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Abstract 

Background:  Fractalkine (CX3CL1) is a chemokine predominantly released by neurons. As a signaling molecule, 
CX3CL1 facilitates talk between neurons and glia. CX3CL1 is considered as a potential target which could alleviate 
neuroinflammation. However, certain controversial results and ambiguous role of CX3CL1 make it inexorable to deci-
pher the overall effects of CX3CL1 on the physiopathology of glial cells.

Main body of the abstract:  Implications of cross-talk between CX3CL1 and different glial proteins/receptors/mark-
ers will give a bird eye view of the therapeutic significance of CX3CL1. Keeping with the need, this review identifies 
the effects of CX3CL1 on glial physiopathology, glial ablation, and gives a wide coverage on the effects of CX3CL1 on 
certain glial proteins/receptors/markers.

Short conclusion:  Pinpoint prediction of the therapeutic effect of CX3CL1 on neuroinflammation needs further 
research. This is owing to certain obscure roles and implications of CX3CL1 on different glial proteins/receptors/
markers, which are crucial under neurological settings. Further challenges are imposed due to the dichotomous roles 
played by CX3CL1. The age-old chemokine shows many newer scopes of research in near future. Thus, overall assess-
ment of the effect of CX3CL1 becomes crucial prior to its administration in neuroinflammation.
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Background
Isotropic fractionator reveals that human brain con-
tains less than 100 billion glial cells and the ratio of glia 
to neurons is less than 1:1, earlier which was believed 
to be 10:1 [1]. Glial cells respond to neurons and facili-
tate neuroimmune interactions [2]. Glial cells such as 
microglia communicate with each other, astrocytes and 
neurons through intracellular calcium signaling [3]. Two-
way communication between neurons and glia ensures 
normal functioning of the nervous system by facilitating 

axonal conduction, synaptic transmission, and informa-
tion processing [2]. The same glia when undergo reac-
tive changes become the hallmark of neurodegenerative 
diseases, as seen in the case of reactive microgliosis 
and astrogliosis [4, 5]. In this regard, no research has 
completely shown the overall influence of fractalkine 
(CX3CL1) on the physiopathology of microglia and 
astroglia or on reactive microgliosis and astrogliosis. 
Thus, the effects of CX3CL1 should be considered with 
respect to the expressed proteins or markers which play 
a crucial role in glial activity. The review holds its signifi-
cance owing to the expectation that CX3CL1 can allevi-
ate neurodegenerative conditions and considered to be 
a potential target to counteract neuroinflammation in 
brain [6]. However, the role of CX3CL1 signaling in brain 
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injury is controversial and is not completely understood 
[7]. Nevertheless, the significance of CX3CL1 in neuron-
glia communication is evident from the fact that neurons 
in central nervous system (CNS) constitutively express 
CX3CL1 [8], whereas microglia express CX3CL1 recep-
tor (CX3CR1) [8, 9], and CX3CR1 deficiency shows 
premature ageing of transcriptome in microglia [9]. Simi-
larly, astroglia also express CX3CL1 [10] and CX3CR1 
[11]. Thus, a review on the modulating effects of CX3CL1 
on the functionalities of glial cells through receptors/pro-
teins/markers expressed by the latter will give the overall 
view of the impact of CX3CL1 in neuroinflammation.

Objectives
The review aims to decipher the following:

•	 Role of microglia in physiological and pathological 
conditions with special emphasis on the implications 
of CX3CL1.

•	 Effect of microglia ablation on pathological condition 
and the implications of CX3CL1.

•	 Role of CX3CL1 in modulating different proteins/
receptors/markers expressed by microglia.

•	 Role of astroglia in physiological and pathological 
conditions with special emphasis on the implications 
of CX3CL1.

•	 Effect of astroglia ablation on pathological condition 
and the implications of CX3CL1.

•	 Role of CX3CL1 in modulating different proteins/
receptors/markers expressed by astroglia.

•	 Overall assessment of the therapeutic potential of 
CX3CL1 in neuroinflammation.

Main text
Microglia
Physiopathology of microglia, their subtypes and the role 
of CX3CL1
Microglia play significant role in synaptic pruning and 
synaptic maturation [12]. Absence of pruning leads to 
an increased density of excitatory synapses and subse-
quent synapse plasticity damage which leads to the loss 
of memory [13]. During early life, microglia eliminate 
unnecessary synapses by engulfing dendritic spines and 
lack of microglial activity leads to an increase in PSD95 
and SHANK3 proteins. An increase in SHANK3 pro-
tein is correlated with autism [14]. Downregulation of 
Akt/mTOR pathway and downstream signalling mol-
ecule such as p70S6K and eIF4B were found in idiopathic 
autism [15]. Another claim correlates upregulation of 
PI3K/AKT/mTOR pathway in the pathogenesis of autism 
[16]. In this regard, CX3CL1-CX3CR1 interaction is 
found to activate PI3K/AKT signalling [17] but can 

prevent mTOR expression [18]. This may raise concern 
on the practical implications of CX3CL1 in autism. How-
ever, it is noteworthy that absence of CX3CL1 or com-
plement component microglia signaling pathway leads to 
the development of excess immature synapses [19]. Previ-
ous study has already proved the significance of CX3CL1 
signaling in developmental pruning of neurons [20] and 
its relation with autism [21]. This may raise inquisitive-
ness about the roles played by the isoforms of CX3CL1 in 
the pruning process. It is believed that soluble CX3CL1 
plays a role in signalling microglia through CX3CR1 and 
leads to their migration or proliferation, whereas mem-
brane bound CX3CL1 plays a role in microglial recogni-
tion of synapse for an effective pruning [12]. Similarly, it 
is reported that signaling from both soluble and mem-
brane bound isoforms of CX3CL1 can alleviate neurolog-
ical deficits. However, they are very specific about their 
roles. Each type modulates specific pathological events 
and suppresses distinct diseases [22].

Microglia have many physiological and pathological 
involvements depending on their subtypes. In the CNS, 
microglia will be either in the resting or in the active 
form. Active microglia are classified as pro-inflammatory 
(M1) type and anti-inflammatory (M2) type [23, 24]. M2 
microglia are further classified as M2a (involved in repair 
and regeneration), M2b and M2c (immunoregulatory 
property, phagocytosis and removal of tissue debris) [25, 
26]. Activation of these types depends on different stim-
uli. One such stimulus which plays a role in the patholog-
ical activation of microglia (M1 type) is hypoxia. Hypoxia 
exacerbates amyloid beta (Aβ) and tau pathologies, which 
in turn act as the key triggers for Alzheimer’s disease 
(AD) [27]. Activated M1 microglia release cytokines 
such as interleukin-α (IL-1α), IL-1β, IL-6, IL-12, IL-23, 
cyclooxygenase 2, tumor necrosis factor α (TNF-α), 
reactive oxygen species (ROS), and complement factors. 
Their continuous release initiates neuroinflammation and 
neurodegeneration [28–30]. This explains the relation 
between reactive microgliosis and neurodegenerative dis-
eases, which are characterized by Aβ plaque formation, 
neurofibrillary tangle (tau deposits) and chronic neu-
roinflammation [4, 5]. All the above facts show the sig-
nificance of hypoxia in neuropathology and underscore 
the need to examine the effects of CX3CL1 in this set-
ting. In this regard, CX3CL1 plays a neuroprotective role 
in permanent middle cerebral artery occlusion-induced 
ischemic injury. CX3CL1 reduces caspase-3 activation 
[31]. Suppression of caspase-3 will prevent neuronal cell 
death, functional decline and Aβ plaque formation in AD 
brain [32]. Even tau protein-related neurotoxicity can be 
modulated by suppression of caspase-3 [33]. It was found 
that M1 microglia mediated neurodegenerative effect 
triggers an increase in CX3CR1 expressing microglia 
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[34]. This facilitates internalization of extracellular tau 
within the microglia through CX3CR1 and subsequent 
clearance. However, the binding efficacy of phosphoryl-
ated tau is somewhat less than non-phosphorylated tau. 
Irrespective of the difference in binding affinity, CX3CR1 
will reduce the burden of extracellular tau on neighbour-
ing neurons and alleviate neurodegeneration and AD 
[35]. CX3CL1 may increase the expression of CX3CR1 
[36]. Further, CX3CL1 can prevent tau-induced micro-
gliosis by activating nuclear factor erythroid 2–related 
factor 2 (NRF2) and heme oxygenase 1 [37]. CX3CL1 
also reduces the expression of IL-1β, IL-6 and TNF-α. 
Disruption of CX3CL1-CX3CR1 signaling triggered 
IL-1β mediated decreased survival and proliferation of 
neural progenitor cells [38]. A decrease in IL-1β allevi-
ates tauopathy-induced cognition deficits [39]. Similarly, 
a decrease in IL-6 and TNF-α will have neuroprotection 
because IL-6 induces tauopathy [40] and TNF-α is known 
for producing Aβ plaque and hyperphosphorylation of 
tau [41]. Contrary to the negative role of TNF-α, pro-
phylactic administration of IL-1α, IL-1β, IL-6 and TNF-α 
has neuroprotective effect against N-methyl-D-aspartate 
(NMDA)-induced neurotoxicity. In this regard, neurons 
can produce cytokines including TNF-α [42]. This proves 
the existence of a thin line of demarcation between neu-
roinflammatory and neuroprotective role of the media-
tors and the modulating effect of CX3CL1-CX3CR1 
interaction on the expression and role of these mediators.

Transition of the M1 microglia into M2 type is the hall 
mark event in suppressing neuroinflammation and neu-
rodegeneration. M2 microglia augment wound healing 
through high levels of arginase-1 and cluster of differen-
tiation 206 (CD206) [24, 29]. In this context, CX3CL1-
CX3CR1 interaction leads to the increased expression of 
arginase-1 [43]. Similarly, CX3CR1 expressing cells also 
express CD206 [44], indicating some kind of positive cor-
relation between CX3CR1 and CD206. However, the ben-
eficial effects of arginase-1 expression in M2-mediated 
neuroprotection are contradicted by a research where 
inhibition of arginase-1 and arginase-2 has a protective 
role against middle cerebral artery occlusion-induced 
ischemic stroke (Fig. 1a) [45]. This raises concern on the 
beneficial role of CX3CL1 in the context of ischemia. 
Contextually, other reports claim that neurons constitu-
tively express and release CX3CL1 in response to excito-
toxic and ischemic insult. CX3CL1 protects neurons from 
ischemic and excitotoxic insult by increasing the expres-
sion of CXCL16 mRNA in microglia and consequent 
increased secretion of CXCL16 [46]. Amidst the con-
troversial role of CX3CL1 in ischemia/hypoxia-induced 
neuroinflammation, the alternative general approach to 
predict its effect in neuroinflammation is by observing 
the expression pattern of M1/M2 microglia. Neuronal 

CX3CL1 regulates the expression of M1 microglia by a 
negative feedback mechanism [47]. CX3CL1 suppresses 
the activation of M1 microglia by suppressing the pro-
inflammatory glial gene. CX3CL1 suppresses the expres-
sion of genes favouring glycolytic pathway and hinder the 
expression of M1 microglia [48]. In this setting, CX3CR1 
plays an important role. CX3CR1 expression can be seen 
in both M1 (low level) and M2 (high level) microglia. 
CX3CL1 converts M1 to M2 microglia by increasing the 
expression of CX3CR1 [36, 49] and subsequent binding 
with CX3CR1 [26]. Latest research also corroborates the 
role of CX3CL1 in transforming M1 to M2 by interact-
ing with CX3CR1 [26]. The intricate relation between 
cytokines, CX3CL1, CX3CR1 and M2 microglia activa-
tion can be understood through different findings where 
both anti and pro-inflammatory cytokines such as IL-4 
and TNF-α stimulate the expression of CX3CL1 [50] and 
anti-inflammatory cytokines such as IL-4, IL-10 or IL-13 
initiate M2 activation [30, 51]. Contextually, IL-10 plays a 
significant role by increasing the expression of CX3CR1 
in lipopolysaccharide (LPS) treated cell line [52]. All 
these previous results along with the recent ones strongly 
support the role of CX3CL1 in regulating the expression 
and activation of M2 microglia. This also shows the role 
of different mediators (pro and anti-inflammatory) in 
establishing communication between neurons and glia 
through the expression of CX3CL1 and CX3CR1, respec-
tively. These processes are regulated by feedback loop, 
because CX3CL1 can reduce the expression of TNF-α 
[38, 53], at the same time can also increase the expression 
of TNF-α and other cytokines (Fig.  1b) [7]. This shows 
the complex bidirectional role of CX3CL1 in the expres-
sion of inflammatory mediators.

Though CX3CL1 is known for its anti-inflammatory 
role in the CNS, yet there is a pathological concern 
associated with it. This is due to the fact that TNF-α 
liberated by M1 microglia, increases brain endothelial 
cell proliferation [54]. Stimulation of endothelial cell by 
TNF-α, interferon-gamma (INF-γ) and IL-1 liberates 
endothelial CX3CL1. Endothelial CX3CL1 mediates 
leukocyte recruitment and can produce atheroscle-
rotic lesion [55, 56]. Intracranial atherosclerotic disease 
is again a common reason behind stroke [57], which 
eventually leads to neuroinflammation and secondary 
neuronal damage [58]. The detrimental role of CX3CL1-
CX3CR1 interaction is proved in ischemic brain, which 
has shown elevated expression of TNF-α, IL-1β and 
IL-6 [7]. Similarly, another report related CX3CL1 
signaling with neurotoxicity [59]. However, tagging 
CX3CL1 signaling with neurotoxicity is again contra-
dictory with respect to certain other observation. This 
is partly owing to the relation between CX3CL1 and 
INF-γ. Unlike soluble CX3CL1, which has a negligible 
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effect on INF-γ production, membrane bound CX3CL1 
is a strong inducer of INF-γ by natural killer (NK) cells 
[55] and brain has clusters of NK cells [60]. It seems, 
CX3CL1 and INF-γ can induce expression of each other 
[55, 56]. This makes the pathological role of CX3CL1 
debatable because knocking down of INF-γ receptor in 
the brain in comparison with periphery leads to higher 
incidence and severity of multiple sclerosis [61]. Con-
trary to the effect of CX3CL1-CX3CR1 interaction in 
ischemic brain [7], CX3CL1 can suppress the secretion 
of TNF-α, IL-1β, IL-6 and nitric oxide (NO) from M1 
microglia [53]. Subsequent research has confirmed that 
CX3CR1 deficient microglia produce IL-1β and trigger 
inflammation [62]. This once again reflects the complex 
role of CX3CL1 in neuroinflammation. Further, the role 
of CX3CL1 in neuroprotection is evident from its func-
tion to impede demyelination of neurons [63]. It has a 
prominent role in suppressing α-synuclein mediated 
neurodegeneration and subsequent Parkinson’s disease 
[64]. This shows immense networking of CX3CL1 with 
different mediators.

Similarly, a decrease in CX3CR1 is related with an 
increased tauopathy [35]. As CX3CR1 binds with tau, 

Fig. 1  a Neuronal CX3CL1 and microglial CX3CR1 interaction 
increases proinflammatory cytokines in ischemic brain leading to an 
increase in ROS and neurodegeneration. CX3CL1–CX3CR1 interaction 
can also decrease the expression of cytokines and neutrophils 
following activation of CREB and provide neuroprotection. 
By contrast, suppression of CREB provides neuroprotection. 
CX3CL1-CX3CR1 interaction increases arginase-1 and provide 
neuroprotection. By contrast, inhibition of arginase-1 and 2 prevents 
stroke in ischemic brain. b CX3CL1-CX3CR1 interaction can increase 
as well as decrease the expression of cytokines. Increase in cytokines 
causes neurodegeneration via activation of M1 microglia, whereas 
a decrease leads to neuroprotection. CX3CL1–CX3CR1 interaction 
provides neuroprotection via conversion of M1 to M2 microglia. c 
CX3CL1–CX3CR1 interaction may cause hyperphosphorylation of 
tau which may lead to neurodegeneration. Increased expression of 
CX3CL1 prevents tau-CX3CR1 complex formation and tau clearance. 
CX3CL1–CX3CR1 interaction decreases Aβ deposition. Decreased 
Aβ deposition occurs via decrease in caspase-3, as a result of an 
increased expression of CX3CL1. By contrast, increased level of 
CX3CL1 can decrease TLR4 expression, which leads to a subsequent 
decrease in the scavenging of Aβ. Deposited Aβ can bind with 
neuronal CX3CR1 causing neurotoxicity and neurodegeneration. 
d CX3CL1–CX3CR1 interaction can suppress C/EBPα mediated 
microglial activation and consequent neurodegeneration. C/EBPα 
may decrease the expression of proinflammatory cytokines and 
provide neuroprotection. C/EBPα may increase ROS and produce 
neurodegeneration. Decreased expression of C/EBPα activates TLR-4 
and increases proinflammatory markers causing neurodegeneration. 
e CX3CL1–CX3CR1 interaction provides neuroprotection by 
increasing thrombospondins-1 which leads to a decrease in Aβ 
pathology. By contrast, thrombospondins-1 may increase the 
expression of post synaptically silent receptors which are linked with 
neurodegenerative disorders

◂
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hence, understanding the effects of tau-CX3CR1 bind-
ing is necessary owing to the report that such interac-
tion disrupts the communication between neurons and 
microglia [65]. If this happens, it may impact synap-
tic pruning which is dependent on CX3CL1-CX3CR1 
interaction [20]. The significance of synaptic pruning 
is already known from the fact that autism is charac-
terized by an excessive synapse formation [21]. Inter-
estingly, a report confirms that presence of CX3CL1 
reduces the interaction of tau with CX3CR1, this is due 
to a higher binding affinity of CX3CL1 for CX3CR1 
[35]. Thus, presence of tau in the vicinity of CX3CR1 
should not affect CX3CL1-CX3CR1 interaction and 
communication between neuron and microglia. This 
raises concern on the long-term therapeutic adminis-
tration of CX3CL1, because exogenous CX3CL1 may 
affect tau clearance through CX3CR1.

Effect of microglia ablation in neuropathophysiology 
and the impact of CX3CL1
The complex role of microglia in neurodegenerative 
disease progression could be understood from a tar-
get region specific ablation of microglia in AD model of 
adult mice. As per the report, microglial ablation in the 
target region led to a decrease in tauopathy and neuro-
toxicity [66] but had no impact on Aβ plaque formation 
[67]. Contextually, another report proves the involvement 
of reactive microglia in hyperphosphorylation of tau and 
its synaptic spreading, leading to tauopathy [68]. How-
ever, study involving occlusion of common carotid artery 
has rather shown an increase in infarct size (by 60%), 
dysregulated neuronal calcium response and neuronal 
death, following selective microglial ablation [69]. Thus, 
microglial ablation may have positive as well as nega-
tive consequences. In this regard, CX3CL1 can reduce 
cerebral infarct size and neurological deficits in rodents 
with permanent middle cerebral artery occlusion [31]. 
This underscores the significance of interaction between 
CX3CL1 and microglial CX3CR1 in the brain. Hypoxia 
activates M1 microglia [27] and they are associated with 
a larger infarct size [48] and glutamate toxicity [70], 
hence, depletion of M1 microglia should have positive 
outcome rather than negative one. This indicates pathol-
ogy specific dichotomy of microglia. Similarly, deple-
tion of CX3CR1 microglia in 6–12-week-old male mice 
has worsened acute seizures and increased mortality 
rate [71]. The result seems to be the consequence of M1 
microglia deletion [71], but it may raise concern on the 
actual type of microglia (M1 or M2) whose deletion led to 
aggravated seizure outcome. This is owing to the expres-
sion of CX3CR1 by both M1 (low level) and M2 (high 
level) microglia and the role of CX3CL1 in converting 
M1 to M2 type [36, 49]. Thus, until the characterization 

of microglia and determining the rate at which CX3CL1 
coverts M1 to M2, the concern remains unaddressed. It 
is noteworthy that healthy mice brains neither exclusively 
express M1 nor M2 phenotypic markers at any time [72] 
and under normal CNS functioning, the environment in 
CNS shows more skewing towards M2 microglia [73]. 
Thus, CX3CR1 microglia which are depleted in the study 
with seizure mice model [71] should be of M1 type. This 
once again proves the double edged role of M1 microglia 
and also raises question on the possible role of CX3CL1 
in this particular setting.

In neuropathophysiology, the significance of M2 
microglia is evident from the fact that synaptically 
released glutamate can initiate and spread seizure by act-
ing on ionotropic and metabotropic receptors [74] and 
M2 microglia secrete brain-derived neurotrophic factor 
(BDNF) [75]. BDNF protects neurons against glutamate-
induced neurotoxicity and death [76]. It is found that 
CX3CL1 plays a significant role by promoting the expres-
sion of BDNF [77]. This indicates that neuronal CX3CL1 
can manipulate glial cells to secrete BDNF and provide 
neuroprotection.

The mysterious role of CX3CL1 can be observed where 
neither an increase nor a decrease in microglial count has 
affected Aβ plaque formation [67]. However, a decreased 
interaction between CX3CL1 and CX3CR1 is responsi-
ble for reduced Aβ deposition [78]. On the other hand, 
CX3CL1 reduces caspase-3 activation [31] and reduc-
tion of caspase-3 will prevent Aβ plaque formation in AD 
brain (Fig. 1c) [32]. This indicates the complex nature of 
CX3CL1 in neuroinflammation. Indiscriminate micro-
glial ablation should increase deposition of tau and sub-
sequent tauopathy as a result of ablation related decline 
in the population of CX3CR1. Concern to the matter is 
increased due to the fact that deposition of tau can pro-
mote microglial [79] and consequent astrocytic [80] 
activation, which in turn release cytokines [28, 81], this 
may lead to secondary tauopathy [82]. Thus, tauopathy 
and microglial/astroglial activation will help each other’s 
propagation, this will emerge as a vicious cycle of neu-
ronal damage.

Above facts signify the interaction between neuronal 
CX3CL1 and microglial CX3CR1 in suppressing neu-
roinflammation and neurodegeneration. However, the 
relation between CX3CR1 and Aβ peptide remains 
ambiguous. The effects of Aβ peptide and tau on neu-
ropathy are dependent on the membrane bound form of 
CX3CL1, rather than the soluble form of CX3CL1. As 
per a study, disrupted signaling from membrane bound 
CX3CL1 reduces the deposition of fibrillar Aβ, by con-
trast, favours hyperphosphorylation of tau [83]. Though 
membrane bound CX3CL1 is identified as a key player 
to modulate the effects of Aβ peptide and tau protein, 
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yet other studies have proved that membrane bound 
CX3CL1 can partially restore spatial learning and mem-
ory [22]. The significance of membrane bound CX3CL1 
can be further realized from the fact that soluble 
CX3CL1 originates following the cleavage of membrane 
bound CX3CL1 of neurons [84]. Soluble CX3CL1 par-
tially corrects cognitive and motor function and is capa-
ble of restoring neurogenesis and long term potentiation. 
However, this property is not visible for the membrane 
bound form [22]. This emphasizes on the significance of 
both the forms of CX3CL1 in neuron-microglia com-
munication and cognition. Lastly, the negative impact 
of microglial ablation can be established from the fact 
that neuronal CX3CR1 suppresses synaptic transmission 
and has been identified as a potential target of Aβ-42 to 
mediate neurotoxicity in the absence of microglia [59]. 
Thus, the effect of CX3CL1 differs based on the interac-
tion with neuronal or microglial types of CX3CR1.

Role of other microglial markers in neuroinflammation 
and their modulation by CX3CL1
Other than CX3CR1, microglia express several other 
receptors/proteins such as cluster of differentiation 
receptors (CD11b, CD14, CD68), colony-stimulating fac-
tor 1 receptor (CSF1R), toll-like receptors (TLR), human 
leukocyte antigen (HLA)-DR, nucleotide-binding oli-
gomerization domain (NOD) proteins, macrophage 
scavenger receptor (MSR)-A, C-type lectin receptors, 
Fcγ receptors [85–89], β2 receptors, α2A receptors [90]. 
Presence of myriad of receptors entrusts microglia with 
a complex role and triggers curiosity to look for any pos-
sible modulating effect of CX3CL1 on these receptors. 
Among different receptors, CSF1R (known as CD115) 
and TLR deserve special mention. CSF1R, predominantly 
expressed on microglial surface, plays a house keeping 
role including development and survival of microglia and 
a key player in neuroinflammation [91]. Previous study 
has proved that blockade of CSF1R can reduce prolif-
eration of microglia/macrophages and gliosis, and this 
may suppress neuroinflammation and promote motor 
recovery [92]. CSF1 and IL-34 are the ligands for CSF1R 
[91], and both are responsible for many inflammatory 
conditions [93]. The role of CSF-1 in promoting neuro-
inflammation is evident [92] from the fact that antibod-
ies to CSF-1 led to a decreased level of microglia in the 
white matter [94]. Growth and differentiation of micro-
glia occur under the influence of secreted CSF-1 [95]. At 
the same time CSF-1 can increase microglia mediated 
neurotoxicity following Aβ deposition [96]. Though it 
raises concern over the role of CSF-1 in microglia medi-
ated neuronal damage, yet the downstream events are 
opposite to the expectation. CSF-1 and CSF1R interac-
tion activated cAMP response element-binding protein 

(CREB) and prevented apoptosis and inflammation. This 
occurs through a sequential activation of phospholipase 
C gamma 2 (PLCG2), protein kinase C epsilon (PKCε) 
and cAMP response element-binding protein (CREB). 
This interaction inhibited neutrophil infiltration and 
downregulated the expressions of IL-1β and TNF-α [95]. 
This draws attention towards CX3CL1-CX3CR1 inter-
action, because CX3CR1 signaling also activates CREB 
[48]. Further, a research has shown that CSF1R deletion-
induced suppressed proliferation of microglia can be 
compensated by the infiltration of CX3CR1 positive cells, 
even though the blood brain barrier (BBB) is intact [97]. 
This perhaps indicates that CX3CL1-CX3CR1 signaling 
remains as a substitute for CSF1R signaling, and medi-
ates activation of CREB and subsequent neuroprotec-
tion. However, CREB mediated neuroprotective role of 
CX3CL1 comes under question following the revelation 
that suppression of CREB prevents inflammation and 
provides neuroprotection [98].

Other than microglia, CSF-1 is expressed by neurons, 
astrocytes and oligodendrocytes, and its secretion pro-
motes growth of microglia [95]. Thus, microglial prolif-
eration may be regulated by a combined signaling from 
neurons, astrocytes and oligodendrocytes or by a pre-
dominant cell type. Though a study claims that CSF1R 
does not regulate microglial differentiation, yet the sig-
nificance of CSF-1 with respect to regulating microglial 
density and distribution remains crucial [99]. Owing to 
the significance of CSF-1, it becomes necessary to pin-
point the most potential influencer of microglial density 
and distribution. As neurons generate earlier to glia in 
the developing mammalian cortex [100] hence, neu-
ronal involvement in glial development through secreted 
CSF-1 is apparent. Even research has proved the pivotal 
role of neurons in manipulating microglia through CSF-
1, during nerve injury [101]. It is noteworthy that CSF1R 
activation triggers tyrosine phosphorylation cascades 
which regulate many pathways involved in macrophage 
survival, differentiation and proliferation. One of these 
pathways such as janus kinase (JAK)/STAT signaling also 
depend on tyrosine kinase mediated activation of STAT1 
and STAT3 [102]. Soluble CX3CL1-induced CX3CR1 
internalization has decreased tyrosine phosphorylation 
of microglial STAT proteins [103]. This may affect micro-
glial survival and proliferation. This finding is different 
from the observation where CX3CL1 is found to increase 
the population of M2 microglia via CX3CR1 [26, 36, 49].

Similarly, IL-34 (another ligand for CSF1R) promotes 
development of microglia [104]. IL-34 is constitutively 
expressed in the brain [105] by neurons [104]. Its role 
in neuroinflammation is evident from the fact that anti-
body to IL-34 led to a significant depletion of microglia 
in the gray matter [94]. However, previous study has 
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proved the beneficial role of IL-34 in suppressing oligo-
meric Aβ neurotoxicity in AD [85]. It is worth mention-
ing that M1 microglia secrete many mediators including 
TNF-α, IL-1β [28–30] and IL-17 [106]. Eventually, TNF-
α, IL-1β and IL-17 induce expression of IL-34 mRNA 
[107, 108]. However, among these cytokines, TNF-α has 
induced significant expression of IL-34 mRNA compared 
to IL-1β and IL-17 [108]. IL-34 so produced can prevent 
the production of TNF-α by downregulating the expres-
sion of Dectin-1 and TLR2 [109]. This represents a kind 
of neuronal feedback through IL-34 on microglial CSF1R 
to modulate neuroinflammation. In this setting CX3CL1 
can suppress TNF-α mediated IL-34 expression by its 
ability to reduce expression and secretion of TNF-α [38, 
53] and secretion of IL-1β from M1 microglia [53]. This 
not only reflects neuronal control on microglial cytokines 
via CX3CL1 but also represents the effect of CX3CL1 
on neuronal IL-34. However, it is difficult to predict the 
actual impact of CX3CL1 on cytokine mediated expres-
sion and secretion of IL-34 because CX3CL1 can also 
increase the expression of TNF-α and other cytokines [7].

In CNS, the expression of TLR is limited to neu-
rons, astrocytes and microglia [110]. Among different 
TLRs (TLR1 to TLR10) [110], only three are intracellu-
lar (TLR3, TLR7, TLR9) and remaining are present on 
the plasma membrane [111]. Among the TLRs, TLR4 
deserves special mention because α-synuclein secreted 
by neurons leads to the activation of TLR4 on microglia, 
leading to its clearance [112]. The pathological aggre-
gation is due to calpain-1 enzyme, which gives rise to 
C-terminal-truncated synuclein, which aggregates faster 
than its precursor α-synuclein [113, 114]. The truncated 
synuclein is the most potent activator of TLR4 receptors 
on microglia. Activated TLR4 mediates release of proin-
flammatory cytokine and ROS production by microglia 
[115]. Strangely, CX3CL1 can reduce the expression of 
TLR4 [116] but can suppress α-synuclein mediated neu-
rodegeneration [64]. TLR4 has a scavenging effect on Aβ; 
however, prolonged expression of TLR4 leads to Aβ dep-
osition in the brain [117]. Reduction of TLR4 by CX3CL1 
may have dual effects on Aβ clearance.

Among different microglial receptors, β2 receptors 
mediate the surveillance function of resting microglia, 
whereas α2A receptors mediate the functions of active 
microglia, both receptors are activated by norepineph-
rine to facilitate microglia mediated surveillance [90]. 
Microglia mediated surveillance of brain parenchyma 
relies mainly upon two processes. One is lamellipodia 
(large processes with a bulbous tip) and the other is filo-
podia (bundles of parallel actin filaments) which extend 
from the tip of lamellipodia, as well as from the body of 
the microglia. A third process named uropod helps in 
the movement of the soma of microglia. Lamellipodia 

attached to the microglia actively monitor the brain 
parenchyma for any molecular signal of injury or harm-
ful stimulus, even when microglia are under resting 
condition. Filopodia perform a faster screening of the 
surrounding compared to lamellipodia [89, 118]. Micro-
glia mediated neuroprotection relies on fast nanoscale 
sensing of any kind of obnoxious stimulus with the help 
of filopodia [118, 119]. Rapid extension of filopodia 
requires an increase in intracellular cAMP concentra-
tion, initiated by the activation of metabotropic recep-
tor coupled with Gs type of G-protein. In this aspect, β2 
adrenergic receptor activation by agonists (isoproter-
enol and norepinephrine) increases cAMP, leading to an 
increased turnover of filopodia [118]. This explains the 
role of norepinephrine and β2 receptor in inducing filo-
podia and subsequent neuroprotection. Similarly, nor-
epinephrine also induces release of soluble CX3CL1 by 
neurons and exerts anti-inflammatory effect on neurons 
via CX3CL1 [120]. The above statements perhaps give 
a hint regarding a correlation between CX3CL1 release 
and extension of filopodia. However, a study has put a 
question on such correlation because norepinephrine 
has been found to suppress CX3CL1 in the presence of 
lipopolysaccharide (LPS) [121], which produces neuroin-
flammation through IL-1β, TNF-α and IL-6 [122]. These 
cytokines increase production of ROS and a consequent 
ROS mediated signaling, which causes cellular pathol-
ogy [123, 124]. M1 microglia are one among different 
sources of ROS. M1 microglia secrete nitrite [125], and 
nitrite can increase the amount of NO [126] responsible 
for neurodegeneration [125]. In this aspect, it is notewor-
thy that neuronal CX3CL1 can prevent the accumulation 
of nitrite in microglia [120], the release of NO from M1 
microglia [48, 53] and suppress the secretion of TNF-α, 
IL-1β, IL-6 from M1 microglia [53]. Thus, suppression of 
neuronal CX3CL1 by norepinephrine in the presence of 
LPS raises question on the neuroprotective role of nor-
epinephrine and its actual relation with CX3CL1. How-
ever, the significance of CX3CL1 remains undiminished 
due to its ability to inhibit the release of TNF-α from LPS 
stimulated microglia [127]. Additionally, study has con-
firmed the roles of CX3CL1-CX3CR1 signaling in facili-
tating faster screening of the environment by microglial 
processes as well as in migration of the microglia towards 
the source of injury [128]. Another report shows that 
CX3CL1 regulates macrophage migration in CNS and 
their conversion into microglia [47]. Irrespective of this 
fact, the role of CX3CL1 in the development of filopodia 
needs further exploration. In this aspect, it was found 
that cyclic guanosine monophosphate (cGMP) induced 
by NO can also induce expression of filopodia by increas-
ing intracellular cAMP. The maintenance and motility of 
filopodia are again actin dependent but not microtubule 
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dependent [118]. This further reveals the role of CX3CL1 
in the development of filopodia, because interaction of 
CX3CL1 with CX3CR1 initiates the coupling of the lat-
ter with G-protein to initiate actin polymerization in 
microglia [129]. Actin polymerization and co-localiza-
tion of ionized calcium-binding adaptor protein-1 (IBA-
1) lead to filopodia development, microglial movement 
and phagocytosis of extra neuronal tau oligomers. This 
prevents the propagation of extracellular tau into sur-
rounding neurons and further damage. This protects 
against neurodegenerative conditions such as AD [130]. 
The association between actin and CX3CL1 can also be 
assumed from the fact that disruption of actin facilitates 
the release of soluble CX3CL1 following an interaction 
between endothelial membrane bound CX3CL1 and 
metalloprotease [131].

Apart from β2 adrenergic receptor, CX3CR1 also facili-
tates the function of microglia as “sensome” by binding 
with CX3CL1. This enables microglia to perceive micro-
environmental changes and perform a site specific motile 
response [89]. Soluble CX3CL1 has an overwhelming 
role in this regard, because it has more anti-inflammatory 
and neuroprotective affect compared to the membrane 
bound form [84]. However, previous research has proved 
that membrane bound form of CX3CL1 is a stronger 
inducer of microglial chemotaxis than the soluble forms 
of CX3CL1 [34]. This finding is different from subsequent 
claim which identifies soluble CX3CL1 as the inducer of 
microglial chemotaxis [12]. Membrane bound CX3CL1 
rather enables microglia to identify the injured neurons 
and surround it [34]. This may have negative outcome 
because neuronal injury represents a site predominantly 
occupied by M1 microglia [132]. M1 microglia medi-
ated massive release of glutamate leads to NMDA recep-
tor mediated glutamate toxicity [70]. NMDA facilitates 
the disruptive effect of Aβ on dendritic spine [133]. Both 
soluble oligomer and fibrillar Aβ can activate microglia. 
However, oligomeric form is a stronger activator than the 
fibrillar type [134]. This way the vicious cycle of microglia 
mediated Aβ toxicity and Aβ mediated microglia activa-
tion continues to produce neuroinflammation and neuro-
degeneration. This gives the impression that CX3CL1 will 
play a negative role in the context of neuronal injury by 
signaling microglia. Conversely, after signaling microglial 
recruitment, CX3CL1 modulates their function and high 
level of CX3CL1 in damaged neurons protects against 
glutamate excitotoxicity and degeneration [29]. This indi-
cates the significance of CX3CL1 mediated modulation 
of microglial function.

The significance of CX3CL1-CX3CR1 interaction is 
also apparent from the fact that a reduced interaction 
may lead to ageing of microglia [9]. Similarly, absence 
of CX3CR1 expression will decline neurogenesis in 

the hippocampus and olfactory bulb of adults, and will 
adversely affect integration of newborn neurons [9]. 
Further, lack of microglial CX3CR1 results in down 
regulation of NRF2 and consequent absence of heme 
oxygenase-1 gene expression. It also leads to a decrease 
in TAM family of receptor (Tyro-3, Axl and Mer), all 
together leads to neurological deficits [135]. On a similar 
note, CX3CL1 deficiency reduces the expression of class 
I multiple-synapse boutons, which are expressed under 
the influence of microglia-induced spine-head filopodia 
[19]. These multiple-synapse boutons represent synapse 
with more than one dendritic spine. Such arrangement 
is a prerequisite for hippocampus-dependent associative 
learning [136]. Similarly, spine-head filopodia formation 
under the influence of cholinergic stimulation indicates 
the significance of the former in cognition and in patho-
logical condition like AD [137]. This proves the signifi-
cance of CX3CL1 in cognition.

Microglia being the “main resident antigen-presenting 
cell of the brain” constitutively express HLA-DR mol-
ecule (MHC Class II). However, the expression level var-
ies according to the location of microglia. It is reported 
that corpus callosum and the capsula interna of white 
matter present microglia with higher expression of HLA-
DR compared to the microglia of the grey matter [138]. 
The fact regarding constitutive expression of HLA-DR 
on microglia is in dispute with previous research, which 
proves that HLA-DR is highly induced on microglia dur-
ing AD and Parkinson’s disease [86]. Similarly, subse-
quent study claims that MHC Class II is undetectable on 
microglia, except for the activated form [6]. Recent study 
also recognizes MHC Class II as M1 microglia marker 
[139]. Its recognition as M1 microglia marker and role 
in neuroinflammation can be realized from the fact that 
IFN-γ induces the expression of HLA-DR, and TNF-α 
potentiates the role of IFN-γ in HLA-DR expression on 
microglia [140]. It is noteworthy that IFN-γ can induce 
release of TNF-α. TNF-α mediates maturation of antigen 
presenting cells, and has an indirect role in cellular apop-
tosis but has nothing to do with HLA-DR mediated cell 
death [141]. HLA-DR shows a significant positive asso-
ciation with diffuse plaque in population with or with-
out dementia. Higher expression of HLA-DR is linked 
with poor cognition in AD [142]. Thus, if CX3CL1 has to 
prevent cell death then IFN-γ should be one of the tar-
gets of CX3CL1. It is noteworthy that CX3CL1 reduces 
expression of MHC Class II on microglia, and prevents 
neurotoxicity due to reactive microglia [6]. However, 
contradiction on the suppressive role of CX3CL1 on 
HLA-DR lies within the fact that CX3CL1 is a strong 
inducer of INF-γ by NK cells [55]. This calls for further 
research to simplify the understanding on the complex 
role of CX3CL1.
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Primary microglia constitutively express NOD like 
receptor (NOD2) and the expression is upregulated fol-
lowing bacterial [87] and viral [143] invasion. The ligands 
for TLR also upregulate the expression of NOD2 in 
microglia. NOD2 activates nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-kB), which in 
turn lead to the transcription of inflammatory cytokines 
[87, 144] such as IL-1β, IL-6, TNF-α etc. [145].

CX3CL1-CX3CR1 signaling increases the expression 
of NF-kB, IL-1β and IL-6 by microglia [146]. This shows 
similarity between NOD2 and CX3CL1-CX3CR1 signal-
ing, where both translate into the production of inflam-
matory cytokines. However, this conclusion is challenged 
by a quite opposite finding where CX3CL1-CX3CR1 
signaling has suppressed the expression of IL-1β, IL-6 
and TNF-α by microglia [38, 127].

Reactive microglia express MSR receptor in AD 
lesions [88]. IFN-γ and IL-1α induce the expression of 
MSR mRNA [147]. Expression of MSR-A receptor (also 
known as CD204, MSR-1, SCARA1) [148] plays a major 
role in the uptake of soluble and fibrillar amyloid beta-
42 (Aβ-42) peptide [148, 149]. In spite of this effect, 
MSR-A strangely shows significant positive correla-
tion with diffuse plaque, neuritic plaque, tangle forma-
tion in dementia population with AD pathology. MSR-A 
expression is related to poor cognition [142]. Activation 
of MSR-A with its ligand has increased the amplitude of 
LPS-induced inflammation through TLR4. TLR4 acti-
vates NF-kB and consequent expression of inflammatory 
cytokines [150]. As CX3CL1 can reduce the expression of 
TLR4 [116], hence, it is expected that CX3CL1 will sup-
press the aggravation of inflammation by MSR-A. This is 
in contrast with the finding which claims that CX3CL1-
CX3CR1 signaling is responsible for fructose-induced 
neuroinflammation in hippocampal neurons, which have 
shown an increase in TLR4/NF-kB expression and signal-
ing [151].

Microglia express CD14 but characterization of micro-
glia based upon the expression seems to have disparity. 
This is because a recent publication identifies CD14 to be 
a general microglia marker, not the marker for the acti-
vated type [51]. However, previous publication claims 
that CD14 is expressed by M1 microglia [152]. CD14 has 
a prominent role in ischemia-induced neuronal damage. 
It is reported that ischemia leads to the production of NO 
by BV2 cells. NO activates CD14, which in turn induces 
TNF-α production. CD14/TLR4 receptor complex 
activates NF-κB pathway to produce proinflammatory 
cytokines [153]. This proves CD14 to be a proinflamma-
tory marker for the M1 microglia. Next, question arises 
on the modulating effect of CX3CL1-CX3CR1 signaling 
on CD14. It is difficult to sketch the role of CX3CL1-
CX3CR1 signaling, because one way it increases the 

expression of NF-kB, IL-1β and IL-6 by microglia [146] 
and by the other it suppresses the expression of IL-1β, 
IL-6 and TNF-α by microglia [38, 127].

Microglia express CD16 (Fcγ receptor). Characteriza-
tion of microglia based on the expression of CD16 could 
not reach a consensus. Once CD16 was considered both 
a general and active state microglia marker [51], whereas 
another classification identifies it only as a proinflamma-
tory marker for M1 microglia [154]. Irrespective of the 
classification, CD16 is known to induce inflammatory 
signal [51, 154]. This makes the understanding a little 
complicated because microglia with “triggering recep-
tor expressed on myeloid cells 2” (TREM2) are charac-
terized by the expression of CD16 receptor [155] and 
the same TREM2 induces M2 microglia and suppresses 
neuroinflammation [156]. It is reported that compared to 
TREM2− microglia, TREM2+ microglia provide better 
resolution of lesion after perforant pathway transection. 
TREM2 mediated clearance of myelin debris is accom-
panied by the secretion of anti-inflammatory cytokines. 
This is linked with proper axonal collateral sprouting 
and neuronal regeneration [155]. Deficiency of TREM2 
also increases Aβ plaque [157]. Thus, CD16 seems to be 
both a proinflammatory and anti-inflammatory marker. 
Further, question arises on the modulating effect of 
CX3CL1-CX3CR1 signaling on CD16. Though there 
is no much evidence to prove the modulating effect of 
CX3CL1 signaling on CD16, yet a research on the effect 
of CNS insult shows higher expression of markers for 
both M1 (CD16) and M2 (CD206) microglia along with 
CX3CL1 and CX3CR1 [158]. It seems CX3CL1 has no 
direct effect on CD16 expression. However, in a different 
context it is reported that soluble CX3CL1 signaling can 
promote the proinflammatory effect of CD16 [159]. This 
again claims against the proven neuroprotective effect of 
CD16 expressing TREM2 microglia [155].

M1 microglia express CD32 (Fcγ receptor) [154, 160]. 
The role of CD32 as proinflammatory marker comes 
under question owing to the fact that TREM2 microglia 
also express CD32 receptor and have neuroprotective 
role [155]. TREM2 induce M2 microglia and suppress 
neuroinflammation [156]. Similarly, there is another clas-
sification where CD32 is considered as a marker for M2 
microglia [152]. However, an increasing number of evi-
dence suggests CD32 to be a M1 microglia marker with 
proinflammatory role [139, 160]. Though CD32 is rec-
ognized as a proinflammatory marker, yet it shares an 
inverse correlation with Aβ peptide load in the brain of 
AD patients [161]. This perhaps indicates Aβ peptide 
clearance role of CD32 microglia, because CD32 express-
ing microglia is predicted to have phagocytic activity in 
brain with excitotoxic injury [162]. Further, a question 
arises on the modulating effect of CX3CL1 signaling on 
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CD32 microglia. So far there is no research available to 
prove the modulating effect. However, reduced Aβ dep-
osition consequent to a decreased CX3CL1-CX3CR1 
interaction [78] leads to the prediction that CX3CL1-
CX3CR1 signaling shares an inverse relation with the 
expression of CD32 microglia.

Microglia constitutively express CD36 (class B scav-
enger receptor); however, pathological condition such 
as AD also shows their presence in the brain. CD36 
increases the production of cytokines, chemokines and 
ROSby microglia when stimulated with fibrillar Aβ [163]. 
By contrast, CD36 expression on microglia leads to the 
engulfment of myelin debris and its clearance. This inhib-
its myelin debris-induced expression of TNF-α, IL-6 and 
nitric oxide synthase mRNAs in multiple sclerosis and can 
inhibit neuroinflammation [164]. Here, TREM2 deserves 
special mention because microglia express TREM2 
receptor. TREM2 upregulates CCAAT/enhancer-binding 
protein alpha (C/EBPα), which in turn increases expres-
sion of CD36 and promotes phagocytosis of Aβ peptides 
and dead neural cells by microglia. TREM2 prevents loss 
of memory and learning in AD through C/EBPα [165]. 
However, opposing claim shows that CD36 is respon-
sible for Aβ deposition in the microvessels of brain and 
its deficiency prevents neurovascular dysfunction irre-
spective of the elevated level of Aβ peptide in the brain 
[166]. The opposing claims pertinent to CD36 raises 
concern over the neuroprotective role of TREM2. Nev-
ertheless, TREM2 overexpression prevents loss of neu-
rons, synapse and hyperphosphorylation of tau protein. 
TREM2 prevents hyperphosphorylation by suppressing 
the activity of cyclin-dependent kinase 5 (CDK5) and 
glycogen synthase kinase 3β (GSK3β) [156]. It is reported 
that CX3CL1-CX3CR1 signaling promotes micro-
RNA-124 (miR-124) delivery from neuron to microglia, 
which in turn targets C/EBPα to inhibit the activation of 
microglia. This leads to reduced neurodegeneration and 
improved neuronal function (short and long term) after 
subarachnoid haemorrhage [167]. However, absence of 
C/EBPα decreases the expression of CD11b on microglia 
[167]. CD11b deficient microglia activate TLR4 and pro-
duce more of IL-6, TNF-α and NF-kB compared to anti-
inflammatory cytokines [168]. TLR4 also elevates the 
expression of CD86 [169] on microglia [170], and CD86 
is a proinflammatory marker [171]. Association of CD86 
with neuroinflammation can be observed in the context 
of ischemia/reperfusion injury. Ischemia/reperfusion 
injury deranges BBB and facilitates entry of activated 
T-cells into brain parenchyma. These T-cells secrete 
IFN-γ. IFN-γ induces the expression of MHCClass II and 
costimulatory molecule like CD80 and CD86 on CD11c+ 
microglia [172], and the role of CD11c+ microglia in neu-
roinflammation is already known [173]. Similarly, proofs 

regarding the proinflammatory role of TLR4 can be 
obtained from the finding where a decreased expression 
of TLR4 polarizes microglia to M2 type and inhibits neu-
roinflammation [170]. Thus, sketching the actual effect of 
CX3CL1-CX3CR1 signaling in this context is very com-
plex. Contextually, the effect of CX3CL1-CX3CR1 sign-
aling is further complicated by findings where C/EBPα 
prevents the expression of proinflammatory cytokines 
but increases ROSproduction (Fig. 1d) [167, 168].

Microglia express CD40 [152]. CD40 is a costimula-
tory molecule for TLR4. The role of CD40 in neuropatho-
physiology is a complex one. One way it suppresses 
ATP-TLR4 mediated NLR Family Pyrin Domain Con-
taining 3 (NLRP3) inflammasome activation and secre-
tion of IL-1β, and the other way CD40 stimulation not 
only strengthens LPS-induced upregulation of TLR4 but 
also enhances its own expression. Consequently, CD40 
and TLR4 synergistically unleash microglial catastrophe 
through the production of proinflammatory cytokines 
such as IL-12, IL-6 and TNF-α, except for IL-1β [174]. 
It is noteworthy that LPS or IFN-γ induces cytosolic 
phospholipase A2 alpha (cPLA2α), which in turn induces 
CD40 but activation of cPLA2α by IFN-γ was mediated 
by TNF-α [175]. Thus, once TNF-α is released follow-
ing CD40 stimulation [174], it indirectly induces CD40 
by facilitating IFN-γ mediated induction of cPLA2α 
[175]. Thus, if CX3CL1 has to play as an anti-inflamma-
tory agent, then it has to block the expression of TNF-α, 
other cytokines and cPLA2α. It is observed that CX3CL1 
shares an inverse correlation with the expression of TNF-
α, IL-6, IL-1β by brain tissue, as proved by a research on 
ischemia-induced neuronal autophagy [176]. This is again 
quite opposite to the finding where CX3CL1-CX3CR1 
signaling increased these markers in ischemic brain [7]. 
This perhaps demands for further research to under-
stand the complexity of the role of CX3CL1. Further, it 
is reported that cPLA2α positive microglia are responsi-
ble for the production of significantly higher amount of 
NO and ROS as compared to cPLA2α negative microglia. 
LPS or IFN-γ depends on cPLA2α for the production 
of significant amount of NO and ROS by microglia to 
inflict neuroinflammation [177]. In this regard, cPLA2α 
is activated by phosphatidylinositol-4,5-bisphosphate 
(PIP2) and ceramide-1-phosphate (C-1-P). PIP2 activates 
cPLA2α independent of calcium but C-1-P causes cal-
cium dependent activation of cPLA2α [178, 179]. Thus, 
to modulate the activity of cPLA2α, CX3CL1 has to tar-
get PIP2 and C-1-P. It is noteworthy that CX3CL1 acti-
vates phosphatidylinositol-4,5-bisphosphate 3-kinase 
catalytic subunit alpha (PIK3CA) [180]. PIK3CA in turn 
may convert PIP2 to phosphatidylinositol 3,4,5-trispho-
sphate [181]. This conversion may affect the proinflam-
matory role of cPLA2α. Involvement of CX3CL1 in the 



Page 11 of 29Paul and Basavan ﻿Future Journal of Pharmaceutical Sciences            (2022) 8:56 	

expression of C-1-P may be predicted from the fact that 
CX3CL1 treatment makes primary cultures of murine 
microglia to release adenosine [182], most likely by 
degrading ATP [183]. ATP is a key player in the pro-
duction of C-1-P [184]. CX3CL1-CX3CR1 signaling 
degrades ATP [182, 183], hence, energy released during 
the breakdown of ATP may enhance the production of 
C-1-P in the brain. Thus, further research is required to 
confirm the role of CX3CL1 in the production of C-1-P.

Microglia express CD64 (Fcγ receptor). CD64 is 
responsible for diffuse plaque in population with no 
dementia. CD64 expression is also significantly linked 
with diffuse and neuritic plaque in dementia with AD 
pathology [142]. It is reported that neuron derived immu-
noglobulin G (IgG) increases the expression of CD64 
[185]. Though there is no direct evidence on the influ-
ence of CX3CL1 on CD64 expression, yet results from a 
different experimental setting have proved that absence 
of CX3CL1 or CX3CR1 led to impaired IgG production 
[186]. This perhaps indicates the significance of CX3CL1-
CX3CR1 signaling on IgG mediated expression of CD64. 
Though this represents a negative perspective facilitat-
ing plaque formation and neuronal damage, yet a report 
proves the role of IgG-CX3CL1 or IgG-CX3CR1 infusion 
in alleviating neurodegeneration following status epilep-
ticus [187]. Interestingly, increased plaque formation is 
associated with epilepsy [188] and decrease in CX3CL1-
CX3CR1 interaction is associated with reduced plaque 
formation [78]. Reduced plaque formation will lead to a 
decrease in epilepsy and neurodegeneration. This rep-
resents two aspects. First aspect is the facilitating role 
of CX3CL1-CX3CR1 signaling on IgG expression [186] 
and consequent expression of CD64 [185] which leads 
to plaque formation [142], leading to epilepsy [188]. The 
second aspect is the post expression synergism between 
IgG and CX3CL1 or IgG and CX3CR1 to prevent neuro-
degeneration in status epilepticus [187]. This represents 
the complex role of CX3CL1-CX3CR1 signaling though 
IgG and CD64.

TREM2 microglia express CD68 receptor and TREM2 
is linked with neuroprotective effect [155]. However, 
CD68 is considered a M1 microglia marker [160] and is 
expressed during AD [189]. CD68 is responsible for dif-
fuse plaque in population with no dementia. It is signifi-
cantly linked with neuritic plaque and tangle formation in 
dementia population with AD pathology. CD68 expres-
sion is related to poor cognition [142]. It is found that 
CX3CR1 shares a positive correlation with the expression 
of CD68, absence of CX3CR1 or CX3CL1-CX3CR1 sign-
aling leads to a decreased expression of CD68 microglia 
[78].

Microglia express CD74 [152]. Expression of CD74 
increases in neuroinflammatory condition like AD [190]. 

It is reported that therapeutic agent such as xamoterol 
alleviates manifestation of AD via PKA/cAMP pCREB 
signaling, which results in the decreased mRNA expres-
sion of many M1 microglial markers including CD74 
[191]. CX3CL1 signaling may reduce the expression of 
CD74, because CX3CL1-CX3CR1 signaling activates 
CREB [48]. However, the effect of CX3CL1 on CD74 may 
be independent of cAMP activation, because CX3CL1 
induces a significant decrease in cAMP signaling [192]. 
The correlation between CX3CL1 and CD74 can also 
be established through “migration inhibitory factor” 
(MIF), a chemokine produced by microglia and neurons 
in brain. MIF binds to CD74 and promotes expression of 
TNF-α, IL-6, IFN-γ, plaque formation and neuroinflam-
mation in AD [193]. In a different context, it was found 
that IL-6 antagonist can decrease MIF levels [194]. As 
CX3CL1 suppresses IL-6 production [38], hence may 
suppress MIF mediated CD74 activation.

M2 Microglia express CD163 [152, 195]. CD163 micro-
glia are predominant in the frontal and occipital cortices 
of AD, and associated with the phagocytosis of Aβ plaque 
[196]. Expression of CD163 indicates neuroprotection, 
however, it shares an inverse relation with the expression 
of CREB protein [98]. This makes the role of CX3CL1 
somewhat complicated due to the fact that CX3CL1 acti-
vates CREB [48] as well as M2 microglia [26]. However, 
it is observed that a higher expression of CX3CR1 and 
moderate expression of CX3CL1 share an inverse rela-
tion with the expression of CD163 [197]. By contrast, 
CX3CL1 has been found to indirectly increase Cd163 
gene expression [198]. Thus, further research is required 
to understand the complex role of CX3CL1 with respect 
to CD163.

Expression of ionized calcium-binding adapter mol-
ecule 1 (Iba1) by microglia is related with good cog-
nition and absence of dementia [142]. In AD, Aβ-42 
correlates inversely with Iba-1 [161]. However, the com-
plex role of Iba1 microglia is evident from the fact that 
Iba1 positive microglia express NLRP3, which is respon-
sible for caspase-1 dependent maturation of proinflam-
matory cytokines and cell death [199]. It is reported 
that decreased CX3CL1-CX3CR1 signaling leads to an 
increase in the expression of Iba1 positive microglia. 
Activation of Iba1 microglia is again responsible for post-
operative cognitive dysfunction [77]. However, a research 
has contradicted the inverse relation between CX3CL1 
and Iba1, where intrathecal injection of CX3CL1 led to 
an increase in Iba1-IR positive microglia in the spinal 
dorsal horn of C57BL/6J mice [200]. Thus, the actual role 
of CX3CL1 in the expression of Iba1 positive microglia 
remains elusive.

Microglia express lectins such as galectins, siglecs 
and C-type lectins. Among these lectins, galectin-3 
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deserves special mention because of its upregulation by 
inflammatory mediators [201]. Except for amyotrophic 
lateral sclerosis, galectin-3 upregulation causes neuro-
inflammation and neurodegeneration through NF-κB 
and NLRP3 [202]. Galectin-3 released by microglia is 
required for complete activation of microglial TLR4 
and subsequent neuroinflammation [203]. Though 
there is no research to prove the effect of CX3CL1 on 
the expression of galectin-3, yet some different stud-
ies help to establish the link between. It was found that 
the concentrations of CX3CL1 and galectin-3 are much 
higher in systemic sclerosis patients and these proteins 
are thought to increase and exacerbate the fibrotic pro-
cesses in systemic sclerosis [204]. This perhaps indi-
cates that the expressions of CX3CL1 and galactin-3 
are independent of each other or bear a positive corre-
lation. This needs further research to reach into a con-
clusion. However, the need for establishing the relation 
between CX3CL1 and galactin-3 in systemic sclerosis 
can be justified by the finding that systemic sclero-
sis patients suffer from dysexecutive syndrome [205], 
which in most cases bear AD as the underlying aetiol-
ogy [206].

CD206 and CD209 are the C-type lectins expressed 
by M2 microglia [195]. However, CD209 microglia 
are considered as intermediate microglia phenotype, 
because they are present in preactive lesions as well 
as in nonlesion white and gray matter of brain with 
multiple sclerosis [207]. CX3CL1 dependent expres-
sion of CD206 microglia have neuroprotective role. It 
was found that CX3CL1 facilitates the polarization of 
TNF-α microglia to CD206 microglia and can prevent 
ischemic stress associated disorders [208]. However, 
the established role of CX3CL1-CX3CR1 interaction 
to polarize M1 microglia to the anti-inflammatory 
M2 type [26] comes under question because M2a 
microglia markers CD206 and YM1 are expressed in 
the cortex of brain-injured CX3CR1−/− mice [209]. 
In this context, the extent of cognitive dysfunction 
and neuronal death after the acute post-injury period 
were much greater in CX3CR1−/− animals than the 
wild-type [209]. Contrary to the expression of CD206 
in CX3CR1−/−  animals, the expression of CD209 is 
downregulated in TSC1CX3CR1CKO microglia which 
are isolated from animals produced by cross breading 
TSC1flox/flox mice with CX3CR1-cre mice [210], and 
CX3CR1-cre mouse does not produce endogenous 
CX3CR1 [211].

All the above evidences speak in favour of the differen-
tial effect of CX3CL1 on different mediators and markers 
of neuroinflammation. This makes the neuroprotective 
role of CX3CL1 a debatable matter.

Astroglia
Physiopathology of astroglia, their subtypes and the role 
of CX3CL1
Astrocytes provide structural support to CNS. They pro-
vide nutritional support to the neurons by storing glyco-
gen and maintaining water and ionic balance. They form 
BBB and maintain its integrity, regulate permeability. 
They express ionotropic and metabotropic membrane 
receptors in the tripartite synapse and maintain homeo-
stasis [119, 212–214]. A study with the BBB model in 
AD has revealed that expression level of CX3CL1 in the 
peripheral blood mononuclear cells (PBMCs) from AD 
BBB model was much lower compared to PBMCs from 
BBB of wild type model [215]. Contextually, AD is charac-
terized by breakdown and early dysfunction of BBB [216]. 
This indicates the significance of CX3CL1 in maintain-
ing the competence of BBB. However, another research 
with Alzheimer’s patients has made this understanding 
complicated owing to an increase and a decrease in the 
expression of CX3CL1 by PBMCs in BBB models of mild 
and moderate AD, respectively. Both expression values 
in mild and moderate AD were greater than the control 
group [217]. This indicates the need of further research 
on the role of CX3CL1 in BBB associated AD.

Astrocytes actively regulate cerebral blood flow. They 
release prostaglandin E2 (PGE2) and epoxyeicosatrienoic 
acids to produce vasodilation. They also release arachi-
donic acid which undergoes ω-hydroxylation to produce 
20-hydroxyeicosatetraenoic acid in the blood vessel to 
produce vasoconstriction [218, 219]. However, results 
obtained from previous research are quite opposite, 
where PGE2 has produced vasoconstriction on the iso-
lated parenchymal arterioles, which were preconstricted 
[220]. CX3CL1-CX3CR1 signaling has been found to 
increase the expression of PGE2 by satellite glial cells, 
indicating the complex role of CX3CL1 in cerebral blood 
flow [221].

Astrocytes are necessary for the proliferation of micro-
glia under the influence of neuronal CX3CL1. Antibody 
to CX3CL1 or astroglial CX3CR1 abolishes the influence 
of CX3CL1 on microglial proliferation [222].

Astrocytes are the only cell types in the CNS which 
possess glutamine synthetase, and responsible for the 
glutamine content of the CNS [223]. Astrocytes convert 
glucose to glutamine. This glutamine eventually acts as 
the precursor for glutamate or gamma amino butyric acid 
(GABA) in the neuron [224]. Other than synthesizing 
glutamine from glucose, astrocytes can also synthesize it 
by taking up excess glutamate from the tripartite synapse 
and allowing astroglial glutamine synthetase to do the 
rest of the work [225, 226]. This will diminish the chances 
of glutamate excitotoxicity and neuroinflammation. 
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The role of astrocytes in neuroprotection against gluta-
mate excitotoxicity in rat brain is already proved [227]. 
In this regard, CX3CL1 protects against glutamate tox-
icity via adenosine receptors (mainly A1R and in part 
A3R). CX3CL1 induces release of D-serine (a co-agonist 
of NR2A type of synaptic NMDA receptor) by glial cells, 
CX3CL1 and D-serine induce the expression of adeno-
sine receptor (A2AR), which is required for phosphoryla-
tion of CREB, a prerequisite for neuroprotection against 
NMDA toxicity [228]. Initial astroglial atrophy in the 
blood vessels and synapses is prominent in AD. This 
attributes to the dysfunction of the neuro-vascular unit 
and glutamate toxicity in tripartite synapses [214, 229]. 
Prolonged glutamate toxicity is injurious to astrocytes 
and causes death of astrocytes [230]. This will exacer-
bate neurodegeneration because diseased astrocytes 
lead to secondary reactive astrogliosis [231]. Even previ-
ous reports show that astrocytes undergo transition into 
reactive astrocytes following injury-induced release of 
inflammatory mediators by M1 microglia [80, 232], oli-
godendrocytes, neurons, endothelial cells, leucocytes and 
other astrocytes [232]. However, the extent of neuronal 
damage due to reactive astrogliosis is difficult to predict. 
This is owing to the fact that one way reactive astrocytes 
expressing A2AR and purinergic (P2Y1) receptors induce 
complement component C3, NF-kB and IL-1β, which 
are responsible for neurodegeneration [233, 234]. Other 
way, CX3CL1 through A2AR provides neuroprotection 
against NMDA toxicity [228]. Astrocytes are recognized 
as intermediary/secondary targets of CX3CL1 activ-
ity, because absence of astrocytes completely disrupts 
the neuroprotective role of CX3CL1-stimulated micro-
glia against excitotoxicity [235]. Astrocytes maintain the 
neurotransmitter pool around the synapse. Astrocyte 
processes have abundance of transporters which uptake 
GABA, glutamate [236], and glycine [237]. Thus, astro-
cytes are actively involved in the regulation of neuronal 
excitability. However, the actual process of regulation of 
neurotransmitter pool is more complex, because seques-
tration of glutamate and GABA by astrocytes is depend-
ent on extracellular glycine release, which is mediated 
by Sodium-Neutral Amino Acid Transporter (SNAT3) 
[238]. The complexity of this process is realized from the 
report that extracellular glutamate triggers astroglial glu-
tamate release to the adjacent neurons, by inducing Ca2+ 
release from the intracellular stores of astrocytes [225]. 
This puts a question on the role of CX3CL1 because 
CX3CL1-CX3CR1 interaction in astrocytes mobilizes 
astrocytic intracellular Ca2+ [222] and increased concen-
tration of astrocytic Ca2+ leads to the release of gliotrans-
mitters such as glutamate, ATP and D-serine [239]. This 
makes the role of CX3CL1 ambiguous in the context of 
excitotoxicity. This suggests for the presence of a delicate 

regulation between glutamate and glycine to maintain 
the glutamate gradient inside and outside astrocytes.

The significance of astrocytes can be realized from 
their ability to release different growth factors such as 
BDNF, glial cell line derived neurotrophic factor (GDNF), 
nerve growth factor (NGF), platelet derived growth fac-
tor (PDGF), and certain other substance such as heat 
shock proteins (HSP) [212, 240, 241]. The significance of 
CX3CL1 in expression of BDNF is already proved [77]. 
Similarly, CX3CL1 induces the expression of A2AR [228] 
and A2AR is required by GDNF to evoke the release of 
dopamine in the striatum and provide neuroprotection 
[242]. CX3CL1 is also observed to mediate the effect 
of NGF [243]. Research also shows positive correla-
tion between expression of CX3CL1 and HSP-72 [244]. 
Another HSP, called heme oxygenase-1 is secreted by 
astrocytes and this HSP is associated with neuroprotec-
tion in intracerebral hemorrhage [245]. Soluble CX3CL1 
has been found to induce the expression of heme oxyge-
nase-1 [246]. All these evidences show enormous amount 
of crosstalk by CX3CL1 in favour of neuroprotection.

Astrocytes also synthesize L-lactate and cholesterol. 
Extracellular release of L-lactate provides energy to the 
neurons and the cholesterol forms the essential compo-
nent of myelin sheath of neurons during synaptogenesis 
[224, 247, 248]. L-lactate can offer neuroprotection via 
mild oxidative burst leading to unfolded protein response 
and activation of NRF2. L-lactate does not induce severe 
oxidative stress, rather offers resistance against it [249]. 
It is found that CX3CL1 can activate NRF2 and provide 
neuroprotection [37].

In contrast to the claims about the negative role of 
astrogliosis, a study shows that astrogliosis shields the 
neurons from inflammatory lesion. During astrogliosis, 
astrocytes undergo hypertrophy and wrap the healthy 
neurons to protect from a brain lesion [250]. The role of 
astrocytes to counteract neurodegeneration is believed 
due to their ability to promote the clearance of intersti-
tial Aβ peptide and encapsulate dendritic spines, den-
dritic shafts, axonal boutons. Astrocytes also modulate 
the stabilization and maturation of dendritic spines [214, 
229]. In spite of the beneficial roles, astrogliosis is linked 
with neuroinflammation [4, 5]. This is due to the fact that 
cytokines released during pathological process, work 
synergistically to elevate the expression of β-secretase, 
amyloid precursor protein (APP) in astroglia and conse-
quent massive production and secretion of Aβ peptide 
into the surrounding. This is a hallmark event in the pro-
gression of AD [251]. However, the effect of this secreted 
Aβ peptide on neurons may be neutralized by CX3CL1 
C-terminal fragment, generated following the cleavage 
of membrane anchored CX3CL1 by metalloproteases 
and β-secretase (BACE1). This can significantly reduce 
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Aβ deposition and neuronal loss [252]. Reduced Aβ 
deposition will also suppress α-synuclein toxicity. This 
is owing to the fact that Aβ may disrupt protein clear-
ance, enhance phosphorylation and promote aggrega-
tion of α-synuclein [253]. Further cleavage of membrane 
anchored CX3CL1 C-terminal fragment by γ-secretase 
releases the intracellular domain of CX3CL1, which com-
municates with the nucleus and promotes neurogen-
esis [252]. Thus, CX3CL1 offers wide coverage against 
astrogliosis-related neurotoxicity. However, CX3CL1 
may not protect against long-term assault because per-
sistent reactive astrogliosis is maladaptive and the reason 
behind loss of neuronal plasticity and other regenerative 
process [254]. To decipher the bipolar role of astrocytes, 
knowledge of its location specific/functional classifica-
tion is much desired. Based on location, human cortical 
astrocytes are classified as inter-laminar astrocytes (pre-
sent in superficial cortical layers), polarized astrocytes 
or varicose projection astrocytes (present in the deep 
cortical layers) [224, 255]. Another location specific clas-
sification divides astrocytes as protoplasmic astrocytes 
(present in the gray matter) and fibrous astrocytes (pre-
sent in the white matter) [240, 256]. In this regard, pro-
toplasmic astrocytes deserve special mention, because 
they favour accumulation of α-synuclein during Parkin-
son’s disease, AD and epilepsy [240]. Such accumulation 
of α-synuclein is toxic to astrocytes [257] and can lead 
to the transformation of astrocytes into reactive astro-
cytes [258]. Reactive astrocytes with their larger size 
and increased expression of glial fibrillary acidic protein 
(GFAP) [259], induce neurotoxicity by producing ROS 
or certain pro-inflammatory cytokines [232]. The role 
of CX3CL1 in suppressing α-synuclein mediated neuro-
degeneration is already known [64]. This will suppress 
subsequent production of ROS and cytokines by reac-
tive astrocytes and provide neuroprotection. Further, 
it is desirable to observe the effect of CX3CL1 on sub-
types of reactive astrocytes which are classified based on 
upregulating stimuli. Based on upregulating stimuli and 
functional differences reactive astrocytes are classified 
as A1 astrocytes and A2 astrocytes. A1 are upregulated 
by inflammation and responsible for pathological out-
comes (neurodegeneration), whereas A2 are upregulated 
by ischemia and have a neuroprotective role [256, 260]. 
Owing to the neurodegenerative role of A1 astrocytes, its 
suppression by CX3CL1 will alleviate diseases affecting 
cognitive functions. Hence, the impact of CX3CL1 on the 
upregulating stimulus of A1 astrocytes is a crucial predic-
tor of the effect of CX3CL1 on neuroinflammation. Criti-
cal observation suggests that A1 astrocytes can also be 
upregulated by ischemia, because ischemia shows aggre-
gates of RNA binding proteins such as TAR-DNA bind-
ing protein-43 (TDP43) and many others [261]. Among 

these proteins, expression of high levels of intracellular 
TDP43 is known to activate M1 microglia [30], which in 
turn activate A1 astrocytes by secreting TNF-α, IL-1α, 
and complement component 1, q subcomponent C1q 
[80, 259, 262]. Thus, accumulated RNA binding protein 
will involve A1 astrocytes, to negatively affect the sur-
vival of neurons and initiate neurodegeneration in amyo-
trophic lateral sclerosis and frontotemporal dementia 
[261]. Similarly, when astrocytes are activated with IL-1β 
and IFN-γ, they also liberate TNF-α [81]. This shows that 
astrocytes in turn can activate microglia, because M1 
microglia are activated by TNF-α [263]. Thus, activa-
tion of astroglia and microglia seems to share a converse 
pathway which is TNF-α dependent. Previous report has 
claimed that astrocytes can express CX3CL1 under nor-
mal and pathological condition, and astroglial CX3CL1 
signaling induce microglial chemotaxis [11]. Even sub-
sequent research has confirmed that IL-1β, TNF-α and 
IFN-γ can stimulate the secretion of soluble CX3CL1 
from activated astrocytes [10]. The ability of astroglia 
to activate microglia is corroborated by another find-
ing where reactive astrocytes secrete significant amount 
of Aβ peptide in AD [232] and microglia start cluster-
ing around Aβ plaques [89]. These compelling evidences 
suggest that astrocytes have a strong influence on micro-
glial recruitment. Astroglial CX3CL1 will impede the 
disruptive role of M1 microglia and prevent subsequent 
ischemia-induced neuronal damage because CX3CL1 is 
already known to be neuroprotective against ischemia-
induced neuronal damage [31]. By contrast, CX3CR1 has 
been found to be a contributor to cerebral ischemia and 
postischemic inflammation [264]. This raises concern 
on the protective role of CX3CL1-CX3CR1 signaling via 
modulation of upregulating stimulus for A1 astrocytes.

In continuation to the aspects of microglial recruitment 
it is found that microglia may be recruited by many cell 
types including microglia, but through astrocytes. This 
is corroborated by the fact that microglia release TNF-α 
and IL-1β [28]. Both TNF-α and IL-1β can induce astro-
glial CX3CL1 [8, 11, 183] and CX3CL1 is responsible for 
microglial chemotaxis [11]. Other macrophage cell types 
which can release TNF-α include tanycytes, ependymo-
cytes, and cerebrospinal fluid-contacting neurons [265]. 
As CX3CL1 reduces the expression of TNF-α and IL-1β 
[38], this will suppress chronic microglial recruitment 
by other cell types also. This represents a feedback loop, 
where astrocytes regulate microglial chemotaxis and 
neuroinflammation by other cell types also. However, the 
role of CX3CL1 in increasing TNF-α and other cytokines 
[7] imposes a big contradiction in this setting.

Further, it is noted that bradykinin-induced increase in 
astrocytic intracellular calcium leads to astrocytic ATP 
release in the surrounding. This ATP activates P2X7 
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receptors on microglia, leading to an increased microglial 
permeability and apoptotic death of microglia [266]. This 
perhaps indicates that activation of M1 microglia subse-
quently activates the degradative role of astrocytes on M1 
subtype. This is due to fact that M1 microglia aggravate 
neurotoxic agent mediated demyelination of neurons 
by producing TNF-α and IFN-γ [267]. It is noteworthy 
that IFN-γ stimulates ATP mediated microglial death 
by astrocytes [266]. This represents a strange mecha-
nism of microglia-induced microglial death through 
astrocytes. CX3CR1 deficient mononuclear phagocytes 
show upregulation of P2X7, consequent release of IL-1β 
and neurodegeneration [268]. This indicates the sup-
pressive role of CX3CR1 in P2X7 expression. Next, it is 
desirable to observe the effect of CX3CL1 on TNF-α and 
IFN-γ because IFN-γ also upregulates the expression of 
HLA-DR in astrocytes. TNF-α does not have any direct 
role in HLA-DR upregulation but enhances the effect 
of IFN-γ on HLA-DR expression [269]. This imparts 
astrocytes with the function of antigen presenting cells 
[270]. Soluble CX3CL1 shows negligible effect but mem-
brane bound CX3CL1 shows significant increase in the 
expression of IFN-γ by NK cells [55]. This may augment 
inflammatory process. However, suppression of TNF-α 
expression by CX3CL1 [38] may partially subdue the 
expression of HLA-DR.

The impact of astrocytic CX3CL1 on microglial 
CX3CR1 can be observed during spinal nerve injury, 
where an increased expression of astrocytic CX3CL1 
leads to the upregulation of microglial CX3CR1 [271]. 
CX3CL1 and CX3CR1 are considered possible mediators 
of neuropathic pain [271]. Subsequent research also con-
firmed the role of activated microglia in the maintenance 
of chronic pain post spinal cord injury [272]. However, 
the role of astroglial CX3CL1 needs further explora-
tion because CX3CL1 is also constitutively expressed in 
astrocytes, and reported to have physiological role other 
than pathological involvement. Even, CX3CR1 is also 
expressed on astrocytes [11]. Thus, the impacts of neu-
ronal and astroglial CX3CL1 on CX3CR1 of microglia 
and astroglia need to be explored. Similarly, the role of 
neuronal CX3CR1 needs further exploration. Neuronal 
CX3CL1 has been proved to increase the neuroprotective 
role of astroglia in excitotoxicity and ischemia. However, 
this role is microglia dependent because CX3CL1-micro-
glia interaction is the prerequisite for the expression of 
astroglial CCL2 in a co-culture of astroglia and micro-
glia, which eventually provides neuroprotection [46]. 
When it comes to the role of astroglia in suppressing 
NF-kB mediated neuroinflammation, it is observed that 
CX3CL1-CX3CR1 signaling did not contribute to the 
process. Absence of CX3CR1 on astroglia did not show 
any increase in the expression of NF-kB as compared to 

CX3CR1 positive astroglia [146]. This reflects that NF-kB 
mediated release of inflammatory mediators [87] will not 
be checked by CX3CL1-CX3CR1 interaction on astro-
glia. However, astroglia may engage neuronal CX3CL1 
to produce their effect on the mediators of inflammation. 
This is due to a prediction that astroglial CX3CL1 may 
promote expression of membrane bound CX3CL1 on 
neuron and a subsequent release of soluble CX3CL1 [10]. 
In this regard, the neurotoxic role of neuronal CX3CR1 
in the absence of microglia is already discussed above 
[59].

Astrocytes liberate interleukin-1 (IL-1β), IL-6, 
chemokine C-X-C motif ligand-1 (CXCL1), IL-8 
(CXCL8), INF-γ-induced protein 10 (IP-10)/CXCL10, 
monocyte chemoattractant protein 1 (MCP-1)/
chemokine C–C motif ligand 2 (CCL2), macrophage 
migration inhibitory factor (MIF), macrophage inflam-
matory protein 1 alpha (MIP-1α)/CCL3, granulocyte 
colony stimulating factor (G-CSF) and granulocyte–
macrophage colony stimulating factors (GM-CSF) in 
late stage AD. These massive cytokine and chemokine 
storms are reported to favour leukocyte infiltration into 
the brain and mount a chronic inflammatory process 
[214, 273–275]. However, the relation among astroglio-
sis, liberation of cytokines and chemokines, and chronic 
neuroinflammation in late stage AD is ambiguous. This 
is due to the report that, reactive astrogliosis is observed 
in late stage AD [276]. Such reactive astrogliosis leads 
to glial scar formation [277]. Glial scar prevents neuro-
degeneration, reduces demyelination, isolates damaged 
tissues and repairs injured nervous tissues, repairs BBB, 
impedes infiltration of inflammatory cells, and reduces 
loss of oligodendrocytes in white matter adjacent to the 
injury site [232, 259, 278]. Astroglial scar also produces 
chronic inactive lesion [11]. In fact, CX3CL1 induces 
the expression of CXCL16 in astrocytes [46]. Previous 
research has already proved that CXCL16 can be pro-
duced by reactive astrocytes. CXCL16 undergoes shed-
ding to upregulate the expression of its receptor CXCR6 
in glial precursor cells. CXCR6-positive glial precursor 
cells will be attracted by CXCL16. This will lead to their 
invasion and proliferation. This will favour subsequent 
astrogliosis and glial scar formation [279]. Irrespective 
of the effects of astrogliosis, AD represents a progressive 
degenerative brain disease [280]. This raises questions on 
the significance of CX3CL1-induced glial scar formation 
and its implication on neuroinflammation.

Effect of astroglia ablation in neuropathophysiology 
and the impact of CX3CL1
Ablation study has proved that microglia mediate 
tauopathy, however, it is reported that astrocytes can 
express lower level of tau proteins [281]. Astrocytic 
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apoE4 has been proved as the key role player in tau-
induced synaptic loss and phagocytosis of synaptic ele-
ments by microglia [282]. Thus, ablation of astrocytes 
seems to be beneficial in the context of tauopathy. The 
overall effect of astroglial ablation should be consid-
ered with respect to neuronal function. It is reported 
that ablation of astrocytes leads to motor discoordi-
nation and increases chances of excitotoxicity due to 
a reduced expression of glutamate transporters [283]. 
Similarly, reactive astrocytes in epileptic tissue can pro-
mote as well as oppose seizure development [284]. In 
this context, astrocytes play a dichotomous role. The 
significance of astrocytes in mediating the neuropro-
tective role of neuronal CX3CL1 and suppressing exci-
totoxicity through microglia is already discussed [235]. 
This represents the significance of a nexus of neuronal 
CX3CL1, astroglia and microglia in alleviating excito-
toxicity. A recent study has put a question on the age 
old belief on the destructive role of reactive astrocytes 
in neuroinflammation. The study has revealed that 
amyloid pathology and memory loss in AD is aggra-
vated after the loss of reactive astrocytes [285]. Simi-
larly, another study has proved that astroglia play a 
neuroprotective role and helps in memory retention. 
Further, this study also corroborates that Aβ removal is 
dependent on astrocytes and pharmacological ablation 
of astrocytes leads to an increased expression of pro-
inflammatory markers as well as loss of dendritic spine 
[286]. However, other study has proved that cholesterol 
derived from astrocytes is required by apolipoprotein 
E (apoE) to transfer neuronal APP inside lipid clusters, 
where APP is acted upon by β-secretase and γ-secretase 
to produce Aβ peptide. Both apoE3 and apoE4 isomers 
have similar actions on APP. Cholesterol also regulates 
the formation of lipid clusters. Inhibition of astrocyte 
cholesterol synthesis significantly reduces amyloid and 
tau burden. It is also proved that knocking down cho-
lesterol synthesis or treatment with cholesterol-free 
apoE causes APP to come out of lipid clusters, which 
is then processed by α-secretase to produce neuropro-
tective metabolite [287]. Studies with multiple preclini-
cal models reported that overexpression of astrocytic 
apoE4 increases hyperphosphorylation and misfolding 
of neuronal tau, which eventually leads to tauopathy 
[288]. It is reported that apoE4 astrocytes show dys-
functional astrocytic mitochondria with reduced fission 
and mitophagy. Dysfunctional astrocytic mitochondria 
are considered to play a role in AD [289]. Dysfunctional 
astrocytic mitochondria loose calcium handling ability, 
which in turn contributes to the progression of Parkin-
son’s disease [290]. All the above evidences show the 
beneficial role of astrocytes as well as the pathological 
significance of astrocytic cholesterol and apoE4. This 

revelation calls for the investigation of the influence of 
CX3CL1 on the negative role of astrocytes. The cor-
relation between CX3CL1/CX3CR1 and cholesterol 
synthesis can be proved from previous studies where 
blockade of 3-hydroxy-3-methylglutaryl (HMG)-coen-
zyme A (CoA) reductase decreases the expression of 
CX3CL1 and CX3CR1. It is to be noted that CX3CL1-
CX3CR1 interaction is found to play a role in athero-
genesis [291–293]. The involvement of CX3CL1 in low 
density lipoprotein (LDL) cholesterol mediated athero-
sclerosis is proved by the fluorescence intensity study 
of CX3CL1 targeted nanofiber [294]. Thus, the role of 
CX3CL1 is evident in cholesterol synthesis. However, 
the role of CX3CL1 with respect to astroglial apoE4 
has to be established. Surprisingly, no evidence could 
be retrieved regarding the role of CX3CL1 on astro-
glial apoE4. This opens newer avenue to research and 
establish the impact of CX3CL1 on astroglial apoE4. 
Nevertheless, the impact of CX3CL1/CX3CR1 on cho-
lesterol synthesis seems to be a matter of concern in the 
event of astroglial cholesterol synthesis and subsequent 
neurodegeneration.

Role of other astroglial markers in neuroinflammation 
and their modulation by CX3CL1
Astrocytes in experimental autoimmune encephalomy-
elitis, produce macrophage inflammatory protein-3α 
(MIP-3α), a CC Chemokine, also known as CCL20. 
IL-1β and TNF-α can induce the expression and secre-
tion of CCL20 by astrocytes. CCL20 is a chemoattract-
ant for polarized T helper (Th) cells (both Th1 and Th2) 
[295]. High levels of Th cells (Th1 and others) along with 
chemokine and cytokines can damage BBB and acti-
vate resident astrocytes and microglia to produce neu-
roinflammation [296]. Thus, astrocytes attract Th cells 
to activate more and more astrocytes and microglia to 
aggravate neurodegenerative condition like autoim-
mune encephalomyelitis [295]. The release of Th1 and 
others are also associated with multiple sclerosis [296]. 
Similarly, Th1 and Th2 are responsible for the progres-
sion of AD [297]. This necessitates the establishment of 
a correlation between CX3CL1 and CCL20 as well as 
between CX3CL1 and Th cells. It was found that astro-
cytes show upregulation of CCL20 and CX3CL1 along 
with many other mediators under the influence of neu-
ronal α-synuclein [298]. This perhaps indicates a positive 
correlation between CCL20 and CX3CL1. Under a differ-
ent setting it is confirmed, that CX3CL1 indeed shares a 
positive correlation with CCL20 [299]. This again raises 
question on the neuroprotective role of CX3CL1.

Astrocytes constitutively express TLR4. LPS stimu-
lated TLR4 requires soluble CD14 for the production 
of TNF-α, IL-6 and activation of NF-kβ [300]. This can 
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activate M1 microglia via TNF-α [263]. TNF-α and other 
cytokines can stimulate the secretion of soluble CX3CL1 
from activated astrocytes [10]. CX3CL1-CX3CR1 signal-
ing, has been found to increase the expression of IL-1β, 
IL-6 and NF-kB by microglia [146] as well as decrease the 
expression of IL-1β, IL-6 and TNF-α by microglia [38, 
127]. This dichotomous role of CX3CL1 on the release of 
cytokines makes its impact on astrocytic TLR4 and CD14 
somewhat illusive. However, CX3CL1 has a protec-
tive role on CX3CR1-WT/WT CD14+ monocytes from 
serum starvation-induced death [301].

Astrocytes express CD36 and CD47. Both CD36 and 
CD47 engulf Aβ peptide in actin polymerization depend-
ent manner [302]. CX3CL1-CX3CR1 interaction is already 
known for initiating actin polymerization [129]. This 
shows the role of CX3CL1 in engulfing Aβ through CD36 
and CD47. CD36 is also required for astrogliosis and glial 
scar formation [303] and the role of CX3CL1 in glial scar 
formation by astrocytes is already proved [46, 279].

Astrocytes express aldehyde dehydrogenase family 
1 member L1 (Aldh1L1). Aldh1L1 has many functions 
such as conversion of folate, nucleotide biosynthesis and 
cell division. Reactive astrocytes show upregulation of 
Aldh1L1 and GFAP in acute neural injury and chronic 
neurodegenerative conditions [304]. Expression of GFAP 
is the indication for astrocyte reactivity because astro-
cytes with ALDH1L1+GFAP− are identified as resting 
astrocytes and ALDH1L1+GFAP+  as reactive astrocytes 
[305]. Aldh1L1 levels increase in response to focal demy-
elination injury [306]. However, the expression level of 
Aldh1L1 by astrocytes in response to saline or 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment 
did not show a significant difference. This is similar in the 
case of groups treated with saline or trimethyltin (TMT) 
type of neurotoxins [307]. Thus, GFAP bears more sig-
nificance compared to Aldh1L1 as a marker of astrocyte 
reactivity. An increase in neuronal CX3CL1 does not 
have any significant effect on promoting astrogenesis 
or astrocytosis, as confirmed by the expression level of 
GFAP [308].

Astrocytes express glycolytic enzyme aldolase C 
(AldoC), which can be found in astrocyte derived small 
extracellular vesicles (sEVs). Astrocyte can transfer 
AldoC containing sEVs to hippocampal neurons. Astro-
cytic sEVs also carry micro RNAs, which are present in 
astrocytes. One specific micro RNA is miR-26a-5p. It 
is observed that miR-26a-5p containing sEVs decrease 
dendritic complexity in neurons, and the content of 
AldoC influences the role of sEVs [309]. Decreased den-
dritic complexity may lead to neurodegeneration [310] 
and pathologies like AD. The relation with AD can be 
explained based on the functions of different spine 
types. Thin spines are apparently required for learning 

and new memory formation, whereas mushroom spines 
may represent sites of memory storage and stubby spines 
may give rise to thin or mushroom spines. AD reports a 
reduction in the density of mushroom spine. Thus, loss 
of dendritic complexity is a crucial determinant of AD 
[311]. CX3CL1-CX3CR1 signaling has been found to 
prevent dendritic loss and death in striatal neurons cul-
tured with mixed glial population [312]. Though protec-
tive effect on dendrites seems to be the exclusive role of 
microglia rather than astrocytes [312], yet the involve-
ment of astrocytes in microglia mediated neuroprotec-
tion cannot be denied [235]. Conversely, a report proves 
that CX3CR1 knockout microglia support increased den-
dritic spine density in neurons [12]. This depicts the com-
plexity of CX3CL1 functioning.

Astrocytes secrete S100 calcium-binding protein B 
(S100B), a soluble protein which can induce neurite 
outgrowth [313]. Neurite elongation and branching are 
essential to ensure proper wiring of neuronal network, 
which is again required for brain development [314]. 
Within physiological range S100B has a trophic role on 
neurons, but a higher concentration of S100B is proin-
flammatory [313, 315]. Higher level of S100B is found in 
aged brain and in many neurodegenerative conditions 
including AD. Microglia express receptor for advanced 
glycation end products (RAGE) and S100B can engage 
microglial RAGE to facilitate microglial activation and 
movement. Such interaction underlies the pathogen-
esis of neuroinflammation [315]. S100B can also induce 
RAGE in cortical neurons [313]. Neuronal RAGE is a 
receptor for Aβ peptide [316] and amphoterin [317] 
and plays a dichotomous role. One way, amphoterin 
binds with RAGE to promote neurite outgrowth and 
the other way Aβ peptide-RAGE interaction results 
in oxidative stress and consequent neurodegenera-
tion. Strangely, the same Aβ peptide may facilitate 
neurite outgrowth [317]. RAGE is also responsible 
for advanced glycation end products (AGE) mediated 
hyperphosphorylation of tau proteins and memory def-
icits, leading to AD like pathologies [318]. Suppressing 
excessive induction of S100B may suppress RAGE and 
provide neuroprotection in AD like pathologies [315]. 
This is concluded owing to the role of Aβ peptide-
RAGE interaction in oxidative stress [317]. CX3CL1 
shows inverse relation with the expression of S100B in 
ischemic stroke patients and a decreased S100B level 
indicates better recovery [319]. However, predicting the 
actual effect of CX3CL1 on S100B is not easy. This is 
owing to the fact that IL-1β induces secretion of S100B 
by astrocytes [39] and CX3CL1-CX3CR1 signaling may 
increase the expression of IL-1β by microglia [146] as 
well as decrease the expression of IL-1β by microglia 
[38, 127].
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Astrocytes express RNA‐binding protein Fragile 
X Mental Retardation Protein (FMRP). FMRP loss 
from astrocytes reduces glutamate transporter GLT‐1 
(EAAT2) expression and glutamate uptake by astro-
cytes. This may cause glutamate toxicity. Strangely, 
knocking out Fmr1 gene may lead to increased expres-
sion of tumor necrosis factor receptor 2 (TNFR2) (an 
anti-inflammatory receptor for TNF-α) and S100B 
by astrocytes. TNFR2 promotes myelination [320]. 
However, the overall benefits of increased expres-
sion of TNFR2 may be questionable due to the role of 
enhanced TNFR2 signaling in promoting atheroscle-
rosis [321]. Atherosclerosis is again responsible for 
neuroinflammation and brain atrophy [322]. CX3CL1 
increases mRNA expression and activity of GLT-1 on 
astrocytes and protects neurons against excitotoxicity 
[235]. At the same time impeding CX3CL1-CX3CR1 
signaling alleviates severity of atherosclerosis [323]. 
This will reduce neuroinflammation and brain atrophy 
[322].

Astrocytes express aquaporin-4 (AQP4) protein, 
responsible for brain water and volume homeostasis. 
However, its involvement in activating microglia and 
inducing neuroinflammation in neurotoxin-induced Par-
kinson’s disease model has also been revealed [324]. Con-
trary to this pathological involvement, astrocytic AQP4 
is involved in the clearance of Aβ from brain via lym-
phatic clearance. Hence, it seems to be a target to alle-
viate AD [325]. However, a significant increase in AQP4 
expression is related to edema in AD brain and cerebral 
amyloid angiopathy [326]. AQP4 expression is depend-
ent on the activation of p38 mitogen-activated protein 
kinase (p38-MAPK) pathway [327]. Suppression of p38-
MAPK pathway leads to a decrease in the production of 
astrocytic soluble CX3CL1, and astrocytic CX3CL1 is 
neuroprotective. This reveals the beneficial effect of p38-
MAPK pathway [10]. At the same time this pathway also 
plays a negative role in the context of ischemia which 
is linked to CX3CL1. The alleviating role of CX3CL1 
against ischemia-induced neuronal damage is well doc-
umented [31]. Strangely, CX3CL1-CX3CR1 interac-
tion on microglia had a detrimental effect on ischemic 
brain injury via p38-MAPK/PKC signaling [7]. Thus, 
CX3CL1 and p38-MAPK share a complicated relation in 
neuroinflammation.

Immature astrocytes express thrombospondins-1 and 
thrombospondins-2. Deficiency of both these proteins 
reduces synaptogenesis [328]. Though, thrombospon-
dins-1 encoding gene THBS1 is associated with the risk 
for autism [329], yet thrombospondins-1 plays a neuro-
protective role. Thrombospondins-1 impedes Aβ medi-
ated synaptic pathology in AD [330]. CX3CL1-CX3CR1 
interaction enhances expression of thrombospondins-1 

[331] and will alleviate AD. However, thrombospondins 
are known to induce synapses which are presynaptically 
active (synapse with AMPA-NMDA receptor) but post 
synaptically silent (synapse with only NMDA recep-
tor) [328]. Silent synapses are linked with brain trauma, 
addiction and neurodegenerative disorders [332]. This 
raises question on the overall neuronal effect of CX3CL1 
through thrombospondins mediated induction of silent 
synapse (Fig. 1e).

Some of the contrasting issues on the neuroprotective 
and neurodegenerative roles of CX3CL1 are depicted 
(Fig. 1).

Discussion
The networking among neurons, microglia and astro-
cytes is enormous and the overall effect of the network-
ing on neuropathophysiology is still elusive in the context 
of CX3CL1. One way, absence of astrocytes abolishes the 
neuroprotective role of CX3CL1-stimulated microglia 
against excitotoxicity [235] and the other way, neuronal 
CX3CL1 enhances neuroprotective role of astroglia in 
excitotoxicity and ischemia. However, this is depend-
ent on CX3CL1-microglia interaction [46]. This indi-
cates that both astrocytes and microglia are required to 
support each other to retain their neuroprotective role 
and augment the function of neurons. Irrespective of 
this understanding the therapeutic effect of exogenous 
CX3CL1 cannot be predicted accurately. This is due to 
two opposing claims with respect to a single disease. The 
first one shows that soluble CX3CL1 is effective in allevi-
ating Parkinsonism [84], whereas the second one shows 
that injection of exogenous CX3CL1 in unilateral sub-
stantia nigra leads to microglial activation, depletion of 
dopaminergic neuron and motor dysfunction leading to 
Parkinsonism. Expectedly, these effects are abolished by 
blocking CX3CR1 [333].

There are gaps in knowledge with respect to the direct 
effect of CX3CL1 on the expression of NOD2, CD14, 
CD16 and CD64 on microglia. This indicates the need for 
further research to envisage the overall scope of target-
ing CX3CL1 to treat neuroinflammation. CD14 deserves 
special mention because of the dichotomous effects 
of CX3CL1 on the inflammatory mediators which are 
expressed as downstream events of CD14 activation [38, 
127, 146].

Astrocytes synthesize glutamine and release in the tri-
partite synapse. This glutamine is taken up by neurons 
for synthesizing GABA or glutamate. Release of synthe-
sized glutamate by the neurons triggers further glutamate 
release from the astrocyte [224, 225]. This represents a 
perspective that neuronally released glutamate controls 
the release of astroglial glutamate and any dysregulation 
will induce glutamate toxicity. This diminishes the role 
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of astrocytes as the primary regulator of synaptic gluta-
mate concentration and excitotoxicity to neurons. This 
is corroborated by the revelation that CX3CL1-induced 
release of glial D-serine along with CX3CL1 protects 
against NMDA toxicity [228]. However, contradiction 
to the neuroprotective role of CX3CL1 can be found 
where CX3CL1 cannot protect cortical neurons against 
glutamate-induced death unless neuronal culture con-
tains 90% astrocytes and 10% microglia [235]. Thus, mere 
administration of exogenous CX3CL1 may not provide 
neuroprotection unless brain has an optimum population 
ratio of glial cells.

Protoplasmic astrocytes favour accumulation of 
α-synuclein during Parkinson’s disease, AD and epi-
lepsy [240]. α-synuclein, which is predominantly 
expressed in neurons, ultimately finds its way inside 
astrocytes through tunnelling nanotubes. It is hypoth-
esized that astrocytic lysosomes cause truncation of 
α-synuclein, leading to astrocytic dysfunction [334]. 
The C-terminal-truncation of α-synuclein exacerbates 
the aggregation and cytotoxicity of α-synuclein in Par-
kinson’s disease [335]. CX3CL1 impedes α-synuclein 
mediated neurodegeneration [64]. As CX3CL1 and 
α-synuclein originate from neurons, hence, it may be 
concluded that neurons are quite capable of prevent-
ing self-injury resulting from biochemical messenger 
originating within them. However, this conclusion is 
not applicable in every aspect, as can be seen in case of 
the differential effects of CX3CR1 on Aβ peptide and 
tau protein [83] and strange findings where acutely 
applied Aβ oligomers can increase dendritic complex-
ity and spine density. This shows that Aβ may allevi-
ate AD, because AD displays a reduction in the spine 
density [311]. Further, the benefits of CX3CL1 medi-
ated reduced expression of IL-1β [38] and consequent 
alleviation of tauopathy-induced cognition deficits 
[39] come under question. This is due to the facili-
tating role of IL-1β in alpha-cleavage of APP and a 
consequent decrease in Aβ production [336] and the 
generation of neuroprotective metabolites [337].

The claims regarding the effects of CX3CL1 are in 
continuous contradiction with respect to TLR4 [116, 
151], IL-1β, IL-6, TNF-α expression [38, 127, 146] 
and neuronal effect. This suggests that some effects of 
CX3CL1 are not completely understood in the context 
of neuroinflammation.

Further, the role of CX3CL1-CX3CR1 signaling 
to prevent dendritic loss [312] is controversial with 
respect to a report where CX3CR1 knockout microglia 
can increase dendritic spine density in neurons [12]. 
As dendritic spines grow from dendrites [338], hence, 
it may be predicted that CX3CR1 knockout increases 
dendritic spine on the leftover dendrites. This again 

raises question on the probability of occurrence 
of autism, this is owing to the positive correlation 
between increased dendritic spine density and autism 
[339]. At the same time, reduced dendritic spine for-
mation due to over expression of CX3CR1 [12] and 
the probability of consequently occurring schizophre-
nia [340] need further consideration. This is owing 
to the fact that CX3CL1 may increase the expres-
sion of CX3CR1 [36]. Thus, there is no direct answer 
with respect to certain possibilities arising after an 
increased or decreased CX3CL1-CX3CR1 interaction. 
This calls for an overall assessment of the possible 
neuronal outcome before administering CX3CL1 in 
order to alleviate neurological deficits associated with 
any neurological disorder.

Conclusion
CX3CL1 shows immense networking with receptors/
proteins/markers expressed by the glial cells and has a 
modulating effect on the physiopathology of glial cells. 
CX3CL1-CX3CR1 interaction seems to be beneficial 
in neurological deficits. However, certain contradic-
tory observations and missing links suggest for an over-
all assessment of the implications of CX3CL1-CX3CR1 
interaction in neurological settings.
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