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Abstract 

Background:  Diabetes-induced neuropathic pain is manifested as a lowering of nerve transmission rate, increased 
discomfort, sensual loss, and axonal degradation, and is the most prevalent secondary consequence of diabetes. 
Diabetes is a devitalizing disease affecting people from diverse groups in both developing and industrialized coun-
tries. The inflammation pathway and oxidative stress both contribute considerably to diabetic peripheral neuropathy 
via the activation of inflammatory cytokines. Hyperglycemia-mediated neural oxidative stress and damage activates 
a number of metabolic pathways, causing diabetic neuropathy. The current study investigated the neuroprotective 
potential of methanolic extract of Sphaeranthus indicus Linn (MESI) in ameliorating diabetic neuropathic pain induced 
by administration of streptozotocin in rats.

Results:  Four weeks after intraperitoneal treatment of streptozotocin (STZ), there was a significant decrease in mech-
ano-tactile allodynia and mechanical and thermal hyperalgesia. Furthermore, STZ-induced oxidative stress increases 
the extent of neural lipid peroxidation (LPO), as evidenced by increased MDA levels, decreases the activities of endog-
enous antioxidants such as superoxide dismutase (SOD) and glutathione (GSH), and alters sciatic neural histoarchi-
tecture. Chronic administration of methanolic extract of Sphaeranthus indicus Linn (MESI) for 4 weeks significantly and 
dose-dependently attenuated the decrease in levels of nociceptive thresholds, endogenous antioxidants (SOD and 
GSH), and increase in LPO. Furthermore, MESI significantly restored sciatic neural histoarchitecture.

Conclusion:  The amelioration of streptozotocin-induced diabetic neuropathy by methanolic extract of Sphaeranthus 
indicus Linn (MESI) could be attributed to its antinociceptive, antioxidant, and neuroprotective properties.

Keywords:  Diabetic neuropathy, Allodynia, Hyperalgesia, Oxidative stress, Antinociceptive, Antioxidant, 
Neuroprotective

Background
Diabetes has progressed into a metabolic endemic, with 
366 million people expected to be affected by this dis-
ease by 2050. Late systemic and common complications 
of diabetes that may emerge in approximately 50% of 

diabetics are retinopathy, neuropathy, nephropathy, and 
cardiomyopathy [1, 2]. It is among the leading global 
fatalities, affecting around 6% of the world’s population 
and primarily affecting low- and middle-income coun-
tries [3]. The impact on people’s well-being, longevity, 
and lifestyle quality, as well as on healthcare systems, is 
due to the fast-growing occurrences of prominent global 
health issues such as pandemics, economic disparities, 
access to health care, political factors, non-communica-
ble diseases, and environmental factors globally [4].
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Neuropathic pain is a prevalent consequence of diabe-
tes mellitus [5]. The patients frequently suffer from severe 
hyperalgesia and allodynia, which can be debilitating and 
disturbing [6]. Although the mechanism is incompletely 
understood, a multifactorial etiology may be considered 
for developing painful diabetic neuropathy. These mecha-
nistic approaches include an amplified hexosamine shunt, 
aldose reductase activation, a reduced neural myoinositol 
content, impaired neurotrophic support, activation of 
protein kinase C (PKC), and poly (ADPribose) polymer-
ase (PARP), impaired insulin/C peptide action, and the 
formation of advanced glycation end products (AEG), 
which synchronize autooxidative glycosylation and pol-
yol pathways, leading to morphological and functional 
abnormalities of peripheral neurons, spinal neuroglia, 
and nerve fibers by modulating different interconnect-
ing biochemical pathways [7, 8]. Different cytokines and 
excitatory neurotransmitters (NT) decrease the pain 
thresholds of neurons [9].

Streptozotocin (STZ) is a pancreatic islet-cell selective 
cytotoxic drug that, when taken in large doses, causes 
full-cell necrosis and diabetes within two days [10]. A rat 
model for STZ-induced diabetes and other abnormalities 
has been developed using the STZ-induced diabetic rat 
model. [11]. In rats, STZ in a single intraperitoneal dose 
causes a progressive pain syndrome comparable to that 
experienced in people with agonizing diabetic neuropa-
thy [12]. STZ-induced diabetic neuropathy also causes 
mechanical hyperalgesia and thermal allodynia [13].

The current treatment regimen of diabetic neuropathy 
that includes antioxidants, antidepressants, polyphenols, 
selective serotonin reuptake inhibitors (SSRIs), anti-
arrhythmics, opioids, and anticonvulsants has met with 
limited success in clinical trials. However, these thera-
pies provide relief only to a fraction of patients, and their 
side-effect profiles limit their use [14, 15]. Gabapentin 
is renowned for its capacity to manage both static and 
dynamic allodynia. [16].

In Indian traditional medicine, the therapeutic herb 
Sphaeranthus indicus Linn has long been used to treat 
a variety of ailments [17]. In tropical India, it thrives in 
rice fields, arid waste regions, and cultivated lands. It 
may be found from sea level to 1200  m above sea level 
in India, Sri Lanka, Africa, and Australia [18]. Some of 
the notable biological activities of Sphaeranthus indicus 
Linn are anxiolytic, neuroleptic, sedative, immunomod-
ulatory, antioxidant, anti-inflammatory, antipyretic, 
analgesic, mast cell stabilizing, anti-hyperglycemic, 
hepatoprotective, wound healing, antimicrobial, anti-
bacterial, antifungal, antiviral, antiparasitic, broncho-
dilator, antihyperlipidemic, renoprotective, and other 
miscellaneous activities [19]. Sphaeranthus indicus Linn 
has not been researched for its potential in treating 

diabetes-related problems, despite its well-known phar-
macological benefits. The goal of the current study was 
to evaluate the effects of long-term administration of a 
methanolic extract of Sphaeranthus indicus Linn (MESI) 
in ameliorating diabetic neuropathic pain caused by STZ 
in albino rats of the Wistar strain by assessing various 
behavioral parameters, biomarkers of oxidative stress, 
and histoarchitectural alterations.

Methods
Drugs and chemicals
STZ, 5, 5’-dithiobis-2-nitrobenzoic acid (DTNB), epi-
nephrine, and metformin were purchased from  Sigma-
Aldrich, St. Louis, USA. All the other analytical reagents, 
chemicals, and biochemical diagnostic kits were available 
from the commercial suppliers. The reagents used in the 
detection of the Ex  Vivo antioxidants assay were pre-
pared freshly in the laboratory.

Procurement and authentication of plant
The whole plant of Sphaeranthus indicus Linn was pro-
cured from the agricultural lands of Pahine, Trimbakesh-
war region, native to Nashik city in the Nashik district of 
Maharashtra state, from August to September 2021. For 
future use, the voucher specimen HPTRYK/342/2021–22 
was placed at the Post Graduate Botany Department at 
the Gokhale Education Society’s HPT Arts & RYK Sci-
ence College in Nashik. The apical parts (leaves, stems, 
fruits, and flowers) were dried in the shade, ground into 
a powder, and then sealed in an airtight container for 
storage.

Preparation of extract
Using a mechanized grinding machine, the dried api-
cal parts of Sphaeranthus indicus Linn were ground into a 
coarse powder. The powder was then stored in an airtight, 
moisture-free container. Using 250 g of powder and the Sox-
hlet apparatus, a methanolic extract of Sphaeranthus indi-
cus Linn (MESI) was prepared. Evaporation of solvent and 
concentration of extract were done under reduced pressure 
using a rotary evaporator. The percentage yield of freeze-
dried MESI was calculated, and the extract was analyzed for 
the presence of preliminary phytoconstituents [20].

Animals
Adult Wistar albino rats (150–200  g) and Swiss albino 
mice (6–8 weeks old, 20–25 g) of either sex were housed 
at a standard condition temperature (25 °C ± 1 °C), rela-
tive humidity (45–55%), and a 12 h light–12 h dark cycle, 
with ad libitum access to food pellets with filtered water. 
An acclimatization period (7–10  days) was followed 
before the implementation of the experimental proto-
col. The Institutional Animal Ethics Committee (IAEC) 
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of Bhupal Nobles’ College of Pharmacy in Udaipur, 
Rajasthan (870/PO/Re/S/05/CPCSEA), granted permis-
sion for the research investigation, which was carried 
out in accordance with the Committee for the Purpose 
of Control and Supervision of Experiments on Animals 
(CPCSEA) guidelines on animal experimentation [21].

Acute toxicity
Following the Organization for Economic Co-operation and 
Development (OECD) guideline 425, the acute oral toxic-
ity of MESI was investigated [22]. Mice were given different 
oral doses of MESI (175, 550, 1750, and 2000 mg/kg) [23] 
in the form of a suspension prepared in 1% (w/v) carboxy 
methyl cellulose (CMC). The incidence of death or any indi-
cation of toxicity was then monitored in mice for up to 72 h.

Induction and assessment of diabetes
A single intraperitoneal dose of 55 mg/kg STZ in citrate 
buffer (pH 4.4, 0.1 M) was used for the induction of dia-
betes. An equal volume of citrate buffer was administered 
to normal non-diabetic (ND) rats. Through the puncture 
of the retro-orbital plexus, blood samples were drawn 
in the heparinized tubes after 48  h of STZ administra-
tion to confirm the induction of diabetes. Using the Glu-
cose (Glu) Colorimetric Assay Kit (GOD-POD Method), 
serum glucose levels were measured. In this study, rats 
with serum glucose concentrations of more than 250 mg/
dL were chosen for the current study.

Experimental protocol
Following a baseline recording of the nociceptive response 
at week 4 after STZ injection, the control and diabetic rats 
are randomly chosen and divided into six subgroups of six 
animals each. The following is the treatment schedule:

[A]	 Non-diabetic animals.
	 Group 1 Normal non-diabetic (ND) rats were 
administered a single injection of citrate buffer 
(vehicle) and an oral feeding of 1% (w/v) carboxy 
methyl cellulose (CMC).

[B]	 Diabetic animals.
	 Group 2 Diabetic (STZ, 55  mg/kg, i.p.) control 
rats were administered oral feeding of 1% (w/v) 
carboxy methyl cellulose (CMC).
Group 3 Diabetic (STZ) + MESI (100) rats were 
given an oral feeding of Sphaeranthus indicus Linn 
Methanolic extract (100 mg/kg, p.o.) in a suspen-
sion prepared in 1% (w/v) carboxy methyl cellulose 
(CMC).

Group 4 Diabetic (STZ) + MESI (200) rats were 
given an oral feeding of Sphaeranthus indicus Linn 
Methanolic extract (200 mg/kg, p.o.) in a suspen-
sion prepared in 1% (w/v) carboxy methyl cellulose 
(CMC).
Group 5 Diabetic (STZ) + MESI (400): rats were 
given an oral feeding of Sphaeranthus indicus Linn 
Methanolic extract (400 mg/kg, p.o.) in a suspen-
sion prepared in 1% (w/v) carboxy methyl cellulose 
(CMC).
Group 6 Diabetic (STZ) + Metformin (500) rats 
were given an oral feeding of metformin (500 mg/
kg, p.o.) in a suspension prepared in 1% (w/v) car-
boxy methyl cellulose (CMC).

Starting at week 5 following STZ injection, three dif-
ferent dosages (100, 200, and 400 mg/kg) of MESI were 
given for four weeks. The sciatic nerves were promptly 
isolated when the rats were slaughtered under deep anes-
thesia after 8  weeks, and the neural tissue homogenate 
was made in 0.1  M Tris–HCl buffer (pH 7, 4) for bio-
chemical markers of oxidative stress like lipid peroxida-
tion (LPO), reduced glutathione (GSH), and superoxide 
dismutase (SOD) [24].

Assessment of diabetic neuropathy
Body mass, food and water ingestion, and urine production
At the end of week 8 of the experimental procedure, the 
change in body mass (g) of animals was measured. Food 
consumption (g) was calculated based on the number 
of pellets consumed per day by experimental animals, 
whereas calibrated water bottles were used for the esti-
mation of water consumption (ml). The volume of urine 
produced (ml) was measured by housing the animals in 
metabolic cages and collecting the urine in a calibrated 
250 ml attached container [25].

Serum glucose and glycosylated hemoglobin (HbA1c) levels
Blood was drawn from the retro-orbital plexus by punc-
turing in Eppendorf tubes containing disodium salt of 
ethylenediaminetetraacetic acid (EDTA) as an anticoagu-
lant. To separate the serum, a cold centrifuge (2,500 rpm 
for 15  min at 4  °C) was used. A separate serum sam-
ple was kept at 20  °C for further analysis. Using the 
commercially available GOD-POD kit from Accurex, 
India, and the Hemoglobin HbA1c (glycated) kit from 
Sigma-Aldrich, USA, serum glucose and glycosylated 
hemoglobin (HbA1c) levels were determined with a bio-
chemical analyzer. [26]
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Assessment of behavioral parameters
Behavioral parameters such as mechanical hyperalge-
sia, mechano-tactile allodynia, and thermal hyperalgesia 
were assessed on day 0, and at the end of the 4th to 8th 
week.

Randall–Selitto paw pressure test
A traditional approach [27] was used to measure the 
mechanical nociceptive threshold, a measure of mechani-
cal hyperalgesia. Using the Randall–Selitto apparatus 
(UGO Basile, SRL Biological Research Apparatus, Italy), 
the flexor withdrawal reflex was measured. Withdrawal 
of the hind paw was used to assess the nociceptive 
threshold.

Von Frey hair test
Mechano-tactile allodynia was evaluated using a method 
that has already been described by Chaplan et  al., 1994 
[28]. Punctuated mechanical stimuli of various intensi-
ties were delivered using von Frey hairs (IITC, Wood-
land Hills, USA). The threshold value was defined as the 
weight of the filament that would cause the paw to be 
drawn five times out of ten times, or a 50% response.

Eddy’s hot plate test
The Eddy’s hot plate test was used to evaluate a condi-
tion of altered perception of temperature (thermal hyper-
algesia). The animals were placed on a heated plate that 
was kept at 55 °C ± 0.5 °C (Orchid Scientific, India). The 
amount of time it took for the first response to be made 
was called reaction latency (licking, jumping, or flicker-
ing of the hind paw). To avoid tissue injury, 15 s of cutoff 
time was followed [29].

Tail‑Flick test
Acute nociception was elicited using a tail-flick device 
(TFA-01) from Orchid Scientific in India [30]. To put it 
briefly, the distal portion of the animal’s tail was focused 
on using an intensity-controlled laser beam in order to 
determine the tail-flick latency of the animal. Tail-flick 
latency, i.e., interval between the start of stimulation and 
the abrupt tail withdrawal was measured in seconds. Two 
to three recordings were made for each animal, spaced 
by 15  min, and the mean value was used for statistical 
analysis.

Biochemical estimations
At the end of week 8 of the treatment plan and follow-
ing the assessment of behavioral parameters, all test 
animals were killed under deep anesthesia. Then, using 
a probe homogenizer (Polytron PT 2500E, Kinematica, 
Switzerland), sciatic nerves were sensibly separated and 
homogenized in ice-cold phosphate buffer (0.1  M, pH 

7.4). By measuring the quantity of thiobarbiturate acid 
reactive substances (TBARS) in 10% of the homogenate 
supernatant, malondialdehyde (MDA) production was 
quantitatively estimated [31, 32]. An index of oxidative 
degradation of lipids (lipid peroxidation, LPO) was deter-
mined by determining the response of MDA production 
to thiobarbituric acid. The profiles of enzymatic antioxi-
dants like superoxide dismutase (SOD) [33] and reduced 
glutathione (GSH) [34] were also assessed.

Histoarchitectural examination
The sciatic nerves were cautiously detached and well-pre-
served in neutral formalin buffer and embedded in paraf-
fin wax. The Leica Biosystems Microtome, Germany, was 
used to cut 5-m-thick sections, and Mayer’s hematoxy-
lin and eosin (H & E) stain were used to color the sec-
tions. Pathological alterations were checked on the slides. 
Under 400 light microscopy, on the neural specimen, the 
signs of neural lesions, chromatolysis, leukocytic infil-
tration, neuronal swelling and degeneration, myelin and 
axon fragmentation, inflammation, the proliferation of 
Schwann cells and glial cells were recognized.

Statistical analysis
GraphPad Prism 9.0 software (GraphPad, San Diego, 
USA) was used to analyze the experimental data, which 
were expressed as mean ± standard error mean (SEM). 
Behavioral biomarkers were statistically analyzed using a 
two-way analysis of variance (ANOVA) followed by Bon-
ferroni’s multiple range post hoc test. Oxidative biomark-
ers were analyzed using one-way ANOVA followed by a 
post hoc Tukey’s multiple range test. A value of P < 0.05 
was considered to be statistically significant.

Results
Preliminary phytoconstituent analysis
Preliminary phytoconstituent analysis showed the pres-
ence of various compounds such as alkaloids (Mayer’s 
test, Dragendroff’s test, Hager’s test, and Wagner’s test), 
flavonoids (Shinoda’s test), phenols, tannins (Foam test), 
and steroids (Liebermann–Burchard reaction). The per-
centage yield of freeze-dried MESI was found to be 
13.50% (w/w).

Acute toxicity
In an acute toxicity study, administration of oral graded 
doses of MESI (175, 550, 1750, and 2000  mg/kg) in the 
form of a suspension prepared in 1% (w/v) CMC did not 
produce an incidence of mortality or any sign of toxic-
ity up to 72  h in mice. Hence, the dose of 2000  mg/kg 
of MESI was considered the maximum tolerable dose 
as per OECD guidelines, and the doses of 100, 200, and 
400  mg/kg were selected for exploring antinociceptive, 
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antioxidant, and neuroprotective properties in treating 
STZ-induced diabetic neuropathic pain.

Effect of MESI on body mass, serum glucose, 
and glycosylated hemoglobin (HbA1c) levels
Four weeks following intraperitoneal injection of STZ, 
a significant decrease in body mass (149.17 ± 3.00  g; 
P < 0.001), an increase in serum glucose level 
(460.10 ± 5.62  mg/dL; P < 0.001), and glycosylated 
hemoglobin (HbA1c) level (12.35 ± 0.58%; P < 0.001) 
were observed in diabetic (STZ) control rats in con-
trast to body mass (241.67 ± 5.58 g), serum glucose level 
(163.13 ± 6.75  mg/dL), and HbA1c level (5.04 ± 0.39%) 
of normal non-diabetic rats. Chronic administration of 
MESI (200 and 400  mg/kg) for four  weeks showed sig-
nificant and dose-dependent improvement in decreased 
body mass (170.17 ± 3.00 g; P < 0.01, and 173.17 ± 3.00 g; 
P < 0.001, respectively) as well as ameliorated increased 
serum glucose level (424.80 ± 5.62  mg/dL; P < 0.05, and 
418.8 ± 5.62  mg/dL; P < 0.01, respectively) and HbA1c 
level (10.47 ± 0.47%; P < 0.05, and 9.61 ± 0.44%; P < 0.01, 
respectively) when compared to diabetic (STZ) control 
rats. Furthermore, in diabetic animals treated with stand-
ard oral hypoglycemic, metformin significantly improved 
decreased body mass (175.67 ± 5.58  g; P < 0.001), 
increased serum glucose level (333.13 ± 6.75  mg/dL; 
P < 0.001), and HbA1c levels (9.41 ± 0.44%; P < 0.001) as 
compared to diabetic (STZ) control rats (Table 1).

Effect of MESI on food and water ingestion, and urine 
production
Four weeks after STZ injection, food and water ingestion, 
and urine production (67.00 ± 3.75  g, 137.17 ± 5.15  mL, 
and 51.33 ± 2.25  mL, respectively, P < 0.001) was sig-
nificantly enhanced in diabetic (STZ) control rats in 

contrast to food and water ingestion, and urine produc-
tion (22.00 ± 1.69 g, 43.00 ± 1.45 mL, and 8.00 ± 1.32 mL, 
respectively) of normal non-diabetic rats. Chronic treat-
ment with MESI (200 and 400  mg/kg) for 4  weeks sig-
nificantly and dose-dependently declined food ingestion 
(59.00 ± 1.65  g; P < 0.05, and 55.67 ± 1.43  g; P < 0.01, 
respectively), water ingestion (124.83 ± 3.23  mL; 
P < 0.05, and 120.50 ± 1.84  mL; P < 0.01, respectively), 
and urine production (43.83 ± 1.83  mL; P < 0.05 and 
42.50 ± 1.69  mL; P < 0.01, respectively) as compared to 
diabetic (STZ) control rats. In comparison with dia-
betic (STZ) control rats, metformin-treated rats showed 
significant retardation in food and water ingestion 
(48.67 ± 1.67 g; P < 0.001 and 87.33 ± 1.61 mL; P < 0.001), 
and urine production (36.17 ± 1.19  mL; P < 0.001) 
(Table 1).

Effect of MESI on behavioral parameters
Randall–Selitto paw pressure test
On day 0, there was no noticeable variance in the mean 
paw withdrawal threshold of diabetic (STZ) control 
rats (263.00 ± 5.12  g) and normal non-diabetic rats 
(268.00 ± 4.61  g). During 8  weeks, no significant vari-
ation in the mean paw withdrawal threshold of nor-
mal non-diabetic rats was observed. After 4  weeks of 
STZ injection, in contrast to normal non-diabetic rats 
(263.00 ± 6.42  g), a significant decrease in the mean 
paw withdrawal threshold was produced in the dia-
betic (STZ) control rats (43.00 ± 4.61  g; P < 0.001). In 
rats administered MESI (200 and 400  mg/kg), a sig-
nificant and dose-related increase in mean paw with-
drawal threshold was observed (75.00 ± 3.87  g; P < 0.05 
and 103.00 ± 4.61  g; P < 0.01, respectively, at the end of 
week 7, and 100.00 ± 6.32 g; P < 0.05 and 133.00 ± 4.61 g; 
P < 0.01, respectively, at the end of week 8) in contrast to 

Table 1  Effect of MESI on body mass, serum glucose, glycosylated hemoglobin (HbA1c) levels, food and water ingestion, and urine 
production of diabetic rats

Data are expressed as mean ± SEM (n = 6) and analyzed by one-way ANOVA followed by a post hoc Tukey’s multiple range test. *P < 0.05, **P < 0.01, and ***P < 0.001 
for MESI, and ***P < 0.001 for metformin-treated groups compared to the diabetic (STZ) control group. ###P < 0.001 for the diabetic (STZ) control group compared to 
the normal non-diabetic group. nsnon-significant. MESI (100), MESI (200), and MESI (400): Methanolic extract of Sphaeranthus indicus Linn (MESI) 100, 200, and 400 mg/ 
kg, p.o. treated rats

Treatment Body mass (g) Serum glucose 
(mg/dL)

Glycosylated 
hemoglobin 
(HbA1c) levels (%)

Food ingestion (g) Water ingestion 
(mL)

Urine production 
(mL)

Normal non-diabetic 
(ND)

241.67 ± 5.58 163.13 ± 6.75 5.04 ± 0.39 22.00 ± 1.69 43.00 ± 1.45 8.00 ± 1.32

Diabetic (STZ) 
control

149.17 ± 3.00### 460.10 ± 5.62### 12.35 ± 0.58### 67.00 ± 3.75# # # 137.17 ± 5.15### 51.33 ± 2.25###

STZ + MESI (100) 155.17 ± 3.00ns 446.13 ± 5.64ns 12.21 ± 0.50ns 63.67 ± 1.93ns 135.00 ± 4.37ns 47.17 ± 1.99ns

STZ + MESI (200) 170.17 ± 3.00** 424.80 ± 5.62* 10.47 ± 0.47* 59.00 ± 1.65* 124.83 ± 3.23* 43.83 ± 1.83*

STZ + MESI (400) 173.17 ± 3.00*** 418.8 ± 5.62** 9.61 ± 0.44** 55.67 ± 1.43** 120.50 ± 1.84** 42.50 ± 1.69**

STZ + MET (500) 175.67 ± 5.58*** 333.13 ± 6.75*** 9.41 ± 0.44*** 48.67 ± 1.67*** 87.33 ± 1.61*** 36.17 ± 1.19***
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diabetic (STZ) control rats (50.00 ± 5.00 gat the end of 
week 7, and 50.00 ± 6.32 g at the end of week 8, respec-
tively). Besides, diminution of reduced mean paw with-
drawal threshold by metformin (175.00 ± 6.32  g and 
183 ± 8.14  g, at the end of week 7 and week 8, respec-
tively) was more significant (P < 0.001) in contrast to dia-
betic (STZ) control rats (Fig. 1).

Von Frey hair test
On day 0, before the induction of diabetic neuropathy, 
there was no significant variation was observed in the 
mean paw withdrawal threshold of diabetic (STZ) con-
trol rats (69.13 ± 1.72  g) and normal non-diabetic rats 
(68.67 ± 1.41  g). A significant reduction in mean paw 
withdrawal threshold (i.e., mechanical allodynia) was 
observed in diabetic (STZ) control rats (29.30 ± 1.14  g; 
P < 0.001) after 4  weeks of STZ injection, in response 
to Von Frey hair stimulation, as compared to normal 
non-diabetic rats (66.17 ± 1.66  g). As compared to dia-
betic (STZ) control rats, 4-week chronic treatment 
of MESI (200 and 400  mg/kg) showed significant and 

dose-dependent amelioration of the reduced mean paw 
withdrawal threshold at the end of week 7 (35.58 ± 1.03 g 
and 41.77 ± 1.60  g; P < 0.05, respectively) and week 
8 (42.57 ± 1.78  g; P < 0.05and 47.15 ± 1.77  g; P < 0.01, 
respectively). Moreover, in comparison with diabetic 
(STZ) control rats, metformin-treated diabetic rats sig-
nificantly attenuated the reduced paw withdrawal thresh-
old (59.55 ± 1.89 g, P < 0.001) at the end of week 8 (Fig. 2).

Eddy’s hot plate test
Prior to the induction of diabetic neuropathy, on day 
0, not any significant variability in the response latency 
(flickering and licking of hind paw) in diabetic (STZ) 
control rats (10.52 ± 0.36  s) and normal non-diabetic 
rats (11.10 ± 0.37  s) was noted. A noteworthy reduction 
(P < 0.001) in mean response latency was produced after 
4  weeks of STZ injection in the diabetic (STZ) control 
rats (4.53 ± 0.43  s) as compared to normal non-diabetic 
rats (11.05 ± 0.47  s). More significant and dose-depend-
ent attenuation of decreased mean response latency was 
observed at the end of week 8 in the rats administered 

Fig. 1  Effect of chronic treatment of MESI and metformin on diabetes-induced mechanical hyperalgesia in Randall–Selitto paw pressure test. 
Data are expressed as mean ± SEM (n = 6) and analyzed by two-way ANOVA followed by Bonferroni’s multiple range post hoc test.*P < 0.05 and 
**P < 0.01for MESI, and ***P < 0.001 for metformin-treated groups compared to the diabetic (STZ) control group. ###P < 0.001 for the diabetic (STZ) 
control group compared to the normal non-diabetic group
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MESI (200 and 400  mg/kg) for 4  weeks (6.90 ± 0.37  s; 
P < 0.05 and 7.40 ± 0.29  s; P < 0.01, respectively) as com-
pared to diabetic (STZ) control rats. Furthermore, 
compared to diabetic (STZ) control rats, metformin 
significantly attenuates the decreased mean response 
latency (9.82 ± 0.22  s; P < 0.001) at the end of week 8 
(Fig. 3).

Tail‑flick test
Before the induction of diabetic neuropathy (day 0), 
there was no significant difference in the tail-flick 
latency in diabetic (STZ) control rats (13.27 ± 0.30  s) 
and normal non-diabetic rats (13.10 ± 0.31  s). After 
4  weeks of STZ injection, a significant decrease in 
mean tail-flick latency was produced in the diabetic 
(STZ) control rats (3.88 ± 0.36 s; P < 0.001) as compared 
to normal non-diabetic rats (13.15 ± 0.24 s). After week 
8, MESI (200 and 400  mg/kg) treatment for 4  weeks 
showed significant and dose-related attenuation of the 
reduced mean tail-flick latency (5.30 ± 0.24; P < 0.05 
and 5.50 ± 0.19  s; P < 0.01, respectively) as compared 

to diabetic (STZ) control rats. However, at the end of 
week 8, metformin was more significant (8.93 ± 0.32 s; 
P < 0.001) in attenuating the reduction of mean tail-flick 
latency in comparison with diabetic (STZ) control rats 
(Fig. 4).

Biochemical estimations
Effect of MESI on diabetes‑induced alteration in the index 
of lipid peroxidation (LPO)
After 8 weeks of STZ injection, in diabetic control rats, 
levels of neural lipid peroxide (LPO) were substantially 
higher (9.27 ± 0.28  nM/mg of protein, P < 0.001) than 
those of healthy non-diabetic rats (2.23 ± 0.22  nM/mg 
of protein). In comparison with diabetic (STZ) control 
rats, the lipid peroxide level was considerably and dose-
dependently reduced in the MESI (200 and 400 mg/kg)-
treated rats (8.24 ± 0.23 nM/mg of protein; P < 0.05, and 
8.09 ± 0.34 nM/mg of protein; P < 0.01, respectively). Fur-
thermore, metformin significantly reduced the elevated 

Fig. 2  Effect of chronic treatment of MESI and metformin on mechanical allodynia in von Frey hair test. Data are expressed as mean ± SEM (n = 6) 
and analyzed by two-way ANOVA followed by Bonferroni’s multiple range post hoc test.*P < 0.05 and **P < 0.01for MESI, and ***P < 0.001 for 
metformin-treated groups compared to the diabetic (STZ) control group. ###P < 0.001 for the diabetic (STZ) control group compared to the normal 
non-diabetic group
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lipid peroxide level as compared to diabetic (STZ) control 
groups (6.48 ± 0.16 nM/mg of protein; P < 0.001) (Fig. 5).

Effect of MESI on diabetes‑induced alterations in the reduced 
glutathione (GSH) and superoxide dismutase (SOD) levels
Reduced glutathione (GSH) (0.37 ± 0.15 µg/mg protein) 
and superoxide dismutase (SOD) (3.56 ± 0.74 U/mg of 
protein) levels in the sciatic nerve of diabetic (STZ) 
control rats were considerably decreased (P < 0.001) 
when compared to normal non-diabetic rats’ GSH 
(1.45 ± 0.12  µg/mg protein) and SOD (27.16 ± 1.19 U/
mg of protein). As compared to diabetic (STZ) con-
trol rats, GSH (0.93 ± 0.11  µg/mg protein; P < 0.05 
and 1.04 ± 0.08  µg/mg protein; P < 0.01, respectively) 
and SOD (10.71 ± 1.80 U/mg of protein; P < 0.05, and 
12.38 ± 1.82 U/mg of protein; P < 0.01, respectively) 
were substantially and dose-dependently elevated in 
MESI (200 and 400  mg/kg)-treated rats. However, 
as compared to diabetic (STZ) control rats, animals 
treated with metformin significantly restored lowered 

levels of GSH (1.31 ± 0.18 µg/mg protein; P < 0.001) and 
SOD (19.18 ± 1.05 U/mg of protein; P < 0.001) (Figs.  6 
and 7).

Neural histoarchitectural findings
The architecture of the sciatic nerve appeared to be nor-
mal in normal non-diabetic (ND) rats without any neu-
trophilic and macrophagic infiltration, or neural necrosis 
and congestion (Fig.  8A). Four weeks after intraperito-
neal treatment of STZ, diabetic (STZ) control rats had 
substantial nerve cell death as seen by the presence of 
neutrophils and macrophages, congestion, and edema in 
the nerve cells. Additionally, it was shown that vacuoli-
zation and necrosis in the nerve caused swelling of both 
myelinated and non-myelinated nerve fibers as well as a 
reduction in the number of myelinated fibers (Fig.  8B). 
Diabetic rats treated with STZ + MESI (100) showed 
neutrophil and macrophage infiltration, nerve cell 
edema, and degeneration of non-myelinated and myeli-
nated nerve fibers (Fig.  8C). STZ + MESI (200) diabetic 

Fig. 3  Effect of chronic treatment of MESI and metformin on diabetes-induced thermal hyperalgesia in Eddy’s hot plate test. Data are expressed 
as mean ± SEM (n = 6) and analyzed by two-way ANOVA followed by Bonferroni’s multiple range post hoc test.*P < 0.05 and **P < 0.01 for MESI, and 
***P < 0.001 for metformin-treated groups compared to the diabetic (STZ) control group. ###P < 0.001 for the diabetic (STZ) control group compared 
to the normal non-diabetic group
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rats showed reduced infiltration of neutrophils as well 
as macrophages and degenerative changes of nerve fib-
ers (Fig.  8D). STZ + MESI (400)-treated diabetic rats 
showed higher attenuation of the infiltration of neutro-
phils as well as macrophages along with neural necrosis 
and congestion with further improvement in the swelling 
of non-myelinated and myelinated nerve fibers (Fig. 8E). 
In diabetic rats treated with STZ + MET (500), regenera-
tion of the sciatic nerve was observed, which was charac-
terized by the absence of neutrophilic and macrophagic 
infiltration and necrosis, as well as nerve congestion 
(Fig. 8F).

Discussion
Chronic hyperglycemia-assisted immunological dam-
age, inadequacy of neural growth factors, and autonomic 
neural demyelination leading to peripheral nerve injury 
are most common in diabetic neuropathy patients [35, 
36]. Damage to the capillary vasculature and periph-
eral nerves causes oxidative stress and hypoxia in the 
highly perfused organs via reactive oxygen species (ROS) 

[37–39].The proven determinants in diabetic neuropathy 
are polyol pathway activation, reactive oxygen species 
mediated oxidative stress, glycosylated hemoglobin accu-
mulation, and collagen deposition [40].

Neuropathic pain in diabetes is characterized by symp-
toms such as allodynia and hyperalgesia, which are 
caused by an elevated nociceptive response, decreased 
motor nerve condition velocity, neuronal hypoxia, and 
decreased sensitivity to painful stimuli [41]. STZ-induced 
painful diabetic neuropathy in experimental animals 
has similar clinical manifestations [42]. Intraperitoneal 
administration of STZ in rats displays clinicopathological 
characteristics such as biochemical, oxidative, and meta-
bolic alterations that are also present in humans [43].

It has been determined that cellular biosynthesis and 
metabolism are the primary causes of diabetes-induced 
polydipsia, polyphagia, polyuria, and body weight loss 
[44, 45]. Body weight reduction was significantly restored 
in MESI and metformin-treated rats in comparison with 
diabetic (STZ) control rats. Due to MESI and metformin 
therapy, typical signs of diabetes such as polyphagia, 

Fig. 4  Effect of chronic treatment of MESI and metformin on diabetes-induced thermal hyperalgesia in Tail-flick test. Data are expressed as 
mean ± SEM (n = 6) and analyzed by two-way ANOVA followed by Bonferroni’s multiple range post hoc test.*P < 0.05 and **P < 0.01 for MESI, and 
***P < 0.001 for metformin-treated groups compared to the diabetic (STZ) control group. # # #P < 0.001 for the diabetic (STZ) control group compared 
to the normal non-diabetic group
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Fig. 5  Effect of MESI on diabetes-induced alteration in the index of lipid peroxidation (LPO). Data are expressed as mean ± SEM (n = 6) and 
analyzed by one-way ANOVA followed by a post hoc Tukey’s multiple range test. *P < 0.05, **P < 0.01 for MESI, and ***P < 0.001 for metformin-treated 
groups compared to the diabetic (STZ) control group. ###P < 0.001 for the diabetic (STZ) control group compared to the normal non-diabetic group. 
MESI (100), MESI (200), and MESI (400): Methanolic extract of Sphaeranthus indicus Linn (MESI) 100, 200, and 400 mg/ kg, p.o. treated rats

Fig. 6  Effect of MESIon diabetes-induced alterations in the reduced glutathione (GSH) level. Data are expressed as mean ± SEM (n = 6) and 
analyzed by one-way ANOVA followed by a post hoc Tukey’s multiple range test. *P < 0.05, **P < 0.01 for MESI, and ***P < 0.001 for metformin-treated 
groups compared to the diabetic (STZ) control group. ###P < 0.001 for the diabetic (STZ) control group compared to the normal non-diabetic group. 
MESI (100), MESI (200), and MESI (400): Methanolic extract of Sphaeranthus indicus Linn (MESI) 100, 200, and 400 mg/ kg, p.o. treated rats
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Fig. 7  Effect of MESIon diabetes-induced alterations in the superoxide dismutase (SOD) level. Data are expressed as mean ± SEM (n = 6) and 
analyzed by one-way ANOVA followed by a post hoc Tukey’s multiple range test. *P < 0.05, **P < 0.01 for MESI, and ***P < 0.001 for metformin-treated 
groups compared to the diabetic (STZ) control group. ###P < 0.001 for the diabetic (STZ) control group compared to the normal non-diabetic group. 
MESI (100), MESI (200), and MESI (400): Methanolic extract of Sphaeranthus indicus Linn (MESI) 100, 200, and 400 mg/ kg, p.o. treated rats

Fig. 8  A–F Effect of chronic treatment of MESI on histoarchitecture of sciatic nerve in STZ-induced diabetic neuropathy. Photomicrographs of 
sections of the sciatic nerve from rats stained with H & E. A Normal non-diabetic (ND), B Diabetic (STZ) control, C STZ + MESI (100), D STZ + MESI 
(200), E STZ + MESI (400), and F STZ + Metformin (500)-treated rats (microscopic examination under 400 × light microscopy). MESI (100), MESI (200), 
and MESI (400): Methanolic extract of Sphaeranthus indicus Linn (MESI) 100, 200, and 400 mg/ kg, p.o. treated rats
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polydipsia, and polyuria were reduced, which in turn 
decreased excessive food and fluid consumption. MESI’s 
effects on body weight, food and water ingestion, and 
urine production of diabetic rats are well matched with 
the past studies evaluating naringin [24], hesperidin [26], 
and chlorogenic acid [46].

During diabetes, the excess glucose present in the 
blood reacts with hemoglobin to form HbA1c, which is 
increased over a long period in diabetes mellitus [47]. 
There is evidence that glycation may itself induce the 
generation of oxygen-derived free radicals in a diabetic 
condition, which may be the leading cause of the devel-
opment of diabetic neurological complications like neu-
ropathic pain and depression [48–50]. An increase in 
HbA1c, as seen in poor diabetic control, has been linked 
to increased blood viscosity. Glycosylation of hemo-
globin and increased glucose levels tend to affect RBC 
properties, decreasing RBC flexibility and increasing 
RBC aggregation, resulting in increased blood viscosity. 
Glycosylation of hemoglobin may also affect RBC mem-
brane lipid protein interactions, altering internal viscos-
ity, modifying the viscoelastic properties of erythrocyte 
membranes, and impairing RBC deformability. There is 
also evidence that glycosylation of hemoglobin impairs 
the relaxation of human mesenteric vessels caused by 
nitric oxide (NO). It has also been reported that hemo-
globin glycosylation alters NO binding with thiols, 
resulting in decreased NO bioavailability and impaired 
vasodilation in rabbit aortic rings. Another way glyco-
sylation of hemoglobin is thought to be vasoactive is 
through the formation of reactive oxygen species. Gly-
cosylation of hemoglobin reduces its oxygen-carrying 
capacity, promoting hypoxia and the associated systemic 
vascular vasodilatory adaptations and responses. This 
leads to the formation of diabetic complications like ath-
erosclerosis, retinopathy, neuropathy, and nephropathy 
in diabetes mellitus (DM) patients and animals [51].

In the current study, the observed increase in the level 
of glycosylated hemoglobin in diabetic (STZ) control 
rats might be due to the presence of excessive amounts 
of blood glucose. Furthermore, the level of glycosylated 
hemoglobin significantly decreased after chronic treat-
ments with MESI and metformin, and this may be due 
to a decrease in the blood glucose level. These results 
are compatible with the previous studies carried out by 
Visnagri et al., 2014 [26]; Zhou et al., 2019 [52]; Solanki 
& Bhavsar, 2015 [53]; Tembhurne & Sakarkar, 2011 [54]; 
and Manoharan et al., 2011 [55].

The neural system’s functioning encoding and pro-
cessing of noxious stimuli is referred to as nociception. 
Behavioral responses to external stimuli are an ideal 
marker to indicate abnormal sensation and pain in dia-
betic neuropathy [56]. Hyperalgesia, or allodynia, is the 

form of nociceptive pain that manifests in inflamed tis-
sue. According to reports, the validated techniques for 
assessing mechano-tactile allodynia, peripheral analgesia, 
and central pain in laboratory animals include von Frey 
hair, Randall–Selitto, and tail flick [57–60]. A transitory 
hyperalgesia phase and a subsequent hypoalgesia phase 
are the two stages of thermal pain perception observed 
after intraperitoneal injection of STZ [61]. According to 
numerous previous findings, hyperalgesia or allodynia 
appeared in the current study 4 weeks after STZ injection 
[62, 63]. Numerous processes, including the sensitization 
of peripheral receptors, ectopic activity in sprouting fib-
ers, and changes in dorsal root ganglion cells, have been 
shown to be important in the development of nocic-
eption [64, 65]. A symmetric type of neuropathy which 
involves distal sensory and motor nerves is the classical 
feature of STZ-induced diabetic neuropathy (DN). With 
diabetes advancements, the sensation of distal extremi-
ties decreases, causing loss of pain sensation. Hence, an 
important parameter to assess the response of rats to 
thermal noxious stimuli is the tail withdrawal threshold. 
It has been reported that the STZ-induced diabetic rat 
exhibits an elevated tail-flick threshold response to nox-
ious thermal stimuli [66].

In the current study, a significant reduction in mean 
paw withdrawal threshold, response latency (flickering 
and licking of hind paw), and tail withdrawal latency (tail-
flick latency) was observed in the diabetic (STZ) control 
rats after 4 weeks of STZ injection as compared to nor-
mal non-diabetic rats. Chronic treatment with MESI and 
metformin showed significant and dose-dependent ame-
lioration of the decrease in mean paw withdrawal thresh-
old, response latency (flickering and licking of hind paw), 
and tail withdrawal latency (tail-flick latency) in diabetic 
rats.

Numerous studies have found that hyperglycemia 
causes oxidative stress in STZ-induced diabetic rats, 
which is associated with the uncontrolled generation of 
free radicals [67, 68]. Non-enzymatic and enzymatic pro-
tein glycation pathways are involved in the generation 
of free radicals as a result of elevated glucose levels [69]. 
The increasing amount of oxidative stress may contribute 
to vascular dysfunction and neurological damage by the 
oxidation of cellular membrane lipoprotein, which would 
impair brain function, slow down nerve transmission, 
and make people more sensitive to unpleasant stimuli 
[70, 71]. Therefore, potent antioxidants with free radical 
scavenging potency like acetyl-L-carnitine, α-lipoic acid, 
methylcobalamin, benfotiamine, and topical capsaicin 
can be effective in the treatment of DN [72].

An essential antioxidant enzyme, SOD, affords pro-
tection against highly reactive superoxide anions (O2

−) 
by converting them to hydrogen peroxide (H2O2) and 
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thereby reducing oxidative stress [57, 73, 74]. SOD also 
maintains redox balance in neurons as well as vascu-
lar endothelium. The oxidation of nicotinamide adenine 
dinucleotide phosphate (NADP+/NADPH) caused by 
elevated glucose levels reduces SOD activity [75, 76], 
which activates aldose reductase (AR) and protein kinase 
C, resulting in pain perception. However, because of 
the antagonistic interaction between NADPH and glu-
tathione disulfide (GSSG)—reductase, less GSH avail-
able to protect cells and the sulfhydryl group of cysteine 
in proteins [58, 77]. The activity of neural SOD and GSH 
was significantly reduced in diabetic animals in hyper-
glycemia [78]. Similar findings were observed in present 
study where the activity of SOD and GSH was signifi-
cantly decreased after 8  weeks of STZ. Hence, dimin-
ished activity of SOD and GSH makes the sciatic nerve 
more prone to oxidative stress.

It has been reported that elevated MDA activity is 
responsible for cell membrane lysis and nerve damage 
by rearranging double bonds of unsaturated fatty acids 
in the lipid membrane [79, 80]. In diabetes, post-transla-
tional alterations of various antioxidants play a vital role. 
With the progression of diabetes, the activity of antioxi-
dant enzymes like SOD and GSH is decreased, whereas 
the activity of MDA is increased in the sciatic nerve [81]. 
Similar findings were observed in the present study, 
where STZ control rats exhibit decreased SOD as well 
as GSH activity and elevated MDA activity in peripheral 
nerve tissue. Treatment with MESI and metformin signif-
icantly increased the decreased activity of SOD and GSH 
in the sciatic nerve of rats and reduced elevated MDA 
activity. The results of the present study are in accord-
ance with the previous findings showing that MESI treat-
ment raises levels of superoxide dismutase, catalase, and 
glutathione peroxides while lowering malondialdehyde 
levels in acetaminophen-induced hepatotoxicity in rats 
[82]. In 2006, Shirwaikar et  al. reported the antioxidant 
potential of ethanolic extract of S. indicus in  vitro [83]. 
Furthermore, previous studies evaluating the neuropro-
tective potentials of naringin [24] and hesperidin [26] 
support the present findings that MESI provides signifi-
cant neuroprotection in STZ-sensitive diabetic rats.

In the current study, oral administration of S. indicus 
restored plasma glucose levels to near normal in rats 
with STZ-induced diabetes. Phytochemical studies car-
ried out on the alcoholic extract of S. indicus revealed 
the presence of sterols, phenols, and flavonoids [84]. 
Shirwaikar et al. (2004) reported that flavonoids have a 
major role in reducing oxidative stress associated with 
diabetes, which in turn helps the regulation of plasma 
glucose concentration [85]. Antihyperglycemic action 
of flavonoids extracted from various sources has been 
reported [86].

In diabetic (STZ) control rats, examination of sciatic 
neural histoarchitecture showed neurocytic necrosis and 
congestion with massive neutrophilic and macrophagic 
infiltration with swelling of non-myelinated and myeli-
nated nerve fibers and decreased mass of myelinated fib-
ers due to neural necrosis and vacuolization. In contrast 
to this, the neuroprotective efficacy of MESI and met-
formin rats was characterized by regenerative changes in 
the architecture of the sciatic nerve with minimal signs of 
neural necrosis and congestion with further improvement 
in the non-myelinated and myelinated nerve edema.

Conclusion
The outcomes of the current research concluded that 
methanolic extract of Sphaeranthus indicus Linn 
(MESI) have significant antinociceptive potential 
as characterized by dose-dependent attenuation of 
mechanical and thermal hyperalgesia and mechano-
tactile allodynia and evidenced by increased mean paw 
withdrawal threshold, response latency (flickering and 
licking of the hind paw), and tail withdrawal latency 
(tail-flick latency). The antioxidant potential of MESI 
has been highlighted with a reduced index of neural 
LPO and restoration of GSH and SOD. Furthermore, 
the histoarchitectural study of the sciatic nerve sup-
ports the neuroprotective properties of MESI. There-
fore, the current study summarizes the role of MESI in 
the treatment of STZ-induced painful diabetic neurop-
athy by virtue of its antidiabetic, antinociceptive, anti-
oxidant, and neuroprotective potentials.
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