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Abstract 

Background:  The emergence of mutated drug-resistant strains of Mycobacterium tuberculosis has reinvigorated the 
development of effective chemotherapy for MDR-TB (multidrug-resistant resistance tuberculosis). Enoyl acyl carrier 
protein reductase (InhA) involved in the mycobacterial fatty acid elongation system has been chosen as a potential 
target.

Result:  All of the lead compounds had a definite Rf value and a sharp melting point, confirming that no tautomeric 
forms exist and that the keto (CO) group is apparent in the IR and 13C NMR spectrum data. Structure-based drug 
design revealed the presence of amino acid residues like TYR 158, ILE 194, and PHE 149 which are crucial for InhA 
inhibitory activity and were considered favorable interactions. Among all, compounds 4, 5a, and 5c showed bet-
ter docking and binding free energy owing to favorable interactions. Interestingly, there was a strong correlation 
between the binding free energy and the antimycobacterial susceptibility assay, where compounds 4, 5a, and 5c 
had greater activity. All the lead compounds also had good oral absorption and gut permeability. The presence of a 
carboxylic linker (–COOH–) between benzimidazole and the rest of the structure of the lead compounds was found to 
be crucial for activity as the oxygen atom and hydroxyl group of the linker formed most of the favorable interactions. 
The presence of chlorophenyl showed a favorable effect on InhA inhibition which might be owing to its hydrophobic 
interaction with PHE 149.

Conclusion:  Three of the seven lead compounds synthesized had an IC value of approximately 0.5 μg/ml in the 
in-vitro Alamar blue assay against the Mycobacterium tuberculosis H37Rv strain, which is roughly comparable to the 
standard marketed drug, Isoniazid (INH). This manifestation of promising activity that resulted from combining in-
silico and wet lab experimentation could be a great starting point for developing potent antimycobacterial agents to 
combat multidrug-resistant tuberculosis.
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Graphical abstract

Background
Tuberculosis (TB) is a contagious disease of global influ-
ence which poses a remarkable challenge due to the 
evolution of resistant strains of the airborne pathogen, 
Mycobacterium tuberculosis (Mtb). In the lungs, alveolar 
macrophages are the first to interact with the pathogen 
and can befoul all the other parts of the human body later 
[1]. The recrudescence of the disease is inevitable due to 
acquired resistance. According to the WHO, around 4 lakh 
new MDR-TB cases are resistant to Rifampicin. Ending the 
TB epidemic by 2030 is predominant among the health 
targets of WHO [2–4]. To circumvent the problems, novel 
target sites and newer chemotherapeutic agents need to be 
identified to combat issues associated with drug resistance.

Previous studies indicated the potential pharmacophoric 
unit responsible for antitubercular activity such as Benzi-
midazole [5–7], nitroimidazopyrazinone [8], carbamates 
[9], triazole [10], picolinohydrazonamides [11], thiazole 
[12], and pyrazolopyrimidine [13]. Among these, benzi-
midazole derivatives have shown a variety of biological 
activities such as antimycobacterial, antimicrobial, antihy-
pertensive, anticoagulant, anti-inflammatory, antifungal, 
and anthelmintic [14]. Even marketed drugs such as alben-
dazole (antimicrobial), omeprazole (antiulcer), and ben-
damustine (anticancer) are derivatives of benzimidazole. 

Drugs like aminobenzimidazole-1, SB-P3G2, and SB-P8B2 
(II) are extensively used in preclinical studies as an antitu-
bercular agents [7]. The antitubercular mechanism of ben-
zimidazole is not known so far but is expected to have three 
different mechanisms. Firstly, because they are structural 
isosteres of purines, benzimidazoles have a bactericidal 
effect by preventing the formation of nucleic acids and 
proteins. Another mechanism is the inhibition of bacte-
rial topoisomerases by benzimidazoles. Finally, the tubulin 
homolog filamentous temperature-sensitive Z polymeriza-
tion can also be inhibited by benzimidazole [14].

INH is reported to be involved in the mycobacte-
rial fatty acid elongation by its interaction with Fatty 
acid synthetase II (FAS II). INH targets and inhibits the 
NADH-dependent target InhA (Enoyl acyl carrier pro-
tein reductase). Moreover, the InhA inhibitors are also 
reported to block the biosynthesis of mycolic acids that 
form the mycobacterial envelope. During our study, INH 
was used as a standard drug.

Due to the activation of catalase-peroxidase (Kat G), 
INH forms a covalent adduct with NAD co-factor. It 
targets the mycobacterial cell wall in a forceful manner 
[15]. But, the frequent occurrence of mutation in Kat G 
(≥ 50%), inhA promoter (10–35%), and oxyR-ahpC region 
(10–40%) accounts for the INH resistance mechanism 
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which is one of the major hurdles in treating MDR-TB 
[16]. Hence, the direct binding of compounds with InhA 
that do not require activation by the mycobacterial cata-
lase-peroxidase (Kat G) is an important strategy for treat-
ing infections caused by INH-resistant strains. Hence, 
enoyl acyl carrier protein reductase (InhA) was chosen as 
the target for initial in-silico docking studies as well as the 
molecular dynamics study followed by in-vitro screening 
for Mtb. Consequently, benzimidazolyl hydrazide deriva-
tives have been developed which may aid to overcome 
the resistance associated with the Kat G mutation.

The most prevalent tool in the Pharma industry used 
to ponder the structure and binding free energies in a 
stable ligand–protein complex with high specificity is 
structured-based drug designing. Ranking the drug-pro-
tein complexes to identify the correct binding pose is a 
rational approach to drug design [17]. The MM/GBSA 
study provides comprehensive information on the relative 
binding affinities of compounds in a database. Predicting 
ADME by QikProp furnishes the pharmacokinetic profile 
of the organic molecules. Molecular dynamic studies by 
DESMOND help to interpret the stability of the ligand–
protein complex in a biological environment. This pro-
posed in-silico and wet lab combinational study could 
help in generating new leads that combat the multidrug-
resistant TB.

Methods
Hardware and software
The in-silico analysis was executed in the Maestro11 
modeling package provided by Schrodinger, LLC, New 
York, NY, 2018–4, installed in Dell precision 7820, run-
ning on Centos7OS.

Chemical scheme preparation
During the study, a scheme of about forty benzimidazolyl 
amino and hydrazino molecules was created. Chem-
Sketch (version 14.01, ACD/Labsrelease2012) was used 
to create the 2D structures. Each structure was drawn, 
and its IUPAC name was identified and saved in mol for-
mat. Figure 1 depicts the steps involved in the prepara-
tion of the scheme as well as the structure of the parent 
molecules where the substitution has been constructed. 
The detailed mechanism of product formation is given in 
the Additional file 1.

Synthesis and characterization of the top‑ranked molecule 
obtained after structure‑based drug design
The top-ranked ligand from the structure-based drug 
design was taken for the synthesis. Initially, an acety-
lation reaction between a secondary amine and acetyl 
chloride produces 1-acetyl-2-methyl-1H-benzimidazole 
(compound 1) [18]. It is followed by the Claisen-Schmidt 

Fig. 1  Steps involved in the scheme preparation and the structure of parent molecules where the substitution was made. AR = (4-chlorophenyl, 
4-flurophenyl, 4-tolyl); AR’ = (4-carboxyphenyl, 2-hydroxy, 4-carboxy phenyl), AR’’ = (Nicotinoyl, phenyl, benzoyl). (i) Conc. Hcl at 100 ℃ for 30 min, (ii) 
90% acetic acid at 75 ℃ for 45 min, (iii) C2H5OH for 3 h / add Conc. NH3 till product precipitation, (iv) C2H5OH / NaOH; stirred for 4 h; left overnight, 
(v) Glacial CH3COOH/H2O2; 3 h; kept overnight
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reaction, whereby the condensation takes place at the –
COCH3 group due to the electronegative nature of oxy-
gen. The condensation reaction takes place in presence 
of aromatic aldehydes with a dropwise addition of con-
centrated sulphuric acid [19]. 1-[3-(4-substituted phe-
nyl) acryloyl]-2-methyl-1H-benzimidazole (compound 
2) from 1-acetyl-2-methyl-1H-benzimidazole intermedi-
ate on treatment with hydrogen peroxide in glacial acetic 
acid cyclizes to an oxiranyl carbonyl derivative [20]. The 
basic mechanism behind cyclization is cis-hydroxylation 
followed by dehydration. Finally, cleavage of the epoxy 
ring occurs on condensation with substituted aromatic 
amines and hydrazides in the presence of ethanol to 
form 4-[1-(4-substituted phenyl)-2-hydroxy-3-(2-methyl 
benzimidazol-1-yl)-3-oxo-propyl] substituted aromatic 
amino (compound 4) and hydrazide derivatives (com-
pound 5a-f ) [20, 21]. Chemicals were procured from 
Hi-Media Chem Ltd., Lancaster Ltd. Macleoids Pharma-
ceutical Ltd., Hayman Ltd., Fischer, S.D. Fine Chem Ltd., 
and Loba Chemie Pvt. Ltd. The compounds obtained 
were purified and dried using standard methods before 
use. Thin-layer chromatography was carried out using sil-
ica gel G plates, and Iodine vapors were used as the visu-
alizing agent. UV spectra were recorded on JASCOV-530 
UV/VIS spectrophotometer and IR spectra were 
recorded on Jasco FT/IR-410 at the Department of Phar-
maceutical Analysis, PSG College of Pharmacy, Coim-
batore. PMR spectra were recorded at IICT, Hyderabad & 
IISC, Bangalore. Mass spectra were recorded at JSS Col-
lege of Pharmacy, Ooty. The elemental analysis was car-
ried out at IICT, Hyderabad.

Structure‑based drug design
Molecular docking, binding free energy calculations, 
ADME, and a molecular dynamic study were initially per-
formed against the InhA enzyme using different modules 
of Maestro v11.4 to avoid unnecessary time consump-
tion and chemical disposal in synthesizing all of the com-
pounds. The crystal coordinate of InhA (PDB ID: 2NSD, 
Resolution: 1.90Å) was taken from the RCSB PDB (pro-
tein data bank). Protein was prepared by using the Protein 
Preparation Wizard which utilizes OPLS3 as a forcefield for 
energy minimization. Post-docking minimization was per-
formed to improve the geometry of the generated poses. 
The Topmost poses were selected based on the Docking 
and binding free energy score. The PRIME MM/GBSA 
(Schrödinger, LLC, and New York-4) module was used to 
predict the binding free energy (ΔGbind) of the protein–
ligand docked complexes. Several parameters related to 
absorption, distribution, metabolism, excretion, and toxic-
ity are predicted by QikProp v5.4. Expensive experimental 
techniques, like HTS, can be avoided by accurately pre-
dicting the ADME properties beforehand to avoid testing 

compounds that won’t work. For the molecular dynamic 
study, protein–ligand complexes were solvated in an 
orthorhombic box and entrenched in the three-site trans-
ferable intermolecular potential (TIP3P) water model. 
Overlapping water molecules were deleted and neutralized 
with Na+ ions. The system was relaxed using the OPLS3 
force field. A constant temperature at 300  K was main-
tained and a 2.0  fs value was obtained in the integration 
step. The equilibrated system was simulated for a period 
of 50 ns using NPT ensemble class. Finally, the root mean 
square deviation (RMSD) was calculated to monitor the 
stability of the protein [22].

Biological evaluation
Alamar blue is an oxidation–reduction dye used for anti-
mycobacterial screening [23]. Mtb H37Rv maintained in the 
Lowenstein-Jensen medium was used as the test organism 
[24]. All tests were carried out in duplicate. The final con-
centration of test compounds was such that the 200 μl of 
sample (100 μl of TB broth and 100 μl of bacterial suspen-
sion) contained 0.5, 1, 2.5, 5, 10, 25, 50 and 100 μg/ml of the 
test compound. INH was used as a standard for compari-
son. Well without the addition of compounds were used as 
blank and cells incubated with saline alone were considered 
as control [25]. All the cells were incubated at 37 °C. On the 
seventh day, 20  μl of Alamar blue solution was added to 
the first control well. The color changed from blue to pink, 
indicating sufficient growth. Therefore, the dye was added 
to all the wells and incubated for 6 h followed by fluores-
cence detection at an excitation and emission wavelength 
of 544 nm and 590 nm, respectively [26]. Alamar blue assay 
was carried out at Rajiv Gandhi Centre for Biotechnology, 
Trivandrum.

Statistical analysis
Data were expressed as Mean ± SD. Data analysis was done 
by one-way and two-way analysis of variance (ANOVA), 
followed by post hoc Tukey’s multiple comparison test. A 
probability value of less than 0.001 was considered as the 
statistical significance criterion. All the data followed the 
normal distribution curve and the variance of dependent 
variable was same for all the data. So, the significance of 
the data was measured using ANOVA. GraphPad Prism 9.0 
was used to do all statistical calculations (GraphPad Soft-
ware, Inc. La Jolla, CA, USA).

Result
Synthesis and characterization of lead compounds 
obtained from structure‑based drug design
Synthesis of 4-[1-(4-substituted phenyl)-2-hydroxy-3-
(2-methyl benzimidazol-1-yl)-3-oxo-propyl amino] sub-
stituted aromatic amino (compound 4) and hydrazide 
derivatives (compound 5a–f) [19–22].
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1. Synthesis of o-phenylene diamine dihydrochloride: In 
1 g of Conc. Hcl, 14 g of O-Phenylene Diamine were dis-
solved and heated (100  °C for 30  min) with 2  g of acti-
vated charcoal. The heated filtrate was then mixed with 
50  ml of conc. HCl. Filtered and immediately cooled to 
10 °C in a frozen ice combination. Afterward, it is rinsed 
with 5  ml of conc. HCl, and was vacuum-dried using a 
desiccator over NaOH.

2. Synthesis of 2-Methyl Benzimidazole: 4.38  g of the 
aforementioned intermediate was heated under reflux for 
45 min with 20 ml of water and 5.48 g of 90% acetic acid 
and heated at 75 ℃. Drops of a concentrated ammonia 
solution were added as the mixture cooled and the prod-
uct precipitated. Then recrystallization was carried out 
using 10% aqueous ethanol. TLC and the solvent system 
(benzene/methanol – 9:1) were used to confirm purity.

3. Synthesis of intermediate 1-acetyl-2-methyl-
1H-benzimidazole (compound 1): Percentage yield: 58%. 
2-methyl benzimidazole (1.33 g, 0.01 mol) was dissolved 
in 2  ml of ethanol placed in a three-necked flask, and 
(0.8 ml; 0.01 mol) of acetyl chloride was added and mixed 
thoroughly and left for 3–4 h. A concentrated ammonia 
solution was gradually added, and the precipitated prod-
uct was collected and crystallized from aqueous ethanol 
(20%) [27]. The purity of the intermediate was checked by 
TLC (solvent system—benzene/methanol, 9:1).

4. Preparation of 1-[3-(4-substituted phenyl) acryloyl]-
2-methyl-1H-benzimidazole (compound 2) from 1-acetyl-
2-methyl-1H-benzimidazole (compound 1): Percentage 
yield: 62%. 1-acetyl-2-methyl-1H-benzimidazole (1.76  g; 
0.01  mol) was dissolved in 2  ml of ethanol placed in 
a three-necked flask, and sodium hydroxide solution 
(30 ml; 10%) was added and the mixture was cooled. To 
this, different substituted aromatic aldehydes (0.01 mol) 
dissolved in 2 ml of ethanol were added, and the mixture 
was stirred for 4–5  h and was left overnight [21]. Con-
centrated Hydrochloric acid was added drop by drop till 
the solution was slightly acidic. The solid separated was 
filtered, washed with water, and dried. The crude product 
was crystallized from aqueous ethanol (50%) [28], and 
the purity was checked by TLC [Solvent system benzene/
chloroform/methanol (60:20:20)].

5. Formation of intermediate 1-{[3-(4-substituted phe-
nyl)oxiran-2yl]carbonyl}-2-methyl-1H-benzimidazole 
(compound 3): Percentage yield: 64%. The 1-{[3-(4-sub-
stituted phenyl)oxiran-2yl]carbonyl}-2-methyl-1H-ben-
zimidazole from 1 –acetyl-2-methyl-1H-benzimidazole 
(2.98 g; 0.01 mol) was taken in a three-necked flask and 
dissolved in glacial acetic acid (50 ml) and hydrogen per-
oxide (6 ml; 0.01 mol), and this was stirred for about 3 h 
and left overnight. Crushed ice was added to the reaction 
mixture, and the product obtained was filtered and dried. 
The crude product was crystallized from aqueous ethanol 

(50%) [20, 21]. Purity was assessed by TLC [Solvent sys-
tem benzene/chloroform/methanol (60:20:20)].

6. Synthesis of the final product, 4-[1-(4-substituted 
phenyl)-2-hydroxy-3-(2-methyl benzimidazol-1-yl)-
3-oxo-propyl amino] substituted aromatic amino and 
hydrazide derivatives: Percentage yield: 65% (3a) and 
68% (3b). Different substituted 1-[3-(4-substituted phe-
nyl)oxiran-2yl] carbonyl derivative compounds (3.14  g; 
0.01  mol) were taken in a round-bottomed flask and 
ethanol (50 ml) was added. Different substituted amines 
or hydrazides (0.01 mol) were added and refluxed at 70 
℃ for 24 h. When the reaction ended, the volume of the 
reaction mixture was concentrated to half and the mix-
ture was poured on crushed ice [20, 21]. The solid that 
separated was crystallized and the purity was confirmed 
by TLC [Solvent system benzene/chloroform/methanol 
(60:20:20)].

Spectral elucidation of the novel synthesized lead 
compounds
Compound 4
Yield: 64%, (benzene/chloroform/methanol 60:20:20), 
Rf = 0.580; mp 204–206  °C. λmax 261  nm, IR (KBR, ν 
cm−1): 2935 (OH), 3255 (NH), 2819 (CH), 1600 (CO), 
1355 (C=CAr 771 (CHAr bend). Analytical value calculated 
for C23H20N3O2Cl (405.00): C, 68.33; H, 4.95; N, 10.39. 
Found: C, 68.42; H, 4.91; N, 10.37. 1H NMR (DMSO –d6) 
δ (ppm):2.51 (3H, CH3); 4.0–4.2 (3H, CH, OH, NH); 4.7 
(1H, CH); 7.4 (BenzimidazoleAr); 8.0 (9 H, Phenyl).13C 
NMR (DMSO –d6) δ (ppm):61 (C–Cl Ar); 83(C); 115–
140 (CAr); 201(C=O). ADSLC-MS (m/z) calculated for 
C23H20N3O2Cl: 406 [m+1].

Compound 5a
Yield: 61%, (benzene/chloroform/methanol 60:20:20), 
Rf = 0.498; mp 203  °C. λmax 278  nm, IR (KBR, ν cm−1): 
2988.9 (OH), 3058 (NH), 2843 (CH), 1687 (CO), 1587 
(C=N), 1416 (C=C), 1178 (CN), 1093 (ClAr), 1011 (CH3). 
Analytical value calculated for C23H21N4O2Cl (420.89): 
C, 65.57; H, 4.98; N, 13.30. Found: C, 62.48; H, 4.93; N, 
13.33. 1H NMR (DMSO –d6) δ (ppm): 2.1 (1H, NH); 2.5 
(3H, CH3); 4.14–4.21 (2H, OH); 4.7 (2H, CH); 7.4–8.2 (13 
H, aromatic). 13C NMR (DMSO –d6) δ (ppm):61 (CClphe); 
81(C); 140 (C); 113–138 (CAr); 201 (C). ADSLC-MS (m/z) 
calculated for C23H21N4O2Cl:419.6 [m+1].

Compound 5b
Yield: 62%, (benzene/chloroform/methanol 60:20:20), 
Rf = 0.528; mp 175–177  °C. λmax 279  nm, IR (KBR, ν 
cm−1): 3453 (NH), 2729 (OH), 2811 (CH), 2350 (CO), 
1594 (C=N), 1351 (C=C), 1089 (ClAr), 1002 (CH3). 
Analytical value calculated for C24H21N4O3Cl (448.90): 
C, 64.15; H, 4.67; N, 12.47. Found: C, 64.21; H, 4.72; N, 
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12.43. 1H NMR (DMSO –d6) δ (ppm): 2.0 (1H, NH); 2.51 
(3H, CH3); 4.1–4.2 (2H, CH, OH); 4.7 (1H, CH); 7.6 (5 H, 
Ar), 8.1 (5H, Ph Ar). 13C NMR (DMSO –d6) δ (ppm):60 
(CClPhen); 80 (C, C=O, CH); 141 (C, C=N); 115–140 
(CAr); 168 (C, CONH); 201 (C, C=O). LC–MS (m/z) 
calculated for C24H21N4O3Cl: 448.90 [M + H]+. Found: 
449.6[M−H]+.

Compound 5c
Yield: 64%, (benzene/chloroform/methanol 60:20:20), 
Rf = 0.462; mp 168–170  °C. IR (KBR, ν cm−1): 2992.98 
(OH), 3054 (NH), 2839 (CH), 1684 (CO), 1592 (C=N), 
1425 (C=C), 1176 (CN), 1093 (Cl Ar), 1019 (CH3). Analyt-
ical value calculated for C23H20N5O3 Cl (449.5): C, 61.46; 
H, 4.45; N, 15.59. Found: C, 61.57; H, 4.40; N, 15.62. 1H 
NMR (DMSO –d6) δ (ppm): 2.0 (1H, NH); 2.5 (3H, CH3); 
4.0–4.3 (3H, CH, OH, NH); 7.3–7.5 (4 H, Ar); 8.0–8.2 
(9H, Ar). 13C NMR (DMSO –d6) δ (ppm):60 (C, CH); 
80(C, C=O, CH); 115–140 (CAr); 150 (C pyridyl); 167 
(C, CONH); 200 (C, CO). LC–MS (m/z) calculated for 
C23H20N5O3 Cl: 449.5[M + H]+. Found: 448.1[M−H]+.

Compound 5d
Yield: 60%, (benzene/chloroform/methanol 60:20:20), 
Rf = 0.523; mp 176  °C. λmax 280  nm, IR (KBR, ν cm−1): 
3444 (NH), 2811 (OH), 1685 (CO), 1594 (C=N), 
1351 (C=C), 119.5 (FAr bend). 1H NMR (DMSO –d6) δ 
(ppm):2.0 (1H, NH); 2.5 (3H, CH3); 5.5 (1H, 4.0–4.3 (3H, 
NH, OH, CH); 6.8–7.8 (13 H, Ar). 13C NMR (DMSO –d6) 
δ (ppm): 83 (C); 140 (C); 114–139 (CAr); 16 (C, CONH); 
201 (C). LC–MS (m/z) calculated for C24H21N4O3F: 
(432): [M + H]+. Found: 431[M−H]+.

Compound 5e
Yield: 58%, (benzene/chloroform/methanol 60:20:20), 
Rf = 0.568; mp 173–175  °C. λmax 274  nm, IR (KBR, ν 
cm−1): 3089 (NH), 2935 (OH), 2859.9 (CH), 2679 (CO), 
1587 (C=N), 1342 (C=C), 1009 (CH3). 1H NMR (DMSO 
–d6) δ (ppm):2.51 (3H, CH3); 2.0 (1H, NH); 4.14–4.21 
(2H, OH, CH); 8.1 (1H, NH); 7.2–7.6 (8 H, Ar).13C NMR 
(DMSO –d6) δ (ppm): 63 (C), 80 (C); 115–140 (CAr); 168 
(CPh); 201 (C).

Compound 5f
Yield: 55%, (benzene/chloroform/methanol 60:20:20), 
Rf = 0.535; mp 174–176  °C. λmax 280  nm, IR (KBR, ν 
cm−1): 3482 (NH), 2929 (OH), 2811 (CH), 1594 (C=N), 
1351 (C=C), 1039 (CH3). 1H NMR (DMSO –d6) δ (ppm): 
2.51 (3H, CH3); 4.0–4.2 (3H, CH, OH, NH); 4.7 (1H, 
OH); 7.4–8.0 (13 H, aromatic). 13C NMR (DMSO –d6) δ 
(ppm):61 (C); 83 (C); 115–140 (CAr); 120–130 (CPh); 201 
(C).

Molecular interaction of lead compounds with InhA
All molecules were docked against enoyl acyl carrier 
protein reductase (PDB ID: 2NSD). The docking score 
and binding free energy of all the benzimidazolyl amino 
and benzimidazolyl hydrazide derivatives are given in 
Tables 1 and 2, respectively. The top posed structure from 
the docking study was taken as lead compound (4, 5a, 5b, 
5c, 5d, 5e & 5f ) based on the docking and MM/GBSA 
binding free energy score. Among the lead compounds, 
Compound 4 was a benzimidazolyl amino derivative and 
the rest were benzimidazolyl hydrazides derivatives (5a-
f ). The molecular interaction between different amino 
acids and lead compounds along with INH is demon-
strated in Fig.  2. The molecular interactions observed 
with each molecule are discussed below.

Compound 4 formed two hydrogen bond interactions 
and one Π-Π stacking. One hydrogen bond donor inter-
action was formed between ILE 194 and the hydroxyl 
group of the carboxylic linker and one hydrogen bond 
acceptor interaction was formed between LYS 165 and 
3-amino of benzimidazole pharmacophore. A pi-pi stack-
ing was made between chlorophenyl and PHE 149. All 
other lead compounds made a similar hydrogen bond 
interaction between the linker hydroxyl group and ILE 
194 was observed. In compound 5e, the linker hydroxyl 
group made two hydrogen bond acceptor–donor interac-
tions with ILE 194. Other than ILE 194, compounds 5b & 
5f showed a hydrogen bond acceptor interaction between 
the oxygen atom of the terminal benzamide group and 
TYR 158. In the case of INH, hydrogen bond acceptor 

Table 1  Docking score and MM/GBSA ΔGbind score of lead 
benzimidazolyl amino derivatives

Compound R1 R2 R3 Docking score
(kcal/mol)

MM/GBSA score
(kcal/mol)

4 0 –H –Cl − 11.375 − 73.97

Table 2  Docking score and MM/GBSA dG bind score of lead 
benzimidazolyl hydrazide derivatives

Compound R1 R2 Docking score
(kcal/mol)

MM/GBSA 
ΔGbind 
Score
(kcal/mol)

5a –Cl C6H5– − 11.161 − 71.81

5b –Cl C6H5CO– − 12.089 − 68.95

5c –Cl C6H4NO– − 12.778 − 70.39

5d –F C6H5CO– − 11.836 − 65.05

5e 0 C6H5– − 11.2 − 70.32

5f 0 C6H5CO– − 12.303 − 65.91

INH – – − 10.283 − 67.39
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Fig. 2  Interaction of InhA with the seven best lead compounds generated using 2D-lignad interaction diagram of GLIDE module
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Fig. 2  continued
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interaction was made between the oxygen atom of pyri-
dine-4-carboxamide. During the study, all the lead com-
pounds and INH showed similar amino acid interactions 
which were previously described as crucial for antituber-
cular activity (Table 3).

ADME/tox prediction of lead compounds
ADME prediction was done for the parameters such 
as Lipinski’s rule of five, Jorgensen’s rule of three, CNS 
activity, HERG K + channel toxicity, Pcaco (nm/s), logBB, 
PMDCK (nm/s) & % Human oral absorption. Zero viola-
tion in RO5 and RO3 indicates that the molecules have 
a drug-like characteristic and can be orally available. The 
selected molecules showed lower CNS activity and lower 
permeability to the blood–brain barrier, which implies 
fewer CNS side effects. Permeability to the gut-blood 
barrier indicated by Pcaco was found to be excellent. 

The percentage of human oral absorption emphasizes an 
excellent oral absorption of the novel compounds, which 
also corresponds to good oral bioavailability (Table 4).

Fig. 2  continued

Table 3  Docking interactions of selected lead compounds

According to previous literature four amino acid interactions namely TYR 158, 
ILE 194, PHE 149 and LYS 165 are crucial for InhA inhibitory activity [29–31]

Compound H-Bond Pi-Pi stacking

4 ILE 194, LYS 165 PHE 149

5a ILE 194 NIL

5b ILE 194, TYR 158 NIL

5c ILE 194, TYR 158 NIL

5d LYS 165 NIL

5e TYR 158 NIL

5f ILE 194, TYR 158 NIL

INH TYR 158 NIL
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Molecular dynamics study of lead compounds
A molecular dynamics study suggests that although not 
much conformational change was observed in the pro-
tein but for test molecules, conformational changes were 
more significant inside the binding pocket except for 
compound 5b. RMSD for all lead compounds was found 
to be stable at least after 35 ns was seen below 3 Å, which 
implies that the compounds formed a stable complex 
with InhA (Fig. 3). Interaction fraction analysis (molecu-
lar dynamics) showed that the majority of interaction was 
hydrophobic (Fig. 4). The majority of H-bond interaction 
that the lead compounds made was with TYR 158, ILE 
194, and THR 196 (Fig. 5).

Biological screening
Antibacterial screening
The seven newly synthesized HIT compounds were 
screened for antibacterial activity against gram-positive 
Staphylococcus aureus and gram-negative Escherichia 
coli at a concentration of 250  μg/disk and 500  μg/disk. 
The results were compared with the standard drug Cip-
rofloxacin at 10 μg/ disk using DMSO as the vehicle [32, 
33]. Novel compounds were inactive against gram-posi-
tive Staphylococcus aureus. Compounds 5a, 5b, and 5c 
exhibited mild activity at 500 μg/disk concentration, and 
4, 5d, 5e, and 5f, showed moderate activity against Gram-
negative Escherichia coli, at both 500 μg/disk and 250 μg/
disk concentration.

Antimycobacterial susceptibility test using Alamar blue
The seven HIT molecules were evaluated for their anti-
mycobacterial potentials using the Alamar blue assay 
model. Among the compounds screened for antituber-
cular activity using INH as standard, the compounds 
5d & 5f showed an inhibitory concentration (IC50) of 
5.38 and 5.13  μg/ml respectively. The compounds 5b & 
5e had IC50 values of 1.02 and 0.95  μg/ml respectively. 
The compounds 4, 5a & 5c exhibited a highly significant 
inhibitory concentration of 0.51, 0.56 and 0.57  μg/ml 
which is equipotent to the standard marketed drug INH 

(IC50 = 0.52 μg/ml). A dose-dependent percentage reduc-
tion in Alamar blue (resazurin to resorufin) by all the 
test compounds was observed. With an increased dose, 
the percentage reduction of resazurin also declined. The 
amount of percentage reduction is directly proportional 
to the lower metabolically active cells and vice versa. 
There was no significant difference found when INH was 
compared to test compounds. There were high levels of 
percentage reduction in Alamar blue were observed in 
the control group when compared to INH and test com-
pounds. Among all, compounds 4, 5a, and 5c treated 
well showed significant reduction (P < 0.001) in percent-
age reduction of Alamar blue by mycobacterium when 
compared to control. This shows significant inhibition of 
mycobacterium cell by compounds 4, 5a, and 5c. All the 
comparative data are given in Fig. 6.

Discussion
The basic moiety, 2-methyl benzimidazole, has been 
reported to possess antitubercular activity [34, 35]. 
Benzimidazole moiety has been often used as a part 
of mycobacterial gyrase inhibitors as well as MtbFtsZ 
inhibitors, named after “filamenting temperature-sensi-
tive mutant Z” [36]. This is the first protein to move to 
the division site during cell division and is essential for 
recruiting other proteins that produce a new cell wall 
between the dividing cells [37]. Considering the impor-
tance of benzimidazole moiety as an antimycobacte-
rial principal segment, we have chosen the compounds 
with functionalized benzimidazole for the present in-
silico and in-vitro analysis. Enoyl-acyl carrier protein 
reductase (InhA) is a prominent target of the current 
first-line drug INH, used in the treatment of tuberculo-
sis infections [38, 39]. All our lead compounds showed 
a specific Rf value and a sharp melting point and there-
fore we confirm that there are no tautomeric forms pre-
sent and the keto (CO) group appears to be visible in 
the IR and 13C NMR spectrum data.

In-silico analysis by docking, MM/GBSA ΔGbind, MD 
simulation, and ADME prediction resulted in bringing 

Table 4  Preliminary QikProp ADME predicted data for the seven best lead molecules

*HOA (Human oral absorption), Ro5 (Rule of five), Ro3 (Rule of three)

Compound CNS log HERG Pcaco (nm/s) logBB PMDCK (nm/s) % HOA Ro5 Ro3

4 0 − 5.619 1357.62 − 0.46 1696.26 100 0 0

5a 1 − 8.035 503.807 − 0.06 542.518 100 0 0

5b − 1 − 6.746 682.273 − 0.92 806.375 100 0 0

5c − 2 − 5.28 508.94 − 1.04 326.529 87.52 0 0

5d − 1 − 6.768 679.022 − 0.98 587.325 100 0 0

5e 1 − 8.02 504.055 − 0.24 261.002 100 0 0

5f − 2 − 6.863 580.952 − 1.19 275.051 100 0 0
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out novel seven HIT compounds having a good binding 
profile with the target, InhA. According to the ADME 
prediction by QIKPROP, the parameters selected were 
CNS, log HERG, PCaco (nm/s), logBB, PMDCK (nm/s), 
% Human oral absorption, Rule of five, and Rule of three. 
All the three compounds bear PCaco-2 values greater 
than 500  nm/sec which denotes good cell permeability. 

The blood–brain partition coefficient for oral drugs 
and the predicted CNS activity does not fall within the 
specified range and the above drugs are expected, not to 
enter the BBB. Hence the untoward CNS effects could be 
prevented. The HIT compounds satisfy Lipinski’s Rule 
of Five and Jorgensen’s rule of three without any viola-
tions. This is also an added fact that the compounds 

Fig. 3  Protein–Ligand RMSD of lead compounds. Compound 4 = 3.2 & 5.2 Å, Compound 5a = 2.4 & 3.63 Å, Compound 5b = 3.2 & 4 Å; Compound 
5c = 2.25 & 2.8 Å; Compound 5d = 2.4 & 4 Å; Compound 5e = 3.2 & 4 Å; Compound 5f = 3.2 & 3.6 Å
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may have excellent oral absorption. Furthermore, values 
established from the parameter, % Human oral absorp-
tion, emphasize a very good oral absorption of the novel 
compounds which also corresponds to better oral bio-
availability. As per the MM\GBSA ΔGbind prediction by 

PRIME, the above seven hits obtained from the docking 
study showed that test compounds have a good binding 
affinity toward the receptors. More negative the value, 
the better the binding affinity.

Fig. 4  Ligand–protein contact histogram of lead compounds. The green bar indicates H-bond interaction, the blue bar indicates water-mediated 
H-bond interaction and the violet bar indicates hydrophobic interaction between the ligand and the protein
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Fig. 5  Ligand–protein contact of lead compounds. A diagram of the detailed interactions between the ligand atoms and the protein residues. In 
the chosen trajectory (0.00–50.05 nsec), interactions that occur more than 20.0% of the simulation period are displayed. As some residues may have 
many contacts of a single kind with the same ligand atom, it is feasible to have interactions with > 100%
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Fig. 5  continued
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Further, an observation made by docking study 
showed TYR 158, ILE 194 and PHE 149 were criti-
cal during the InhA inhibition. Interestingly, all the 
seven compounds which were chosen for the synthesis 
demonstrated a similar kind of interaction along with 
standard INH. Also, the greater number of favora-
ble interaction (TYR 158, ILE 194 and PHE 149) was 

observed in case of compound 5c, 5a, and 4. This obser-
vation improved the level of confidence during the 
study, and we proceeded with the synthesis of seven 
novel molecules.

In-vitro biological screening was carried out for the 
seven synthesized novel benzimidazolyl hydrazide and 
amino derivatives. The compounds 5d & 5f possess an 

Fig. 5  continued
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inhibitory concentration of 5 μg/ml, Compound 5b & 5e 
have 1 μg/ml, and 4, 5a, and 5c exhibit an inhibitory con-
centration of 0.5 μg/ml as per the Alamar blue technique 
which is equivalent to that of the marketed standard drug 
INH. Interestingly, the in-vitro study was strongly corre-
lated with the in-silico prediction, where by compound 4, 
5a, and 5c showed greater number of favorable interac-
tions. The chlorophenyl group seems to be an essential 
chemical segment in the novel molecule which contrib-
utes to the property of drug likeliness. The result from 
the in-vitro assay significantly correlated with the bind-
ing free energy prediction. This shows how crucial is drug 
designing in the process of drug discovery.

On account of the remarkable properties of Benzi-
midazoles, a series of derivatives with modifications 
have been virtually screened and synthesized to opti-
mize their potency. By carrying out an in-vitro study 
(Alamar Blue assay), all the synthesized novel mole-
cules were screened for antimycobacterial potentials 
against the strain, Mycobacterium tuberculosis H37 
Rv strain using the standard INH. The compounds 4, 

5a, and 5c displayed the most potent inhibitory activ-
ity possessing a MIC of 0.5 μg/ml which is equivalent 
to the standard drug INH. The presence of a carbox-
ylic linker (–COOH–) between benzimidazole and 
the rest of the structure of the lead compounds was 
found to be crucial for activity as the oxygen atom 
and hydroxyl group of the linker formed most of the 
favorable interactions. The presence of the chloro-
phenyl group attached to the 3-oxo-propyl moiety in 
compound 4, 5a, and 5c dramatically enhances the 
antimycobacterial activity which is in line with the 
previous findings [6, 14]. This might be due to hydro-
phobic interaction with PHE 149 as presence of Cl in 
the para position of benzyl moiety is in close proxim-
ity of hydrophobic pocket in the target binding site 
[6]. When the chlorophenyl group in compounds 5e 
and 5f is replaced with a tolyl group, the MIC value 
changes to 1  g/ml and 5  g/ml, respectively. A simi-
lar pattern was also observed where replacing chlo-
rine atom with methyl and cyano group in the para 
position of benzimidazole completely abolished the 

Fig. 5  continued
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antimycobacterial activity [40]. Furthermore, 3-phe-
nylamino, 3-phenylhydrazino, or 3-iso-nicotinyl 
hydrazino attachment to the third carbon atom of 
the oxo-propyl group had no significant effect on the 
antimycobacterial activity. Additionally, the presence 
of nitrogen in the amino, hydrazino, or iso-nicotinyl 
hydrazino group appears to be crucial for the activity. 
Thus, the addition of a substituted tolyl anilino group 
to 2-methyl benzimidazole has a significant impact on 
the product’s ability to function as a lead compound. 
The use of benzimidazole instead of the isonicotinic 
acid hydrazide group helped to produce promising in-
vitro antimycobacterial activity.

Conclusion
The present approach was made, having in mind the life-
threatening nature of Tuberculosis as one of the thrust 
areas of drug research. The integrated analysis from the 
in-silico prediction and the wet lab experimentation may 
provide insights into designing novel antimycobacte-
rial agents from a series of 2-substituted benzimidazolyl 
derivatives. This also proves that computer-aided molec-
ular design techniques are fruitful in rational drug design. 
This could be a constructive attempt aimed to develop 

the next generation antitubercular InhA inhibitors for the 
treatment of multiple drug-resistant tuberculosis.

Limitation and future prospectives
The R and S configuration of the lead compounds was 
not included in the current study. Our future study plan 
will include R and S configuration as well as group pro-
jection priority.
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