce mitochondrial 
malfunction, which leads to neurodegeneration. Despite 
growing awareness that mental symptoms are integral 
to Parkinson’s disease and can have a substantial impact 
on functional ability, many questions about the opti-
mal treatment options for all of these conditions remain 

unanswered. Better treatments for the neuropsychiat-
ric consequences of Parkinson’s disease will be required 
to reduce the disease’s burden on patients and their 
relatives.
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