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Abstract 

Background:  Alzheimer’s disease (AD), the most common cause of dementia in the elderly, is a progressive neuro-
degenerative disorder that gradually affects cognitive function and eventually causes death. Most approved drugs 
can only treat the disease alleviating the disease symptoms; therefore, there is a need to develop drugs that can treat 
this illness holistically. The medical community is searching for new drugs and new drug targets to cure this disease. 
In this study, QSAR, molecular docking evaluation, and ADMET/pharmacokinetics assessment were used as modeling 
methods to identify the compounds with outstanding physicochemical properties.

Results:  The 37 MAO-B compounds were screened using the aforementioned methods and yielded a model with 
the following molecular properties: AATS1v, AATS3v, GATS4m, and GATS6e. Good statistical values were R2

train = 0.69, 
R2

adj = 0.63, R2
pred = 0.57, LOF = 0.23, and RMSE = 0.38. The model was validated using an evaluation set that 

confirmed its robustness. The molecular docking was also utilized using crystal structure of human monoamine 
oxidase B in complex with chlorophenylchromone-carboxamide with ID code of 6FW0, and three compounds 
were identified with outstanding high binding affinity (13 = − 30.51 kcal mol−1, 31 = − 31.85 kcal mol−1, and 
33 = − 33.70 kcal mol−1), and better than the Eldepryl (referenced) drug (− 11.40 kcal mol−1).

Conclusions:  These three compounds (13, 31, and 33) were analyzed for ADMET/pharmacokinetics evaluation and 
found worthy of further analysis as promising drug candidates to cure AD and could also serve as a template to 
design several monoamine oxidase B inhibitors in the future to cure AD.
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Background
Alzheimer’s disease (AD) is mainly identified by an 
extensive loss of neuronals in certain areas of the brain 
underlying a progressive decline in motor and cognitive 
functions [1, 2] and clinically characterized by deficiency 
of the important neurotransmitter acetylcholine (ACh), 
deposition of neurotoxic amyloid plaques (Aβ), highly 

phosphorylated tau proteins, and an imbalance in the 
glutamatergic system [3, 4]. Activated MAO induces the 
amyloid-beta (Aβ) deposition via abnormal cleavage of 
the amyloid precursor protein (APP), which contributes 
to the generation of neurofibrillary tangles and cognitive 
impairment due to neuronal loss as shown in Fig. 1 [5].

A few drugs are clinically approved for use which 
includes tacrine, galantamine, donepezil, and rivastig-
mine, which are cholinesterase inhibitors, whereas the 
fifth one memantine is a glutamatergic system modulator 
[6]. These drugs have limited efficacy and are associated 
with side effects such as hepatotoxicity [7]. The clinical 
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treatment of this disease is palliative and, in most cases, 
relies on improving stimulation at the relevant receptors 
by either increasing levels of the endogenous neurotrans-
mitter [8] or by the use of substances that have a similar 
agonist response. Major advances in the treatment of AD 
include the use of acetylcholinesterase inhibitors such as 
galantamine, huperzine [9], and physostigmine and its 
derivatives to increase the levels of ACh rather than the 
use of cholinergic compounds, although compounds with 
nicotinic properties have attracted some interest [10]. 
Monoamine oxidase B (MAO-B) has recently emerged 
as  a potential therapeutic target for AD because of its 
association with aberrant γ-aminobutyric acid (GABA) 
production in reactive astrocytes. The patients suffering 
from AD share a large plethora of pathogenic mecha-
nisms and symptomatology [11]. To overcome such mul-
tifactorial diseases, an effective approach should consider 
molecules able to modulate different pathways. These 
scaffolds must be chosen among those recognized to 
interact pleiotropically with important and crucial sys-
tems such as MAO-B. To overcome this disease through 
a complex mechanism, computational studies of mono-
amine oxidase B inhibitors have the ability to cure or hin-
der the negative activity of AD [12].

Computational techniques include the use of quan-
titative structure–activity relationship (QSAR), 

protein–ligand interaction (molecular docking), and 
drug kinetics studies and are major paths engaging in 
drug development and discovery processes [13]. Cor-
relations between independent variables (experimen-
tal activities) and molecular properties (descriptors) 
of different classes of compounds are the backbone of 
QSAR [14], and the interactions between the molecules 
and ligands explain the molecular docking of the crys-
tal structure of human monoamine oxidase B in com-
plex with chlorophenylchromone-carboxamide with ID 
code 6FW0, while drug evaluation assessment expli-
cates absorption, distribution, metabolism, excretion, 
and toxicity studies of a molecule that provides ade-
quate information on properties that influence it [13]. 
Computer-assisted drug design (CADD) using the in 
silico techniques has been of significant importance in 
the identification and development of non-toxic, highly 
effective, and inexpensive drugs for the treatment or 
management of AD [13].

The principal aim of this study was to utilize QSAR, 
molecular docking, and drug evaluation assessment to 
determine the mechanism of interaction between prom-
ising compounds of MAO-B and protein target for the 
treatment of AD by analyzing their binding interactions 
through molecular docking, and to ADMET assessment 
in the human system.

Fig. 1  Mechanism of reaction between MAO-B and Alzheimer disease
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Methods
Dataset
A total of thirty-seven datasets were taken from the lit-
erature [15] with the IC50 (µM) toward MAO-B inhibi-
tors, and it was converted to PIC50 [16] with the aid of 
the expression –log(IC50/106), as presented in Table 1 
with their molecular structures.

Virtual screening of dataset
Virtual screening (VS) is a powerful technique that has 
emerged as a reliable, cost-effective, and time-saving 
technique for the discovery and identifying hit mol-
ecules as starting points for medicinal chemistry [17].

Optimization and calculation of molecular property
ChemDraw Professional v 16.0 was used to draw the 
2D molecular structures, which were saved in an SD 
file. Each of the molecules opened in Spartan’14, V 
1.1.4, converting the 2D structures to 3D with the aid 
of tools in the Spartan software. Subsequently, density 
functional theory (DFT) (most probable structures 
and identification of the most stable conformer of the 
molecules associated with the absolute minima in the 
potential energy were achieved with the help of DFT) 
was carried out on the molecules utilizing Becke’s 
three-parameter exchange functional hybrid with the 
Lee, Yang, and Parr correlation functional (B3LYP) and 
basis set of 6-31G** [18]. Molecular properties were 
extracted using the Spartan’14 package. In addition, 
the PaDEL descriptor software was used to generate 
molecular properties in addition to those from Spar-
tan’14. Also, a total of 1500 molecular descriptors were 
calculated for the dataset as listed in Table 2.

Descriptors reception (treatment) and dataset division 
(training and evaluation set)
To generate a sturdy model with brilliant prediction, 
the intended molecular properties were ascertained. 
This is achieved with zero (0) and unwanted molecu-
lar properties [19]. Subsequently, the treated proper-
ties were divided into training and evaluation sets of 
70 to 30 percent, respectively, utilizing Kennard and 
Stone’s algorithm. The reason for the division is to use 
the training set to develop a QSAR model and the test 
set to evaluate the effectiveness of the developed model 
[20] (Table 3).

Descriptor selection, model building, quality, and model 
validation
QSARINS is a new software for the development 
and validation of MLR-QSAR models using the ordi-
nary least squares method and genetic algorithm for 

variable selection [21]. This program mainly focuses on 
the external validation of QSAR models. This software 
was used to select the suitable descriptors. Thereafter, 
the foremost subset was selected using four descriptor 
combinations and an R2 cutoff value of 0.6. The model 
quality was checked and validated using the Golbraikh 
and Tropsha acceptable model criteria such as Q2 > 0.5, 
R2 > 0.6, R2

adj > 0.6, and |r02−r’02|< 0.3 [22] (Table 4).

Descriptor importance and domain of applicability (DA)
The relative importance contribution of the descriptors 
was determined by the mean effect. Equation  1 defines 
the mean effect

where NAy is the mean effect of descriptor y in a model, 
βy is the coefficient of descriptor y in that model, dxy is 
the value of the descriptor in the data matrix for each 
molecule in the training set, p is the number of descrip-
tors that appear in the model, and n is the number of 
molecules in the training set. Thereafter, DA was assessed 
using the expression below to generate the hat matrix 
(leverages) to check for compounds that were outliers or 
influential with a threshold value of ± 3. This is expressed 
in Eq. 2

where Kn is the total number of descriptors values that 
made up the matrix n. Furthermore, Eq.  3 was used to 
screen molecules with variant leverage values to define 
the threshold limit for any controlling molecule [23].

Letter y represents the sum of descriptors in the model, 
while q represents number of molecules in the training 
data and k∗ is the hat matrix (Table 5).

Y‑randomization evaluation
Another standard validation evaluation parameter is Y-ran-
domization, which measures the potency of the model. 
This assessment was established through rearrangement 
of the evaluation set [24, 25]. The molecular properties 
were constant to generate the model using multiple-linear 
regression while asserting the experimental activities. The 
products of Y-randomization are Q2 and R2, which must be 
low after about ten trials to confirm the robustness of the 
model and is clear evidence that the built model is of high 
quality and not, by the way, attained [26]. Furthermore, 

(1)NAy =
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Table 1  Molecular structures, activities, and docking scores
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Table 1  (continued)
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Table 1  (continued)
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Table 1  (continued)
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cR2p ≥ 0.5 for the Y-randomization coefficient must be 
satisfied to ascertain the goodness of the model [27]. 
Equation  4 was used to compute the Y-randomization 
coefficient.

(4)cR2
p = R× i

[

R2
− Rr

2

]2i

Preparation of protein target and ligand
The human crystal structure of monoamine oxidase 
B (MAO-B) in complex with chlorophenylchromone-
carboxamide (PDB ID: 6FW0; chain B) was retrieved 
from RCSB PDB database (https://​www.​rcsb.​org/), and 

Table 2  Descriptor calculation for dataset

S/No AATS1v AATS3v GATS4m GATS6e Observation Predicted Residual

Training set

1 297.6475 218.9094 0.914028 0.994823 0.953276 1.580814 0.627537

2 299.4813 229.4111 1.006684 0.945055 1.943989 1.781762 0.162226

3 297.6913 217.562 0.898932 1.204206 0.674861 0.97591 0.301049

6 288.5722 219.0597 0.993292 0.854166 1.710963 2.229856 0.518893

8 297.0786 221.1226 0.934554 1.150817 1.705008 1.224355 0.480653

9 297.0786 222.8824 0.921167 1.175852 0.990339 1.383862 0.393523

10 297.0786 224.0321 0.926495 1.105338 1.963316 1.640273 0.323043

11 290.9698 221.9007 0.997955 1.070482 1.693727 1.606923 0.086804

12 291.1623 219.7585 1.005254 0.952702 1.812913 1.705119 0.107795

16 299.7762 223.0524 0.919195 1.069844 1.984077 1.482943 0.501134

17 294.302 223.5601 0.992318 1.083972 1.448706 1.456079 0.007373

18 298.1829 231.6285 0.981774 0.860283 2.569374 2.477758 0.091616

19 298.1832 227.91 1.030283 0.991369 1.696356 1.481619 0.214737

23 309.4127 224.234 0.750577 1.158026 1.755875 1.643182 0.112693

24 298.1836 230.4134 0.979708 1.087878 2.456366 1.747631 0.708735

25 295.0909 225.815 0.96714 0.9321 2.356026 2.170345 0.185681

26 300.7947 223.0978 0.880166 0.945471 2.372912 2.016283 0.356629

27 306.8214 236.7577 0.994401 1.280024 0.683047 0.875783 0.192736

28 296.2707 225.4369 0.955922 0.914134 2.004321 2.166517 0.162196

29 309.5633 206.3861 0.612291 1.033981 1.559907 1.488068 0.071838

30 295.6709 235.1477 1.077964 1.027411 1.868644 1.849744 0.018901

32 301.9736 226.8351 1.09348 1.119595 0.220108 0.284052 0.063944

33 295.6503 213.7543 1.019817 0.926949 0.810904 0.819565 0.008661

34 319.6262 237.6001 0.77405 0.986436 1.974512 2.173184 0.198672

36 299.4813 231.4712 0.947273 1.041653 1.593286 2.071609 0.478323

37 299.4813 229.4111 0.965993 1.113519 1.107211 1.576788 0.469577

Test set

4 286.5247 208.8337 0.958307 0.924432 0.451786 1.622659 1.170872

5 288.5722 220.7687 0.944413 1.112229 1.184691 1.961825 0.777134

7 288.5722 219.0597 1.02677 0.698291 2.382017 2.447592 0.065575

13 297.0786 222.8824 0.921167 1.175852 2.193125 1.383862 0.809262

14 290.9698 225.6169 0.985946 1.136569 2.037426 1.796752 0.240675

15 290.2124 227.6915 1.001267 1.099253 2.274158 2.029735 0.244423

20 292.6929 219.4861 0.96768 0.769254 1.687529 2.327697 0.640168

21 303.6736 232.168 0.919552 1.157647 1.372912 1.628114 0.255202

22 293.3524 222.7396 0.944523 0.925934 2.089905 2.242083 0.152178

31 301.0308 211.4888 0.657551 1.459484 1.671173 1.106193 0.56498

35 297.6913 217.562 0.898932 1.204206 1.369216 0.97591 0.393306

https://www.rcsb.org/
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it was treated for the removal of water molecules and 
heteroatoms. The protein possesses the following char-
acteristics which makes it useable, low resolution of 
1.60 Å, Homo sapiens, no mutation and has been estab-
lish in the literature. Further, the inhibitor binding site 
of co-crystal ligand/inhibitor was untangled from the 

literature available for the crystal structure [28]. Size of 
the grid box  40  Å × 40  Å × 40  Å was built that  engulfs 
the inhibitor binding pocket for the protein structure at 
the coordinates x = 50.514803  Å, y = 155.997795  Å, and 
z = 29.023735 Å. On the other hand, the two-dimensional 
molecular structures of the chemical compounds were 
drawn and their 3D structures were optimized using 
Spartan’14. Further, the ligand preparation for docking 
was carried out in Discovery Studio as described in a pre-
vious research by [29, 30] (Table 6).

Molecular docking procedures and docking validation 
protocols
The ligands were virtual screened using the Internal 
Coordinate Mechanics Program (ICM-PRO). The ICM 

Table 3  Molecular properties utilized in the MLR model

S/No Identity of molecular properties Descriptor sign Class % Contribution

1 An averaged Moreau-Broto autocorrelation of lag 1 weighted by vdw 
volume

AATS1v 2D 48%, and negative contribution (0.08492)

2 An averaged Moreau-Broto autocorrelation of lag 3 weighted by vdw 
volume

AATS3v 2D 34%, and positive contribution (0.07988)

3 A Geary autocorrelation coefficient lag1 which is weighted by atomic mass GATS4m 2D 12%, and negative contribution (6.73046)

4 Geary autocorrelation—lag 6/weighted by atomic Sanderson electronega-
tivities

GATS6e 2D 6%, and negative contribution (2.84241)

Table 4  Y-randomization assessment of MLR

Model type R R2 Q2 (LOO)

Original 0.827819 0.685284 0.574515

Random 1 0.412459 0.170122 − 0.48832

Random 2 0.47985 0.230256 − 0.51132

Random 3 0.255063 0.065057 − 0.741

Random 4 0.279267 0.07799 − 0.35473

Random 5 0.411131 0.169028 − 0.69774

Random 6 0.366618 0.134409 − 0.27287

Random 7 0.422091 0.178161 − 0.34895

Random 8 0.484999 0.235224 − 0.18176

Random 9 0.515376 0.265613 − 0.03472

Random 10 0.348056 0.121143 − 0.29197

Average R 0.436612

Average R2 0.212026

Average Q2 (LOO) − 0.30444

cRp2 0.601116

Table 5  Correlation and statistical evaluation assessment of the selected molecular properties

AATS1v AATS3v GATS4m GATS6e VIF P value MEAN EFFECT Class % Contribution of 
each descriptor

AATS1v 1 0.8579 0.0030 1.5178 2D 48

AATS3v 0.3423 1 0.7843 0.0009 − 1.0742 2D 34

GATS4m − 0.5735 0.3841 1 0.4370 0.0001 0.3797 2D 12

GATS6e 0.3282 0.0394 − 0.3722 1 0.8683 0.0001 0.1766 2D 6

Table 6  Virtual screening of the compounds docked against the 
target protein

Compound Binding 
affinity (kcal 
mol−1)

Total no. of 
intermolecular 
bonds

Total no. of 
hydrogen 
bonds

13 − 30.51 8 2

31 − 31.85 9 1

33 − 33.70 19 9

Eldepryl (Reference) − 11.40 3 1
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scoring algorithm employs Monte Carlo simulations to 
optimize ligand internal coordinates in the space of grid 
potential maps produced for the protein pocket and 
weighted as follows [31]. To screen the 3D conforma-
tions of chemical compounds derived via docking, the 
binding affinity with intermolecular connections and 
hydrogen bonds with the target protein was employed. 
Based on these criteria, a possible inhibitor chemical 
with the highest binding affinity and number of contacts 
was identified. The introduction of a random move to 
one of the rotational, translational, or conformational 
within the binding pockets of the variables; minimiza-
tion energy of the differentiable terms; calculation of 
desolvation energy; and the final minimized confor-
mation is accepted or rejected based on Metropolis 
criterion [30, 31], and the maximal number of steps 
is achieved after repetition of the procedure. The pre-
dicted score is calculated by following Eq. 5. Reliability 
and worthiness ability of the docking method were vali-
dated with the aid of glide module in Schrodinger, ver-
sion 18.0 suite.

where ΔE = energy change, IntFF = internal force field, 
HBond = hydrogen bond, HBDesol = hydrogen bond 
donor–acceptor desolvation, SolEI = solvation electro-
static energy ligand binding, HPhob = hydrophobic free 
energy gain, and size correction term.

In silico prediction of ADME, pharmacokinetics, 
and bioactive evaluation
The chemoinformatic technique is one of the current 
and agile growing and becoming elaborate approaches 
in pharmacokinetics, ADME (absorption, distribution, 
metabolism, excretion) assessment, drug discovery, 
and toxicity. Various pharmacokinetic (PK) parameters 
can now be forecasted via quantitative in silico method 
[32]. The strong consensus is that the forecasts are no 
worse than those obtained by in  vitro experiments, 
with the significant advantage of requiring far less tech-
nology, resources, and time. In addition, and of critical 
importance, it is possible to screen virtual compounds. 
The predictions were executed utilizing SwissADME 
web tool, pkCSM, and molinspiration. Bioactive and 
medicinal chemistry evaluation of the compounds 
was investigated using web-based online tools [33] 
(Table 7).

(5)
�G =�EIntFF + T�STor + α1�EHBond

+ α2�EHBDesol + α3�ESolEI

+ α4�EHPhob + α5Qsize

Results
QSAR results evaluation
QSAR-MLR approach was effect-fully computed on 
derivatives of monoamine oxidase B as potential inhibi-
tors against AD.

Character of descriptors in the model
Built model

Ntrain: 26, Ntest: 11, R2: 0.6853, R2
adj:0.6253, LOF: 0.2274, 

Q2
loo: 0.5745, RMSE cv: 0.3839, PRESS cv: 3.8310, CCC 

cv: 0.7510, RMSE ext: 0.2818, MAE ext: 0.1831, PRESS 
ext: 0.2237.

Analysis and receptor plot
Figure  6 shows predicted protein target plot of 
Ramachandran, and the quality of the plot was ascer-
tained by online software.

Molecular docking (MD) procedures and docking 
validation protocols
All the compounds, including the reference compound, 
were subjected to MD procedures, but only a few of 
them had higher binding scores than 30 kcal mol−1, such 
as compounds 13, 31, and 33, which had higher binding 
affinities of −  30.51, −  31.85, and −  33.70 kcal  mol−1, 
respectively, and were chosen for further analysis.

In silico prediction of ADMET, pharmacokinetics, 
and bioactive evaluation
Table 8 shows the physicochemical parameters of docked 
compounds based on their binding affinity, and the best-
docked molecules are evaluated as potential drug candi-
dates  (Table 9).

Table  10 displays the predicted bioactivity scores as 
well as the medicinal chemistry characteristics of numer-
ous developed drugs [34]. The G protein-coupled recep-
tor (GPCR) ligand, ion channel modulator, nuclear 
receptor ligand, kinase inhibitor, and enzyme inhibitor 
were all given bioactivity scores for the compounds that 
were chosen. The molecule is deemed more bioactive if 

(6)

PIC50 = 18.35217(+/− 5.55493)

− 0.08492(+/− 0.02234)AATS1v

+ 0.07988(+/− 0.01636)AATS3v − 6.73046

(+/− 1.43217)GATS4m − 2.84241

(+/− 0.71084)GATS6e
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the expected value is greater than 0.00 (> 0), moderately 
active if the value is between 0.5 and 0.00, and non-active 
if the expected value is less than 0.5. As demonstrated in 
Table 10, all of the substances tested, with the exception 
of the Eldepryl which is the referred drug, are active G 
protein-coupled receptor (GPCR) ligands with projected 
bioactive values greater than 0.00. It was also looked 
into PAINS alerts (pan assay interference) and synthetic 
accessibility for medicinal chemistry properties. There 
was no alarm in any of the considered compounds, except 
the referenced medications (PAINS alert = 0). A synthetic 
accessibility or complexity score of 1–4 indicates that 
synthesis is simple, 4–7 indicates that it is moderate, and 
8–10 indicates that it is challenging inhibitors [35]. In 
addition, Fig. 11 shows the BOILED-egg to ascertain the 
permeability of the active compounds in the BBB (blood–
brain barrier) or HIA (human gastrointestinal (HIA) 
absorption). All the studied compounds and the standard 
drug had a favorable physiochemical profile because their 
expected values were within the limit.

Discussion
QSAR results evaluation
The developed QSAR model established in this study 
was utilized for the prognostic of anti-Alzheimer activi-
ties with the influence of the calculated molecular prop-
erties. The calculated properties are AATS1v, AATS3v, 
GATS4m, and GATS6e which made up the MLR model 
supply a significant influence in revamping the chemi-
cal information of each compound into numeral value as 

Table 7  Detailed binding interactions of compounds with the protein with distances in (Å)

Compounds Hydrogen bonds Hydrophobic bonds Electrostatic bonds Others

π–π π-Alkyl Alkyl π-Sigma π-Anion π-Sulfur

13 ASN 116 (3.35), ARG 127 
(3.16)

PHE 103 (5.11) TYR 112 (5.19),
ARG 120 (3.77),
ARG 484 (5.38)

– THR 479 (3.35) GLU 483 (4.03) –

31 TYR 435 (3.37), TYR 326 (5.30) TYR 398 (5.31),
TYR 398 (3.74)

LEU 171 (4.92) LEU 171 
(3.37), ILE 199 
(3.58)

– CYS 172 (5.45), 
PHE 343 (5.70)

33 SER 59 (3.47), TYR 60 (3.47),
CYS 172 (3.67),
CYS 397 (2.93),
TYR 435 (3.07),
CYS 172 (3.27),
CYS 172 (3.26),
GLY 434 (3.51),
TYR 435 (3.12)

TRP 388 (5.12),
GLY 57 (3.58),
GLY 57 (4.03)

PHE 343 (5.44),
TYR 398 (5.39)
LYS 296 (4.94)
CYS 397 (4.39)
CYS 397 (4.34)

LEU 171 (5.41) – – TYR 60 (4.98)

Eldepryl
(Reference)

GLN 206 (3.14) – TYR 398 (5.45),
TYR 435 (4.21)

– – – –

Table 8  Predicted physicochemical parameters of MAO-B 
inhibitor and referenced drug

Parameters Compounds

13 31 33 Reference

Molecular weight < 500 397.41 366.39 392.39 273

nHBA < 10 6 5 6 4

nHBD < 5 1 1 1 1

nROTB < 9 7 6 5 1

Log P < 5 2.71 3.02 3.13 5.1

TPSA < 130 107.16 128.41 115.56 30.5

GI absorption High High High Low

BBB permeation No No No No

PAINS alerts 0 0 0 1

Lipinski’s rule violation 0 0 0 1

Bioavailability score 0.55 0.55 0.55 0.55

Table 9  Predicted ADME properties of designed inhibitors

Compounds 13 31 33 Reference

GIA (% Absorbed) 97.47 97.50 100 81.51

LogKP (skin permeation) − 5.24 − 5.43 − 5.64 − 2.5

P-gp S Yes Yes Yes No

CaCo2
(log Papp in 10–6 cm/s)

1.16 1.11 1.16 0.11

CYP 3A4 No Yes Yes No

CYP 2D6 No No No Yes

Hepatotoxicity No No No No
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reported in Table 2. Also, in Table 2, the predicted activi-
ties with the help of the calculated molecular properties 
as well as the residual values for all the studied com-
pounds are presented.

Character of descriptors in the model
Table  3 shows the technical meaning of each descrip-
tor as featured in the built model. The physicochemi-
cal interpretation of the above QSAR model is denoted 
by the contribution of modeled parameters including an 
averaged Moreau-Broto autocorrelation of lag 3 weighted 
by vdw volume (AATS3v) with maximum positive 
impact, whereas decrease in values of parameters such 
as an averaged Moreau-Broto autocorrelation of lag 1 
weighted by vdw volume (AATS1v), a Geary autocorre-
lation coefficient lag1 which is weighted by atomic mass 
(GATS4m), and Geary autocorrelation—lag 6/weighted 
by atomic Sanderson electronegativities (GATS6e), may 
increase activities of the receptor. These descriptors con-
tribute aromaticity, hydrophobicity, and hydrogen bond-
ing responsible for increase in the ligand affinity to bind 
to the protein target [38, 39].

Table 10  Bioactivity index and medicinal chemistry accessibility of designed inhibitors

GPCR G protein-coupled receptor, ICM ion channel modulator, KI kinase inhibitor, NRL nuclear receptor ligand, PI protease Inhibitor, EI enzyme inhibitor, SA synthetic 
accessibility, GV Ghose violation, VV Veber violation, EV Egan violation, PA pain alert, MV Muegge violation

Compounds GPCR 1CM KI NRL PI EI SA GV VV EV MV PA

13 0.59 − 0.55 − 0.64 − 0.72 − 0.55 − 0.30 3.56 0 0 0 0 0

31 0.70 − 0.84 − 0.62 − 1.07 − 0.76 − 0.38 3.25 0 0 0 0 0

33 0.74 − 0.94 − 0.61 − 0.92 − 0.64 − 0.26 3.62 0 0 0 0 0

Eldepryl − 0.56 − 0.11 − 0.24 − 0.48 − 0.50 − 0.31 5.12 1 0 1 0 1

48%

-34%

12%
6%

Descriptor Contribution

AATS1v AATS3v GATS4m GATS6e

Fig. 2  Descriptor contribution

Fig. 3  Experimental endpoint values against predicted by leave one out activity
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The low value computed for the residual between pre-
dicted and observe activities gives a reasonable sugges-
tion that the model has a reliable predictive measure [40]. 
For the moment, the built QSAR model was strongly 
derived utilizing the approach of QSAR-MLR with four 
dynamic molecular properties integrated into the equa-
tion as shown below.

The model as the following values as it internal param-
eters for its indestructibility and consistently well abil-
ity, R2 (correlation coefficient) of 0.6853, R2

adj (adjusted 
correlation coefficient) of 0.6253, and Q2

loo (leave one 
out cross-validation correlation coefficient) of 0.5745 in 
order to confirm its efficacy for predicting the activities 
of the studied inhibitors. More also, Table 4 shows MLR 
Y-randomization test, the strength, and consistent of the 
built model were verified by the coefficient of Y-randomi-
zation of 0.6433 shown in Table  4. Interestingly, it was 
observed that all the validation criteria were fully agreed 
with the acceptable threshold parameters stated in a lit-
erature [36].

Accuracy and cogency of the selected properties were 
commutated through correlation assessment with other 
statistical quantities. The parameters reported in Table 5 
fall within the limit value of < 10 for variance inflated fac-
tor (VIF) which implies that each descriptor is orthogo-
nal to one another and in agreement with the Pearson 

correlation analysis to ascertain the estimated results 
[37]. Also, the correlation coefficient of ≤ 0.8 indicates 
that the properties were parallel to each other and no 
multicollinearity within the descriptors [38].

Table 5 shows the scalar and vector ability of the molec-
ular properties estimated through mean effect (ME) eval-
uation. It is observed from results shown in Table 5 that 
descriptor AATS1v has the highest ME value of 1.5178. 
Figure  2 shows the percentage contribution of all the 
descriptors, and the first descriptor AATS1v is 48% with 
highest percentage contribution to the developed model 
and increases the activity of the model in a positive direc-
tion. The ME value of the second descriptor AATS3v is 
−  1.0742 with percentage contribution of 34% with the 
second highest percentage contribution to the built model 
and increases the activity of the model in a positive direc-
tion. Also, the third descriptor GATS4m with a ME value 
of 0.3797 and 12% contribution to the model influences 
the activity of the model in a positive direction. Lastly, 
the descriptor GATS6e with a ME value of 0.1766 and 
6% contribution to the developed model influences the 
model in a positive direction. Still in Table 5, it shows the 
variance analysis between the computed properties and 
their activities (called p values). All the values were found 
to have p < 0.05 at ninety-five percent confidence limit. 
Hence, alternative hypothesis is valid and acceptable [40].

Fig. 4  Experimental data versus residuals



Page 14 of 20Ajala et al. Future Journal of Pharmaceutical Sciences             (2023) 9:4 

Figure 3 shows a scatter plot of the experimental ver-
sus the predicted responses. This enables the detection 
of systematic trends and clustering of data and, if any, 
sturdy outliers in the data. In this plot, there are neither 
systematic trends nor clustering of data, and this simply 
indicates strength of the developed model and its reliabil-
ity [41].

Figure  4 indicates the plot of experimental against 
residuals. This plot gives room to evaluate the deviations 
from the ideal experimental and predicted value and to 
detect anomalous trends. The plot shows equal distribu-
tion of the data within +2 and −2, hence no anomalous 
detected which implies that the built model is brilliant 
and offer exceptional predictions [42].

Fig. 5  Williams plot

Fig. 6  Ramachandran graph. Most favored region (red), additional allowed region (brown). Generously allowed region (deep yellow)
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Figure  5 shows the Williams plot called DA for the 
detection of outliers for the response (dependent vari-
ables) and those for the structure (independent vari-
ables). It consists of plotting the standardized residuals 
on the y-axis and the leverage values from the hat matrix 
diagonal on the x-axis [43]. All the chemical compounds 
(obviously from Fig. 3) fall within the domain of ± 3 with 
the exception of compound 4 which falls above the user 
defined threshold, thus considered as outliers. Also, only 
compound 39 is observed to overshoot the danger zone 
called “warning leverage” (h*) of 0.58. Thus, an influential 
hypothetical compound with magnified activities which 
cannot be taken into consideration when designing theo-
retical compounds.

Analysis and receptor plot
The Ramachandran plot demonstrated an appropri-
ate percentage distribution of protein residues, indicat-
ing that the predicted model was of sufficient quality to 
match the protein stereochemistry in the final model 
[44]. Also, the plot provides away to view the distribution 
of torsion angles in a protein structures as shown in Fig. 6 
called Ramachandran graph.

Molecular docking (MD) procedures validation protocols
All the compounds except 13 occupied the central inhibi-
tor binding site, which is located near to the flavin ade-
nine dinucleotide (FAD) binding region. Compound 
13 chiefly occupied the loop region which is present 
between 99 and 105 residues as shown in Fig. 7. All the 
compounds were found to bind the co-crystal inhibitor 
ligand (E92602). Among all the compounds, compound 

33 was found to have the highly negative, binding affin-
ity (− 33.70 kcal mol−1) with hydrogen and hydrophobic 
interactions, whereas the Eldepryl (reference) was found 
with the lowest binding affinity (− 11.40 kcal mol−1). The 
details of virtual screening are depicted in Table 6.

According to the [28], the binding of the compounds 
within the inhibitor binding site/active site of the pro-
tein would allow the molecule to interact with the key 
residues like TYR 435, CYS 397, CYS 172, PHE 343, 
TYR 398, and LYS 296 [47]. However, compound 13 
was not able to get inserted in the binding pocket. In 
case of reference, although it got inserted in the binding 
pocket, the number of interactions and binding affin-
ity were comparatively low. Binding interactions of the 
compounds with the amino acid residues of the target 
protein are detailed in Table 7. Also, the visualization of 
these interactions is given in Fig. 8 (3D) and Fig. 9 (2D). 
The docking and binding of the compounds were accu-
rate according to, where natural phenols were evalu-
ated to inhibit the binding site of the human MAO using 
both in vitro and in silico approaches (PDB ID: 6FW0). 
In similar study conducted by Catalano et  al. [48], 1 
H-pyrrolo-[3, 2-c] quinolines were evaluated against the 
human MAO using in vitro and in silico methods. With 
the compounds showing similar binding pattern in term 
of binding energy (inhibitor binding site located near to 
the FAD region) and interactions (both hydrogen and 
hydrophobic interactions with the key residues), as previ-
ously reported [49]. By the virtue of these interactions, as 
mentioned in [48], inhibition of human MAO could be 
achieved by our compounds.

Figure  10 shows the superimposed structures of the 
docked and co-crystalline ligands with RMSD value of 

Fig. 7  Binding of the compounds inside the inhibitor binding site of the protein. Blue: compound 13, orange: compound 31, green: compound 33, 
and red: reference
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1.7453  Å which is less than threshold value of ± 2. This 
is a clear evidence that validation of our docking method 
was good and yielded excellent result.

In silico prediction of ADMET, pharmacokinetics, 
and bioactive evaluation
However, when utilizing appropriate processes in drug 
design, development, and discovery expeditions, it is 
essential to evaluate some critical pharmacokinetic 

characteristics or ADMET properties (absorption, 
distribution, metabolism, excretion, and toxicity) as 
the most vital characteristics [36]. Lipinski’s rule of 
five was used to analyze the expected properties that 
play a significant role in a molecule’s efficacy, safety, 
or metabolism for all of the docked compounds. The 
results revealed that none of the compounds, with the 
exception of the referenced medication (Eldepryl), 
have Lipinski’s rule of five violations (RO5) violated. 

Fig. 8  Binding interactions of compounds with the protein in 3D view: A compound 13, B compound 31, C compound 33, and D Eldepryl 
(reference)
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Fig. 9  Binding interactions of compounds with the protein in 2D view: A compound 13, B compound 31, C compound 33, and D Eldepryl 
(reference). Lavender: surrounding residues, colored: binding residues
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This demonstrates that all the three inhibitors have 
drug-like or pharmacological qualities, allowing them 
to be taken orally. Table 9 shows ADMET qualities of 
the three compounds thoroughly investigated using 
online web-based tools, and the results were compared 
to a referred drug (Eldepryl), Based on ADMET pre-
dictions, the computed absorption properties (percent 
human intestinal absorption > 30%, Caco2 perme-
ability > 0.90, and skin permeability logKp > 2.5) were 

found to be within the threshold values, and all of the 
selected compounds, with the exception of the refer-
enced drug, were found to be P-glycoprotein II inhibi-
tors. This suggests that all of the compounds had 
significant pharmacological properties and were well 
absorbed by humans [50]. Similarly, Fig. 11 shows the 
BOILED-egg ligand predictive model, it signifies the 
expected permeability values for both the BBB and 
the CNS, as well as other predicted properties (meta-
bolic and excretion) imply that all of the examined 
compounds (Table  8) have good therapeutic potential 
inhibitors. All the compounds with the exception of 
the standard drug had a favorable physiochemical pro-
file because their expected values were within the limit. 
Furthermore, the exact predictive model (BOILED-
Egg), which is highly useful in the context of drug dis-
covery and medicinal chemistry and is based on the 
calculation of lipophilicity given by the logarithm of 
the partition coefficient between n-octanol and water 
(Log PO/W) and polarity signaled by the topological 
polar surface area (TPSA) of small molecules, clearly 
shows that the Eldepryl molecule (the reference com-
pound) is the only compound that falls out of the 
blood–brain barrier; as such, the three ligands (13, 31, 
and 33) pass through the BBB. As a result, the three 
active ligands outperform the reference drug, and they 
can be tested in vivo and in vitro.

Fig. 10  RMSD value of 1.7453 Å for superposition of the co-crystal 
ligand with its docked pose

Fig. 11  Model of the most predictive active ligand called BOILED-egg. Molecules 13 (blue), 31 (black), and 33 (green) all fall in the blood–brain 
barrier. The reference drug (orange) neither falls in the yolk nor albumen
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Conclusion
The 37 MAO-B compounds were screened using the 
aforementioned methods and yielded a model with 
the following molecular properties: AATS1v, AATS3v, 
GATS4m, and GATS6e. Good statistical values were 
R2

train = 0.69, R2
adj = 0.63 R2

pred = 0.57, LOF = 0.23, and 
RMSE = 0.38. The model was validated using an evalu-
ation set that confirmed its robustness and could pre-
dict the anti-Alzheimer properties of the three selected 
compounds (13, 31, and 33). A molecular docking study 
shows the best three compounds (13, 31, and 33) with 
the lowest binding scores (−  30.51 kcal  mol−1, −  31.85 
kcal mol−1, and − 33.70 kcal mol−1, respectively) formed 
the three most stable complexes after binding to the 
receptor. The docking was validated by re-docking of the 
co-crystallized compound and getting an RMSD value of 
1.7453. Furthermore, the three compounds bind with the 
active site of the target with the following residues, and 
this shows two prominent interactions that are hydrogen 
and hydrophobic with TYR 435, CYS 397, CYS 172, PHE 
343, TYR 398, and LYS 296 amino acid residues of the 
target receptor. Additionally, ADMET/pharmacokinetics 
evaluation predictions were investigated on these active 
(three) compounds, and they are orally bioavailable; as 
such they have therapeutic potential as drugs for the 
treatment of AD after in vivo and in vitro analysis.
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