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Abstract 

Background:  Risk assessment models are at the core of flight medicine, weighing both the impact of the flight envi-
ronment on an aviator and the potential impact of medical events in aviators on flight operations. Pharmacogenetics 
is the application of a patient’s genetic information to reduce medication risk. Here, we use three medical conditions 
commonly encountered by the U.S. Air Force’s flight medicine community (asthma, diabetes, and hypertension) to 
demonstrate a framework for implementing occupationally relevant pharmacogenetics. We identified medications 
approved by the U.S. Food & Drug Administration for each condition, obtained adverse effects and frequencies, 
scored each adverse effect’s impact on work duties from 0 to 4 in increasing severity, and used control theory to 
stratify the medications by occupational risk. For those medications within 10% of the control limits, pharmacogenetic 
information was collected from PharmGKb.

Results:  We observed a correlation of 0.557 between our risk scores and previous reports for 20 medications, demon-
strating robustness of our scoring. Using average risks for those 20 medications, we set control theory acceptable 
and tolerable thresholds at 601,109.5 and 2,097,721, respectively. The majority of medications for the three conditions 
were below the thresholds (66 and 26, respectively). Three medications have pharmacogenetic guidance provided by 
regulatory bodies.

Conclusions:  By focusing first on risk to performing occupational tasks and then on genetic implementation, our 
work presents a framework by which pharmacogenetics can be selectively applied by considering specific occupa-
tional and environmental risks, thereby saving costs and reducing possible psychological burdens on patients.
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to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/.

Background
Risk assessment models are at the core of occupational 
medicine, and specifically aviation medicine. Weighing 
both the impact of the flight environment on an aviator 
and the potential impact of medical events in aviators, 
such risk assessments include all aspects of flight opera-
tions and are intended to reduce harm to the patient, 

airframe, and any passengers or cargo transported in the 
aircraft. Aviation exposes aircrew to repeated environ-
mental hazards to which the human body is largely unac-
customed and medical conditions that are only mildly 
distracting in normobaric and normoxic environments 
could have disastrous consequences in the flight environ-
ment. Practitioners of flight medicine, therefore, face a 
unique challenge: evaluating and reducing medical risks 
from conditions affecting aircrew while also considering 
the effects of any treatment on flight readiness.

To that end, several approaches to risk assessment 
have been developed [1–3]. These early risk assessment 
approaches have evolved to the recent presentation of a 
multi-dimensional matrix for medical conditions, which 
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considers the frequency of a medical event’s occurrence, 
the potential consequence upon flight operations, and 
the role of the aviator-patient [4]. Similarly, a systematic 
aeromedical risk assessment for medications was devel-
oped by the U.S. Navy [5] and modified by the U.S. Air 
Force [6]. Systematic risk assessments like those pre-
sented by Prudhomme [5], Huntsberger [6], and Gray 
[4] provide crucial insight into reducing aeromedical 
risk toward the 1% Rule (1 incapacitating event in 100 
person-years) [4]. However, none consider the individual 
patient’s unique genetic predispositions to conditions or 
medication responses.

Asthma, diabetes, and hypertension each pose health 
and safety concerns in the aviation environment. An 
asthma exacerbation or hypoglycemic episode dur-
ing flight can be catastrophic, especially if an aviator is 
alone at the controls. Even the subtle nature of hyperten-
sion causes concern. Untreated, hypertension can lead 
to myocardial infarction or cerebrovascular incidents. 
The aviation environment also involves stressors that 
can aggravate these conditions. For example, the cool 
dry air on an aircraft can trigger an asthma exacerbation 
in undertreated asthmatic aviators [7]. Even mild blood 
sugar abnormalities can negatively impact performance 
of complex cognitive tasks such as flying an aircraft while 
communicating with Air Traffic Control [8].

Additionally, a comparison between efficacy and safety 
(e.g., adverse effect profile) is an important considera-
tion. For example, certain classes of diabetes medications 
are more likely to precipitate hypoglycemic episodes [9]. 
Other common medication adverse effects like som-
nolence or diarrhea are not appropriate in the aviation 
environment as they can lead to reduced alertness and/
or distraction.

The aim of our study was to develop a potential frame-
work for implementing pharmacogenetics in an occu-
pational medicine specialty without requiring massive 
large-scale genetic screening. Here, we present a two-
fold approach to estimating and minimizing aeromedical 
risks of pharmaceutical treatments. We first present an 
extension of a pilot-centric drug risk assessment model 
for considering medications used when treating asthma, 
hypertension, and diabetes. We then employ that risk 
assessment model to identify which medications the 
flight surgeon should consider pharmacogenetics when 
developing risk minimization strategies for individual 
patients.

Methods
We used three medical conditions commonly encoun-
tered by the U.S. Air Force’s Aeromedical Consultation 
Service to demonstrate a possible application of pharma-
cogenetics in the practice of aerospace medicine. First, 

we evaluate the risks posed to flight operation by certain 
medications. Then, we identify how precision medicine 
could guide utilization of these medications, in an effort 
to minimize risk.

Medication selection
We selected medications to evaluate using two 
approaches. In one approach, we searched the 
PharmGKb database [10] for the condition of interest 
and identified medications with reported pharmacoge-
netic findings. In the second approach, we searched the 
website drugs.com by condition of interest for US Food 
and Drug Administration (FDA)-approved medications 
[11]. Only medications approved for use as of January 
2021 in the United States were included in the review and 
off-label uses were not considered.

Adverse effect risk assessment
We performed an adverse effect risk assessment calcu-
lation using a standardized approach first reported by 
Prudhomme in 2015 for the US Navy [5] and Hunts-
berger in 2017 for the US Air Force [6]. Adverse effects 
and their frequencies were identified for each medication 
using Drugs.com (updated as of  September 14, 2020). In 
cases where the adverse effect frequencies were reported 
differently, we used the following procedure to adjudicate 
frequencies [6]: 1) ranges within a study were assigned to 
the highest level of incidence; 2) ranges between studies 
were assigned to an arithmetic mean; 3) when data were 
reported as “less than” in one source but another source 
provided a range or percentage, the data from the lat-
ter source were used; 4) when data were reported in all 
sources as “less than 1%,” the frequency was scored zero 
as no mean could be calculated (in the case of “less than a 
small percentage greater than 1%,” frequency was scored 
1%); and 5) studies reporting adverse effect “equal to or 
less than placebo” resulted in zero scores.

Using the Prudhomme method of an aircrew-centric 
model, [5] we assessed the risk of each adverse effect 
against flight operations. Each adverse effect was given 
an impact severity multiplier from 0 (no aeromedical 
concern) to 4 (totally incapacitating) by three experi-
enced flight surgeons independently and the three scores 
were averaged to provide the final severity multiplier. 
The adverse effects were provided in a single list with-
out association to any medication to reduce unconscious 
treatment bias. Similar to Prudhomme and Huntsberger, 
we calculated an overall weighted risk score for each 
medication. Briefly, each adverse effect was scored inde-
pendently as a multiplication of the severity multiplier 
and the reported effect frequency. The individual effect 
scores were summed to yield an overall medication risk 
score.
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We rescored the drugs from the Prudhomme 
study to establish the model’s mean adverse effect 
risk score, upper allowable (“acceptable” score) limit 
(UAL = mean + 1.5 standard deviation (SD)), and upper 
control (“tolerable” score) limit or maximum tolerable 
adverse effect risk (UCL = mean + 3.0 SD).

Pharmacogenetic recommendations
Using the aforementioned PharmGKb database, for 
each medication we gathered variant annotations, clini-
cal annotations, and drug label annotations. Excluded 
from the review were associations between medications 
and conditions not related to diabetes, hypertension, or 
asthma. For example, the diabetes medication liraglutide 
has been associated with glucagon-like peptide 1 recep-
tor (GLP1R) CT and TT genotypes in obese women 
with Polycystic Ovarian Syndrome [12], but that phar-
macogenetic information was not included in our study. 
We compared levels of evidence in accordance with the 
PharmGKb recommended levels, increasing in strength 
from level 4 (non-human studies) to level 1A (clinical 
guidance issued). Although we only searched for FDA-
approved medications, we report prescribing recommen-
dations issued by any international clinical body.

Results
Adverse effect risk scoring
We had three aeromedical experts score the individual 
adverse effects. All three were board-certified flight sur-
geons and had already completed or were in the process 
of completing a second graduate residency in aerospace 
medicine. In total, we collected 1,152 individual adverse 
effects for scoring. Of these, 297 (25.8%) were scored 
the same by all three experts, while another 627 (54.4%) 
were scored within only a single score being different by 
one risk level (e.g., one expert scored “mildly distracting” 
while the other two scored “distracting”), and the remain-
ing 228 (19.8%) had a larger discrepancy between judges. 
Collectively, 924 were scored the same by at least 2 of the 
3 physicians with the disagreeing physician only provid-
ing an alternate score within 1 severity level.

We calculated the inter-rater reliability in R using 
Fleiss’ kappa for 3 raters and Krippendorff’s alpha. Over-
all, we observed fair reliability over the 1,152 side effect 
ratings with both kappa and alpha being 0.294. This 
observation reflects the greatest limitation to the system-
atic risk assessment model as adverse effect severity is a 
subjective measure determined by experts. The average 
scores for the raters were similar, although rater 1 scored 
adverse effects as more severe than the other two raters 
(rater 1 mean = 2.14 ± 1.13, rater 2 mean = 1.82 ± 1.27, 
rater 3 mean = 1.86 ± 1.03). Pairwise analyses of Cohen’s 
unweighted kappa suggest that the scores are similar 

(rater 1 vs. 2 kappa = 0.326, rater 1 vs. 3 kappa = 0.280, 
rater 2 vs. 3 kappa = 0.283); however, the pairwise rater 
biases were 0.257, 0.288, and 0.512 for rater 1 vs. 2, 1 vs. 
3 and 2 vs. 3, respectively, suggesting rater 1 was substan-
tially different than raters 2 and 3. The pairwise percent 
agreement between all raters was consistent around 45% 
for perfect agreement (1 vs. 2 = 47.1%, 1 vs. 3 = 45.2%, 
and 2 vs. 3 = 44.2%) and around 88% when allowing for 
a deviation in severity rating of 1 score (1 vs. 2 = 90.3%, 1 
vs. 3 = 88.3%, and 2 vs. 3 = 86.9%).

Overall medication risk assessment
In total, we identified 103 medications for risk assessment 
in the study (83 unique to the three conditions). Of the 
20 medications taken from the approved list provided by 
Prudhomme and colleagues [5] (termed “PA”), four were 
also included in the other conditions (three for hyperten-
sion and one for diabetes); these medications were con-
sidered as part of the PA group for establishing control 
limits. The results from the blinded adverse effect scor-
ing revealed a non-normally distributed range of scores 
for the PA group (Fig. 1) (mean: 235,806; standard devia-
tion:183,126; range: 40,320–643,100; median = 212,810; 
excess kurtosis = 0.88; skewness = 1.28; D’Agostino-
Pearson omnibus test statistic = 7.02 (P = 0.03)). The 
risk scores were, however, log-normally distributed 
(mean: 5.24; standard deviation: 0.36; range: 4.61–5.81; 
median = 5.33; excess kurtosis = -0.67; skewness = -0.25; 
D’Agostino-Pearson omnibus test statistic = 0.700 
(P = 0.70)). We were therefore used the log values to 
establish the UAL and UCL at risk scores of 601,109.5 
and 2,097,721, respectively. While the absolute scores in 
our study are higher than those found in the Prudhomme 
and Huntsberger reports (Table  1) [5, 6], our blinded 
scoring system proved reliable as the Pearson correla-
tion between our scoring and the scores abstracted from 
Prudhomme equaled 0.557.

Using the established control limits, 75 of the 83 con-
dition-specific medications (73%) were below the UAL 
(Fig.  2). Another 25 medications (24%) were between 
the UAL and the UCL, and the final 3 medications were 
above the UCL. Of the 25 mid-range medications, only 
a single medication (clonidine) had a score close to the 
UCL (within 10%). Finally, adverse effect frequencies 
were not available for dyphylline/guaifenesin or pred-
nisone, so their risk scores were unable to be determined.

Pharmacogenetic evidence level analysis
Overall, we identified 34 medications with pharmaco-
genetic evidence across the three conditions (9 each for 
diabetes and hypertension, 16 for asthma). Considering 
the clinical annotation levels of evidence as defined by 
PharmGKb (Table  2), none of the medications met the 
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level 1 condition and only four met level 2, all at level 
2A (two diabetes medications, and 1 medication each 
for asthma and hypertension). Two more diabetes medi-
cations only had level 4 evidence, and the remaining 28 
medications had level 3 evidence.

Beyond the clinical levels of evidence, the 34 medica-
tions were associated with 165 genetic variants across 86 
unique genes. There were 50 variants with clinical anno-
tations for diabetes, 70 for asthma, and 45 for hyper-
tension. As would be expected, two drug metabolism 
cytochrome P450 enzymes (CYP2C8 and CYP2C9) were 
commonly associated with clinical evidence for asthma 
and diabetes, and all three conditions, respectively. 
Asthma and hypertension also shared the angiotensin 
converting enzyme (ACE) and beta-2-adrenergic recep-
tor (ADRB2).

Discussion
A medication’s risk to the patient and flight operations is 
a function of the severity and likelihood of each associ-
ated adverse effect. Care should be taken when consid-
ering the relative risk assessments of these drugs as the 
utility of the risk assessment model is limited by the man-
ner and duration for which adverse effects have been 
gathered for each medication. In our analysis, only a sin-
gle medication (clonidine) was found to have a adverse 
effect risk score within 10% of the upper control limit. 
Clonidine has nearly 50  years’ worth of medical history 
from which adverse effects can be gleaned, so the num-
ber of adverse effects reported are likely reliable.

The primary limitation of this study is that there 
remains some subjectivity to the risk scoring as groups 
of specialty physicians are required to subjectively score 
the occupation-specific risk level. While our model is 

robust, the primary limitation is in the subjective deter-
mination of adverse effect impact on performing occu-
pational tasks (e.g., flight operations). Our assessment 
of inter-rater reliability found that perfect agreement 
among three raters was approximately 25%, slightly 
above the expectation of 20% by chance for 5 catego-
ries. Pairwise evaluations were slightly better, approach-
ing 50% agreements. In contrast, when a tolerance of 1 
level severity level discrepancy was permitted, the global 
agreement percentage climbed dramatically to 77% with 
the pairwise agreements nearing 90%. Considering this 
subjectivity limitation, the intent of our findings is not to 
remove medications from use. Rather, by providing flight 
surgeons with additional patient-specific risk informa-
tion from their genetic profile, our findings could enable 
the mitigation of unfavorable adverse effects during flight 
operations.

Additionally, a patient’s genetic profile may result in a 
decreased response to a given medication. As we learn 
more about each medication’s relationship with genetic 
markers, we begin to understand therapeutic window 
thresholds. Additionally, these thresholds may differ 
between aviators and the general population, another 
limitation of this study suggesting further work to expand 
the risk assessment model into other occupations. This 
information may suggest a need for higher dosing, which 
also increases the risk of adverse effects. For medications 
where the risk is already well below the upper allowable 
limit, the impact of an increased adverse effect risk will 
likely remain marginal. In these cases, genetic testing is 
not indicated. However, for the six medications with risk 
scores near the UCL, the physician should consider the 
patient’s individualized response. Some patients may 
have a heterogeneous response requiring elevated dosage, 

Fig. 1  Risk score distribution for PA medication list as average scores (left) and log scores (right). The raw scores are highly right skewed 
(skewness = 1.28), whereas the log scores are normally distributed (D’Agostino-Pearson P = 0.70)
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which may increase the likelihood of adverse effects and 
increase the overall risk above a tolerable level.

From a pharmacogenetics standpoint, fewer than half 
(34 of 82, 41.4%) of the medications for these conditions 
have reported information, and even fewer (3, 3.7%) have 

guidance from regulatory bodies. there are informative 
drug label annotations for tiotropium and nebivolol. The 
FDA drug label for tiotropium explains it was not found 
to inhibit several cytochrome P450 enzymes in vitro [14]. 
As with tiotropium, there is no recommended dosage 

Table 1  Medications, risk scores and primary clinical condition. Medications contained in the Prudhomme study which are prescribed 
for one of the three conditions are included in the PA list

Overall drug risk scores were calculated by summing the risk scores for each adverse effect, which were a multiplication of the effect frequency along with a severity 
multiplier coefficient determined by 3 board-certified flight surgeons. Details of the procedure are presented in the methods.

Medication Risk Score Medication Risk Score Medication Risk Score

Asthma

Albuterol 573,582 Formoterol 473,566.1 Prednisone 0

Beclomethasone 22,340.1 Levalbuterol 403,040 Reslizumab 112,500

Benralizumab 4100 Mepolizumab 168,900 Salmeterol 211,111

Budesonide 543,111 Metaproterenol 534,473 Theophylline 2,890,604

Ciclesonide 214,540 Methacholine 100.2 Tiotropium 739,461

Cromolyn 31 Mometasone 135,510 Triamcinolone 195,420

Dupilumab 5300 Montelukast 243,718 Umeclidinium 513,220

Dyphylline/ guaifenesin 0 Nedocromil 91,500 Zafirlukast 63,112

Flunisolide 709,287 Omalizumab 165,471 Zileuton 464,548

Fluticasone 53,400

Diabetes

Acarbose 322,890 Empagliflozin 4600 Pioglitazone 744,213

Albiglutide 458,142 Ertugliflozin 410,223 Pramlintide 580,200

Alogliptin 144,160 Glipizide 632,630 Repaglinide 558,800.1

Bromocriptine 658,953 Glyburide 121,261 Rosiglitazone 341,048

Canagliflozin 632,886.1 Liraglutide 1,048,504 Saxagliptin 607,510

Chlorpropamide 101,101 Metformin 1,093,373.2 Semaglutide 507,340

Dapagliflozin 116,310.1 Miglitol 288,785 Sitagliptin 113,000

Dulaglutide 455,611 Nateglinide 417,000 Tolbutamide 1020

Hypertension

Amiloride 91,010 Diltiazem 336,361 Olmesartan 638,531

Atenolol 1,016,222 Enalapril 312,240 Perindopril 565,340.2

Benazepril 100,010 Furosemide 48,550 Ramipril 595,480.1

Bevacizumab 3,132,500 Hydralazine 224,233.1 Sorafenib 1,359,560

Bisoprolol 1,057,507 Hydrochlorothiazide 58,440 Spironolactone 215,486.2

Candesartan 204,626.1 Irbesartan 667,432 Tacrolimus 3,700,360

Captopril 544,254.2 Lisinopril 622,310 Trandolapril 712,547

Carvedilol 1,231,020.2 Losartan 643,100 Valsartan 230,701.1

Chlorothiazide 50,500 Metoprolol 1,095,114.2 Verapamil 435,440

Chlorthalidone 208,312.1 Nebivolol 781,311

Clonidine 2,038,925 Nifedipine 737,460

Control (Prudhomme)

Allopurinol 103,720 Esomeprazole 181,730 Lisinopril 622,310

Amlodipine 263,990.2 Fexofenadine 40,630 Losartan 643,100

Atorvastatin 74,950 Finasteride 231,310 Meloxicam 225,270

Augmentin 143,620 Fluticasone 53,400 Ranitidine 40,320

Azilsartan 222,510 Hydrochloro-thiazide 58,440 Simvastatin 326,810

Ciprofloxacin 252,000 Ibuprofen 612,570 Valacyclovir 260,380

Doxycycline 155,950 Linagliptin 203,110
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adjustment to nebivolol in CYP2D6 poor metabolizers 
[13]. While there is a 7 h increase in the nebivolol half-
life, there is no significant change in safety or efficacy. 
Additionally, the European Medicines Agency (EMA) 
does have prescribing information for pioglitazone. Of 
note, the EMA recommends caution for patients with 
G6PD-deficiency (glucose-6-phosphate dehydrogenase) 
when prescribing pioglitazone [15]. As US military ser-
vice members are screened for G6PD activity upon 

accession, this EMA recommendation provides a cur-
rent example of how pharmacogenetics can be used to 
improve aeromedical care delivery.

Critically for our intent to use an occupationally 
directed risk assessment to guide pharmacogenetic test-
ing recommendations, we found a single medication 
near the UCL where patient-specific information may 
help guide care management. As an example imple-
mentation of our approach, should a physician elect to 

Fig. 2  Aircrew-centric adverse effect risk scores for FDA-approved medications for asthma, diabetes, and hypertension. Control lines were 
established using medications approved for use in flight operations as indicated by Prudhomme [5] (“PA” section). Medications above and within 
10% of the upper control line (UCL) are indicated by name, all other medications and adverse effect scores are available in supplementary 
information. PA = medications reported as approved for use in Prudhomme’s study; UAL = upper allowable limit; UCL = upper control limit. 
PA = medications reported as approved for use in Prudhomme’s study; UAL = upper allowable limit; UCL = upper control limit

Table 2  PharmGKb clinical annotation levels. Descriptions are adapted from the PharmGKb website available at: https://​www.​pharm​
gkb.​org/​page/​clinA​nnLev​els

PharmGKb 
Level of 
Evidence

Description

1A Strongest level of evidence. At least one publication and clinical guidelines or a drug label with variant-specific prescribing guidance

1B High level of evidence supporting the drug-variant combination, but no variant-specific prescribing recommendations. Supported by 
at least two independent publications

2A Moderate level of evidence. Variants are on the PharmGKb pharmacogene list with implied causality of drug phenotypes. Supported 
by at least two independent publications

2B Moderate level of evidence, possibly conflicting results. Variants are not in known pharmacogenes, but drug-variant associations have 
been reported in at least two independent publications

3 Low level of evidence. Variant-drug association may have been reported in only a single study, several studies may contradict an 
observed association, or the association is based upon preliminary evidence such as a case report or in vitro molecular studies

4 Available evidence score is negative, indicating that the evidence does not support an association between the variant and observed 
phenotype

https://www.pharmgkb.org/page/clinAnnLevels
https://www.pharmgkb.org/page/clinAnnLevels
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prescribe clonidine for hypertension pharmacogenetic 
testing could be used for assessing an altered risk score. 
There are two level 3 clinical annotations in PharmGKb 
related to the efficacy for treating liver cirrhosis in the 
alpha 2-adrenergic receptor (ADRA2C) and G-protein 
subunit beta 3 (GNB3) genes. While clonidine is an 
in  vitro substrate for cytochrome P450 2D6 (CYP2D6) 
[16], the Royal Dutch Pharmacists Association released 
a statement finding that there is not a medically relevant 
drug-gene interaction despite the reported observation 
of decreased clearance in pregnancy [REF]. Together 
these reports suggest that from a pilot-centric approach 
to care management, the presiding flight surgeon may 
want to consider pharmacogenetic testing for ADRA2C, 
CYP2D6, and GNB3 in order to gain more patient-spe-
cific risk and efficacy information.

Conclusions
Diabetes, hypertension, and asthma affect military avia-
tors across the range of military operations. There is a 
large amount of evidence supporting the use of genetics 
for tailoring medication to patients. Many medications 
for these conditions are considered safe with minimal 
aeromedical risk, such that an individual patient’s risk 
profile will not elevate the overall risk above acceptable 
limits. However, we observed that for at least one medi-
cation, a patient’s genetic profile may alter the efficacy or 
metabolism and thus required dosage and altered adverse 
effect frequencies. As a result, when prescribing these 
medications, we find that a physician would do well to 
consider pharmacogenetic testing to confirm a patient’s 
individual risk level.
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