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Abstract 

Background  Luffa cylindrica (L.) is an annual climbing plant that produces fibrous fruit and can also be used as a 
vegetable in northern parts of India. Various studies have been carried out on the plant and found to have anti-inflam-
matory, antifungal, analgesic, anti-myocardial, anti-hyper triglyceride, immunostimulant, anti-allergic, and other prop-
erties. The ethanolic extract of the Luffa cylindrica (L.) fruit has not yet been subjected to LC–MS analysis for several 
bioactive chemicals that target neurological diseases. Oxidative stress is an inevitable situation in AD mechanisms and 
is a key bridge connecting various AD pathways.

Results  Luffa cylindrica contains various phytochemicals and showed highest alkaloid content of 21.39 ± 1.47 mg 
of AE/g. A total of 80 compounds were identified in the ethanolic extract from LC–MS analysis. The bioactive com-
pounds were screened for eligibility by Lipinski’s rule of five for docking with receptors responsible for causing oxida-
tive stress-associated Alzheimer’s disease. Perlolyrine was chosen to perform in-silico docking. An in vitro activity of 
cholinesterase showed highest inhibition at 500 µg/ml. In-silico docking of perlolyrine showed better binding affinity 
and score. Results revealed that out of 10 docked receptors, amyloid beta showed the highest binding affinity with an 
energy of − 46.1 kcal/mol showing promising drug for Alzheimer’s disease.

Conclusion  Based on current findings, the study reports the presence of a promising, bioactive compound (perlolyr-
ine) and in turn provides an optimistic note in exploring its biological activity in vivo with oxidative stress-related 
Alzheimer’s disease.
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Background
Luffa cylindrica (L.) is an annual climbing plant that 
produces fibrous fruit and can also be used as a vegeta-
ble in northern parts of India. It belongs to the Cucur-
bitaceae family and is also called as loofa, bath sponge, 
sponge gourd, etc., and contains smooth and cylindrical-
shaped fruits. The medicinal plant Luffa cylindrica has 

been used extensively to cure various ailments. Family 
Cucurbitaceae is economically beneficial as it is a sig-
nificant food source and has pharmacological properties 
that include anticancer, antiulcer, anti-diabetic, anal-
gesic, and nephroprotective [1]. In Bangladesh, Luffa 
cylindrica (L.) and Luffa acutangula are widely used as 
vegetables, meals, and folkloric medicines to treat vari-
ous illnesses [2]. The plant is traditionally used to treat a 
variety of conditions, including asthma, intestinal worms, 
sinusitis, chronic bronchitis pain, carbuncles, abscesses, 
inflammation, heat rashes, bowel or bladder hemorrhage, 
hemorrhoids, jaundice, menorrhagia, hematuria, lep-
rosy, splenopathy, and as an antiseptic, emmenagogue, 
and carminative [3, 4]. Luffa cylindrica (L.) fruit has been 

*Correspondence:
Chitra Vellapandian
dean.pharmacy.ktr@srmist.edu.in
1 Department of Pharmacology, SRM College of Pharmacy, SRMIST, 
Kattankulathur, Tamil Nadu 603203, India

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s43094-023-00478-0&domain=pdf


Page 2 of 17Singh and Vellapandian ﻿Future Journal of Pharmaceutical Sciences            (2023) 9:33 

used extensively to clear phlegm along with antipyretic 
effect. Its fruit is also used to treat hyperglycemia [5, 6], 
cataract [7], anti-emetic, anti-inflammatory [8], and anti-
microbial effect. [9] Its leaves are also studied extensively 
on cancer [10], hepatoprotective [11], and anthelminthic 
[12] activities. Similarly, its seed also has the potential 
in treating asthma-related effects [13], anti-fungal [14], 
abortifacient [15], and anti-HIV activity [16]. Various 
studies have been carried out on the plant and found to 
have anti-inflammatory, antifungal, analgesic, anti-myo-
cardial, anti-hyper triglyceride, immunostimulant, anti-
allergic, and other properties [2, 17]. The components 
that make up plant antioxidants include terpenoids, 
polyphenolic chemicals, ascorbic acid, and tocopherols, 
which serve a variety of essential roles in both plants and 
humans [18]. Oxidative damage contributes significantly 
to the aging process and the etiology of various illnesses, 
including atherosclerosis, diabetes, cataracts, bronchial 
asthma, Alzheimer’s disease, cancer, and rheumatoid 
arthritis. Chemical methods such as radical scavenging 
assays (DPPH, ABTS, hydroxyl assays), lipid peroxida-
tion assays (carotene-linoleate model systems, thiobar-
bituric acid-reactive substances), and reduction power 
assays (FRAP, CUPRAC), as well as enzyme-based assays, 
can be used to investigate the antioxidant potential of 
plants [19]. These antioxidants can safeguard plant cells 
from reactive oxygen species damage, which frequently 
causes biochemical and physiological lesions, metabolic 
dysfunction, and ultimately cell death [20]. The endothe-
lin receptor (ER) has a well-established significance in 
metabolic and cardiovascular problems because of its 
role and function in Ca2+ handling, protein synthesis/
folding, and secretory pathway control. Because ER redox 
state strongly affects protein folding, when disulfide bond 
production is regulated in response to ER stress, luminal 
oxidative stress rises, and ER function falls [21]. Chronic 
oxidative stress conditions speed up the neurodegenera-
tive process by increasing the calcium influx into the cells 
caused by reactive oxygen species and altering the mito-
chondria by lowering succinate dehydrogenase (SDH) 
activity [22]. Additionally, it can disrupt ATP receptors 
by augmenting phosphorylation pathways and decreasing 
membrane depolarization. In conclusion, ozone exposure 
leads to oxidative stress, which stimulates the purinergic 
receptor and GSK-3 response, activating the nuclear fac-
tor kappa-light-chain-enhancer of activated B cells (NF-
kB) to produce the pro-inflammatory IL-1 and lowering 
IL-10, both of which give rise to cell death [23]. Luffa 
plants are a significant source of anti-retroviral medica-
tions since several species have ribosome-inactivating 
proteins (MAP30, luffin A & B) and anti-HIV activity 
[24]. In a study, ethanol extract proved the presence of 
various phytochemicals and antioxidant activity. It also 

demonstrated the beneficial effects of plant-based ther-
apy on free radical scavenging effects [25].

The most common cause of dementia and cognitive 
decline in older people (over age 65) is Alzheimer’s dis-
ease (AD) worldwide. Pathophysiological alterations 
include the build-up of toxic amyloid beta plaques, 
neurofibrillary tangles of hyperphosphorylated tau pro-
tein, and neurodegeneration carried by unregulated 
microglial activation in the brain, which secretes neu-
rotoxins and inflammatory cytokines [26]. Population-
based European studies show that the age-standardized 
prevalence of dementia and AD is 6.4 percent and 4.4 
percent among older adults of age 65. Vascular risk fac-
tors in middle-aged and older persons strongly con-
tribute to the start and development of dementia and 
AD [27]. The ethanolic extract of the Luffa cylindrica 
(L.) fruit has not yet been subjected to LC–MS analysis 
for several bioactive chemicals that target neurologi-
cal diseases. Cholinesterase inhibitors have been the 
best track record of effectiveness for several AD fea-
tures. Newer potential therapeutic agents are still in the 
early stages of clinical research, and alternative therapy 
modalities have not undergone as much testing or dem-
onstrated as much efficacy [28]. Traditional cholinest-
erase inhibitors are found to have cholinergic actions 
as well as activity against several AD molecular targets 
in several in vitro and in vivo investigations. However, 
their effects in slowing AD progression are still mini-
mal [29]. Oxidative stress is an inevitable situation in 
AD mechanisms and is a key bridge connecting various 
AD pathways. Even though the majority of antioxidants 
have potent benefits in animal research, the outcomes 
of trials in people are insufficient [30]. For this instance, 
various oxidative stress receptors associated with Alz-
heimer’s disease can be docked with identified com-
pounds and understand the physiology to prevent the 
disease.

This work aims to provide a comprehensive view of 
the phytochemical screening of L. cylindrica fruit, iden-
tify various bioactive compounds from LC–MS analy-
sis, in vitro cholinesterase activity, and perform in-silico 
docking of different receptors targeting Alzheimer’s dis-
ease-associated oxidative stress.

Methods
Collection and identification of plant material
The entire fruit of Luffa cylindrica (L.) was collected in 
and around Uttar Pradesh from June to August 2021. The 
plant specimen, preserved in the Department of Pharma-
cognosy, was authenticated by Dr. P. Jayaraman, Direc-
tor of the Plant Anatomy Research Center in Tambaram, 
Chennai (Registration No. PARC/2021/4528).
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Processing and preservation of plant material
Luffa cylindrica (L.) unripe fruit was washed well in run-
ning tap water and then rinsed in distilled water. The 
unripe fruits were cut into small pieces and dried in the 
shade for two weeks to achieve total dryness. A mechani-
cal grinder was used to ground the dried unripe fruits to a 
fine powder. For later usage, the powdered substance was 
stored in airtight containers.

Reagents and chemicals
All the organic solvents and acids used for these experi-
ments were of analytical or HPLC grade and were procured 
from SISCO laboratories.

Preparation of ethanolic extract (Soxhlet extraction 
method)
Chemical constituent screening in medicinal plants is criti-
cal for obtaining helpful information for further research 
and in determining pharmacological effects. The dry pow-
der of Luffa cylindrica (L.) fruit was defatted using petro-
leum ether and extracted with 2000  ml of ethanol using 
Soxhlet at 45  °C for 3  days [31]. Whatman filter paper 
(Grade 1- particle retention 11  µm) was used to filter it, 
and the filtrate was concentrated in a water bath and then 
stored in an airtight sterile container for further research. 
Table 1 shows the obtained residue weights and extractive 
values of the extraction.

Phytochemical screening
Preliminary phytochemical results were carried out in 
order to identify the presence or absence of certain phyto-
chemicals. The tests performed utilizing ethanolic extract 
were subjected to a variety of qualitative tests to identify 
the present phytoconstituents [25]. Table 2 lists the prelim-
inary phytochemical screening results of ethanolic extract 
of Luffa cylindrica (L.) fruit. The ethanolic extract was sub-
jected to variety of qualitative tests to identify the present 
phytoconstituents.

Determination of the total phenolics content
The total phenolic content of the Luffa cylindrica (L.) fruit’s 
ethanolic extracts was determined using the spectropho-
tometric technique [32]. In a nutshell, 2.5 mL of the Folin-
Ciocalteu’s reagent (10 percent deionized water) and 4 mL 
of a NaHCO3 solution (7.5 percent w/v) were combined 
with 0.5 mg of plant extract. The reaction mixture was then 

incubated for 30 min at room temperature with intermit-
tent shaking for color development. The absorbance of 
the resulting reaction mixtures (blue color) was measured 
at 765 nm using a spectrophotometer (Jasco V-730). Gal-
lic acid equivalent (mg of GAE/g dry weight) was used to 
express the overall amount of phenolics in the investigated 
samples.

Determination of the total flavonoids content
The total flavonoid content of the Luffa cylindrica (L.) 
fruit’s ethanolic extracts was determined [33] using the 
spectrophotometric technique [21]. The extract was pro-
duced at the same concentration of 1 mg/mL for analy-
sis. In a nutshell, 0.5  mg of the extract was combined 
with 0.1 mL of a 10% AlCl3 solution, 0.1 mL of a 1 mol/L 
potassium acetate solution, and 4.3 mL of distilled water. 
The reaction mixture was then incubated at room tem-
perature for 30  min. The spectrophotometer measured 
the absorbance at 510  nm (Jasco V-730). The standard 
calibration curve (10–100  mg/mL) was created using 
quercetin (Sigma-Aldrich). The quercetin equivalent (mg 
QE/g dry weight) was used to express the overall flavo-
noid content of the samples under investigation.

Determination of the total alkaloids content
The total alkaloid content of the Luffa cylindrica (L.) 
fruit’s ethanolic extracts was determined by spectro-
scopic technique [34]. In a nutshell, 0.5 mg of Luffa cylin-
drica (L.) fruit extract was diluted in 20  mL of ethanol 

Table 1  Extractive value of the plant extract

Content Weight of the test 
substance taken

Extractive value

Luffa cylindrica (L.) fruit 1000 gm 5% w/w

Table 2  Preliminary phytochemical screening tests of Luffa 
cylindrica (Linn) fruit

S.no Phytochemical tests Result

1 Carbohydrates
(a) Molisch test
(b) Benedict test

Presence

2 Alkaloids
(a) Mayer test
(b) Wagner test

Presence

3 Glycosides
(a) Modified borntrager test
(b) Legal test

Presence

4 Flavonoids
(a) Shinoda test
(b) Lead acetate test

Presence

5 Phytosterols
(a) Salkowski test
(b) Liebermann-Burchard test

Absence

6 Tannins
(a) Gelatin test
(b) Ferric chloride test

Presence

7 Saponins-foam test Presence

8 Phenols- Ferric chloride test Presence

9 Triterpenoids–vanillin-sulfuric acid test Presence
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solution (1:1) and filtered. The resulting mixture was 
poured into several funnels for separation. H2SO4 was 
blended with the filtrates at a 60% ratio (5 ml). After the 
combination had been left for 5 min, 5 ml of 0.5 percent 
formaldehyde was added, and the mixture was then left 
for 3 h. The spectrophotometer measured the absorbance 
at 565 nm (Jasco V-730). The standard calibration curve 
(10–100 mg/mL) was created using the atropine standard 
solutions, which were manufactured similarly. The atro-
pine equivalent (mg AE/g dry weight) was used to reflect 
the overall amount of alkaloids in the examined samples.

Determination of the total saponins content
The total saponin content of the Luffa cylindrica (L.) 
fruit’s ethanolic extracts was determined by vanillin 
method using the spectrophotometric technique [35]. 
In a nutshell, 0.5 mg of Luffa cylindrica (L.) fruit extract 
was combined with 0.5 mL of an 8 percent vanillin solu-
tion and 5 mL of an H2SO4 solution (72%). The resulting 
liquids were carefully combined before being set aside to 
chill on ice. They were then incubated in a water bath at 
60  °C for 15  min. On the ice, the mixtures were cooled 
once again, and the spectrophotometer measured their 
absorbance at 560 nm (Jasco V-730). Oleanolic acid (10–
100 mg/mL) was utilized as a reference for creating the 
calibration curve. Oleanolic acid equivalent (mg OA/g 
dry weight) was used to express the overall amount of 
saponins.

Determination of the total triterpenoid content
The total triterpenoid content of the Luffa cylindrica 
(L.) fruit’s ethanolic extracts was determined by using 
the spectrophotometric technique [36]. Briefly, 2  mL of 
H2SO4 and 0.5  mg of plant extract in acetic anhydride 
were combined in a microplate before being incubated 
for 10  min at room temperature. A calibration curve 
was created based on ginsenoside Re (10–100  mg/ml) 
as a standard. At 350  nm, the sample’s absorbance was 
measured compared to a blank sample made up of acetic 

anhydride-infused plant extract. Triterpenoid concen-
tration was measured in milligrams of ginsenoside Re 
equivalents (GRE)/g of plant extract, and samples were 
conducted in triplicate. All the determination content is 
mentioned in Table 3.

Identification and quantification analysis of constituents 
by LC–MS analysis
LC–MS (liquid chromatography–mass spectroscopy) 
analysis was carried out using Column (Hypersil GOLD 
C18 100 × 2.1 mm-3 MICRON); 30min_+ESI_01112021_
MSMS.m method and detected with Q-TOF analyzer for 
the ethanolic extract of Luffa cylindrica (L.). MS Q-TOF 
(G6550A) component was deployed with 200 Ms Abs 
threshold and ion mode as Dual AJS ESI. Acquisition 
mode for AutoMS2 was set to Ms Min range to 120 (m/z) 
and max of 1100 m/z. Source parameters were set with 
gas temp (2500C); gas flow (13 l/min); nebulizer (35 psig). 
Injection model with needle wash of 5 µL volume was set 
to 3-secs wash time. Solvent composition was 0.1% for-
mic acid in water (95%) for Channel A and 90% Acetoni-
trile + 10% Water + 0.1% Formic acid (5%) for channel B. 
Flow rate was kept constant to 0.300 mL/min, 1200 bar 
constant pressure, and 40  °C temperature. Nonetheless, 
to maximize the number of the monitored metabolites 
ions, MS analysis was carried out in a negative ionization 
mode. The resulting total ion chromatogram is a time vs. 
area plot that displays each constituent’s overall response 
based on the abundance of its molecular ions. The identi-
fication of constituents by LC–MS analysis is mentioned 
in Table 4.

Cholinesterase activity
Ellman’s approach was used to determine AChE inhibi-
tion. In a 1-mL cuvette, 640  L of Tris–HCl buffer with 
a pH of 8 and 0.12 U of AChE enzyme were introduced 
to the reaction mixture [37]. This reaction mixture was 
incubated for five minutes at room temperature. 100 mL 
of DTNB (Ellman’s reagent of 7.5  mM) and 100  mL of 

Table 3  Total content of Luffa cylindrica (Linn) fruit

Unknown concentration is given in average of triplicates obtained from the result

Concentration (mg/mL) Phenol content 
absorbance

Flavonoid content 
absorbance

Alkaloid content 
absorbance

Saponin content 
absorbance

Triterpenoid 
content 
absorbance

20 0.251 0.238 0.248 0.198 0.198

40 0.322 0.289 0.301 0.269 0.274

60 0.471 0.396 0.449 0.387 0.366

80 0.628 0.547 0.597 0.463 0.472

100 0.855 0.786 0.823 0.578 0.594

Unknown concentration 0.214 0.178 0.197 0.078 0.131
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acetylcholinesterase (AchEI of 1  mM) were combined, 
and a spectrophotometer was used to measure the 
reading at 405  nm. Triplicates of each experiment were 
performed. The percentage of inhibition was used to 
characterize the anti-cholinesterase activity and is men-
tioned in Tables 5 and 6.

In‑silico docking analysis
Ligand and receptor preparations
Based on the Lipinski rule of five, the ADMET analysis 
[38] was performed for all the phytocompounds cho-
sen from the LC–MS data fractions. Using the soft-
ware ChemDraw Ultra 12.0, the structure of perlolyrine 
was made and converted to.pdb format using Molegro 
molecular viewer. The docking computation and tech-
niques to replicate the pocket binding residues were 
validated using co-crystal ligands. Autodock v4.0 (ver-
sion) software was employed to open macromolecule and 

ligand to initiate docking and mentioned in Table  7. In 
the current investigation, we started the docking analy-
sis with the standard settings such as ligand preparation 
and saving in.pdbqt format. Grid was prepared for both 
ligand and macromolecule to cover the area and run for 
autogrid 4.0. Further docking was initiated to set all the 
parameters required and saved as a Lamarckian genetic 
algorithm to further run in Autodock v4.0. All molecules 
were deleted and analyzed for clusterings which were 
further confirmed as rank by energy. The RMSD table 
was used to cluster all the transformations, and the most 
advantageous binding postures were chosen based on 
their low free energies and low inhibition constants. The 
targets chosen for this investigation were based on ear-
lier studies, and protein data bank was used to retrieve 
all the 3D crystal structures in PDB format. One of the 
best molecules discovered using LC–MS analysis is 

Table 4  Identification of constituents by LCMS analysis

All the compounds obtained following Lipinski’s rule of five with (a) not more than 5 hydrogen bond donors, (b) not more than 10 hydrogen bond acceptors, (c) 
molecular weight less than 500 g/mol, (d) partition coefficient log P less than 5. 1 in blood–brain barrier (BBB) passage indicates that it does not pass BBB and 0 
indicates vice versa

Compounds RT (min) Molecular mass Abundance Molecular formula Hits (DB) BBB passage

Prolyl-arginine 1.428 271.1645 342,921 C11H21N5O3 7 1

Mahaleboside 3.206 324.0833 145,936 C15H16O8 1 1

Feruloylputrescine 3.519 264.1456 105,908 C14H20N203 8 1

Chlorogenic acid 4.033 354.0899 462 C16H18O9 9 1

Crotanecine 4.435 171.0889 140,956 C8H13N03 4 1

15-Hydroxymarasmen-3-one 4.727 264.1353 422,747 C15H2004 10 0

Perlolyrine 6.362 264.279 81,774 C16H12N202 9 0

Phrymarolin I 6.291 488.1269 144,012 C24H24O11 4 1

Diplodiatoxin 6.928 308.1979 47,386 C18H2804 10 0

Dihydrocapsaicin 7.318 307.2122 234,849 C18H29N03 3 0

Morindone 8.488 270.052 235,899 C15H10O5 10 1

Corchorifatty acid 8.665 328.222 159,453 C18H32O5 5 1

Polyporusterone B 15.364 476.3098 113,332 C28H44O6 5 1

Camelledional 16.748 440.328 326,723 C29H44O3 10 1

2alpha-(Hydroxymethyl)-5alpha-
androstane-3beta,17beta-diol

16.961 322.2495 194,509 C20H34O3 7 1

Taxa-4(20),11(12)-dien-5α,13α-diol 18.336 304.2392 369,304 C20H32O2 10 1

Table 5  Cholinesterase activity

Tested sample 
concentration (µg/ml)

OD value at 410 nm (in 
triplicates)

Mean of 
OD value

Control 0.76 0.84 0.92 0.84

10 0.543 0.746 0.854 0.714

50 0.387 0.573 0.623 0.528

100 0.311 0.484 0.478 0.424

250 0.289 0.267 0.381 0.312

500 0.146 0.123 0.198 0.156

Table 6  Percentage inhibition of AchE in extract

Tested sample 
concentration (µg/
ml)

Percentage of inhibition (in 
triplicates)

Mean value (%)

Control 100 100 100 100

10 28.55 11.19 7.17 15.64

50 49.08 31.79 32.28 37.72

100 59.08 42.38 48.04 49.83

250 61.97 68.21 58.59 62.92

500 80.79 85.36 78.48 81.54
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perlolyrine. Perlolyrine showed improved idiopathic pul-
monary fibrosis [39], osteoarthritis [40], and vascular 
dementia [41], respectively.

Purification and refinement of proteins and ligands
All the proteins utilized in the study were purified using 
Biovia Discovery studio to remove unwanted ligands, 
water molecules, and other contaminants. For better 
interactions, polar hydrogens were added to the protein 
during the preparation process, followed by Kollman 
calculations and determining Gasteiger charges. The 
PubChem database was used to visualize the 2D and 3D 
structures of perlolyrine and confirm with our structure 
(PubChem CID: 160179).

Root‑mean‑square validation of docked structures
Autodock v4.0 predicted 9 different docking sites for the 
studied ligand. All of them had different RMSD values. 
However, we have considered only those sites which gave 
RMSD value 0 for the betterment of our understanding.

In‑silico toxicity predictions
Based on a proven Lipinski concept, compounds’ poten-
tial drug-likeness was anticipated [42]. All pharmacologi-
cally significant substances changed their structures to 
their canonical, streamlined molecular-input line-entry 
scheme (SMILE). To identify organ toxicities and toxico-
logical endpoints, obtained SMILE was entered to OSI-
RIS Property explorer [43]. A drug score measure is used 

to select molecules as drug candidates. The likelihood of 
a molecule being regarded as a drug candidate increases 
with the drug score value as mentioned in Table 8 [44].

Statistical analysis
Each experiment was repeated in triplicate, and data are 
presented as mean ± standard deviation (SD).

Results
Total phenolic content
Total phenolic content was determined to be 21.42  mg 
of GAE/g, respectively, when expressed in terms of gallic 
acid equivalent.

Total flavonoids content
The total flavonoid content expressed in terms of querce-
tin equivalent was found to be 19.57 ± 2.39 mg of QE/g, 
respectively.

Total alkaloids content
The total alkaloid content expressed in terms of atro-
pine equivalent was found to be 20.39 ± 1.47 mg of AE/g, 
respectively.

Total saponin content
The total saponin content expressed in terms of oleanolic 
acid equivalent was found to be 14.39 ± 2.36 mg of OA/g, 
respectively.

Total triterpenoid content
The total triterpenoid content expressed in terms of gin-
senoside Re equivalent was found to be 9.48 ± 1.64 mg of 
GRE/g, respectively (Fig. 1).

Liquid chromatography–mass spectrometer (LC–MS) 
analysis
The outcomes showed the presence of numerous 
medicinally significant substances, including Mahale-
boside (Coumarin glycosides), Chlorogenic acid 
(Polyphenols), Crotanecine (Pyrrolizidine alkaloids), 
Perlolyrine (Harmala alkaloids), Phrymarolin I (Benzo-
dioxoles), Diplodiatoxin (Gamma keto acids), Dihydro-
capsaicin (Capsaicinoid), Morindone (Anthraquinone), 
Corchorifatty acid (Linoleic acid), and Polyporusterone 
B (triterpene carboxylic acid), which were all tentatively 
identified using database by comparing their molecular 

Table 7  Binding energy of perlolyrine with selected targets

S. no Receptors PDB ID Binding 
energy (kcal/
mol)

1 Amyloid beta 1IYT − 46.1

2 Cox-2 1PXX − 7.66

3 Butyrylcholine esterase 6IOC − 7.59

4 Tau kinase 1J1C − 7.59

5 Keap-1 2FLU − 7.26

6 SOD 1CB4 − 6.77

7 Catalase 2CAG​ − 6.54

8 Acetylcholinesterase 3LII − 6.38

9 GSK-3β 1UV5 − 6.14

10 Glutathione peroxidase 2P31 − 5.75

Table 8  Predicted toxicity risks

Green: Low risk (Drug conform behavior); Orange: Medium risk

logP logS H Donor H acceptor Mutagenic Tumorigenic Irritant Reproductive effective

2.45 − 3.88 2 4 Orange Green Green Green
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fragmentation patterns. The results of the LCMS analysis 
of the fruit’s ethanolic extract, Luffa cylindrica, are shown 
in Table 4 and Fig. 2.

Liquid chromatography–mass spectrometer (LC–MS) 
chromatogram of Luffa cylindrica extract
All the compounds were subjected for screening based on 
Lipinski’s rule of five, and perlolyrine compound (Fig. 3, 
Fig. 4) was able to cross blood–brain barrier which was 
observed through online server tool SwissADME (http://​
www.​swiss​adme.​ch/). Perlolyrine compound was later 
subjected for in-silico molecular docking to see potential 
score of various receptors involving Alzheimer’s disease-
associated oxidative stress (Fig. 5).

Cholinesterases are specialized carboxylic ester hydro-
lases that break down esters of choline, and its activity 
with absorbance is mentioned in Figs. 6 and 7.

Molecular docking analysis
According to the LC–MS analysis, Luffa cylindrica (L.) 
extract included 80 bioactive compounds. Table  4 lists 
the top compounds with peak areas. These phytochemi-
cals’ effects on oxidative stress-related target proteins for 
Alzheimer’s disease were examined. To clarify the bind-
ing affinities to the target proteins, phytoligand docking 

studies were conducted using the Autodock v4.0 soft-
ware. In general, the Lipinski rule of five was used to 
select the 80 phytocompounds that were discovered. All 
ten selected targets’ corresponding protein structures 
were docked against perlolyrine; the best-screened ligand 
found using ADMET screening based on various crite-
ria, including solubility, toxicity, absorption, molecular 
weight, and excretion. The best-docked complexes were 
then filtered based on their binding energy. Using Bio-
via discovery studio, the interaction between the ligand 
and the target protein was illustrated. Using Biovia dis-
covery studio, distinct bonds between the ligand and 
the target protein were also displayed in 2D interaction 
diagrams. The binding conformations for perlolyrine 
([5-(9H-pyrido[3,4-b] indol-1-yl) furan-2-yl] methanol) 
had the highest binding energy values for amyloid beta 
protein.

The perlolyrine docking outcomes with target proteins 
were rated based on binding energies. Perlolyrine dock-
ing results with proteins like catalase, glutathione per-
oxidase, superoxide dismutase, Cox-2, AchE, BuchE, A, 
GSK-3, tau kinase, and keap-1 indicated that the ligand 
has a stronger affinity for amyloid beta, which is shown 
in Fig. 8 and is a critical regulator in Alzheimer’s disease. 
Figure  8 shows the docked structure depicting ligand 

Fig. 1  Total content present in Luffa cylindrica (L.) fruit

http://www.swissadme.ch/
http://www.swissadme.ch/
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interactions with essential amino acids through hydrogen 
bonds and Vander Waal forces. Table 7 shows the identi-
fied compound’s affinity for proteins associated with Alz-
heimer’s disease.

Amyloid beta (1IYT) with a binding energy of 
−  46.1  kcal/mol showed interactions with essential 

amino acids, viz., ASN27, GLY29, GLY25, LYS28, SER26. 
Cox-2 (1PXX) with a binding energy of −  7.66  kcal/
mol showed interactions with essential amino acids, 
viz., THR-A206, ALA202, TRP-A387, LEU-A391, ALA-
A199, HIS-A388, PHE-A210, HIS-A386, HIS-A207. 
Butyrylcholine esterase (6IOC) with a binding energy 

Fig. 2  Liquid chromatography–mass spectrometer (LC–MS) profile of metabolites from ethanolic fraction of Luffa cylindrica (L.) extract

Fig. 3  Identification of perlolyrine by LC–MS analysis
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of −  7.59  kcal/mol showed interactions with essential 
amino acids, viz., ASP-A170, GLY-A169, PRO-A171, 
GLU-A132, PRO-A133. Tau kinase (1J1C) with a bind-
ing energy of − 7.59 kcal/mol showed interactions with 
essential amino acids, viz., GLN-A151, SER-A147, LEU-
A252, THR-A152, GLY-A253, ALA-A143, LEU-A153, 
TYR-A146. Keap-1 (2FLU) with a binding energy of 
− 7.26 kcal/mol showed interactions with essential amino 
acids, viz., GLY-X367, VAL-X606, ALA-X366, ARG-
X415. SOD (1CB4) with a binding energy of − 6.77 kcal/
mol showed interactions with essential amino acids, 
viz., LEU-X557, GLY-X367, VAL-X606, ALA-X556, 
ARG-X415. Catalase (2CAG) with a binding energy 
of −  6.54  kcal/mol showed interactions with essen-
tial amino acids, viz., LYS-A85, LEU-A132, VAL-A110, 
CYS-A199, LEU-A188, ALA-A83, VAL-A70. Acetylcho-
line esterase (3LII) with a binding energy of − 6.38 kcal/
mol showed interactions with essential amino acids, viz., 
TYR-B341, SER-B293, TRP-B286. GSK-3β (1UV5) with 
a binding energy of − 6.14 kcal/mol showed interactions 
with essential amino acids, viz., LEU-A188, ILE-A109, 
VAL-A110, LEU-A198, CYS-A199, ASP-A200, LEU-
A132, ALA-A83, VAL-A135. Glutathione peroxidase 
(2P31) with a binding energy of − 5.75 kcal/mol showed 
interactions with essential amino acids, viz., HIS-B77, 
ARG-B177, PRO-B151, HIS-B78, VAL-B176, PRO-B76.

In‑silico toxicity predictions
The toxicity of the compound was identified using 
SMILES in OSIRIS property explorer and identified 
as safe other than mutagenic response as displayed in 
Table 8.

Discussion
Luffa cylindrica (L.) is used in the food and cosmetic 
industries since it is a rich source of bioactive chemi-
cals. A study observed that FT-IR analysis and physico-
chemical characterization of luffa seed oil showed higher 

content of unsaturated hydrocarbon and esters, enabling 
the oil to be suitable for the production of paint, phar-
maceutical substances, and cosmetics [45]. Studies have 
shown that the fruit and seeds of the luffa plant contain 
phytochemicals that are good for human health. Gourd 
vegetables, especially bitter and bottle gourds, are pre-
ventative against gastric ulcers, bacterial and viral infec-
tions, arthritis, diabetes, hypertension, and cardiac 
conditions [46]. A study documented that vegetable peels 
have beneficial activities and antioxidant potential and 
promoted the utilization of agricultural wastes to achieve 
nutritional benefit at zero cost and maintain proper 
health [47]. Bioactive substances, particularly phyto-
chemicals and antioxidants, are necessary for large-scale 
and significant bioactivities. Their presence necessitates 
adequate validation and verification of bioactive metabo-
lites. According to this analysis, the fruits of L. cylindrica 
contained a reliable amount of phenolics, flavonoids, ter-
penoids, and alkaloids. As secondary metabolites are now 
shown to have multiple functions, a fresh wave of genetic 
and pharmacological studies has further blurred these 
boundaries [48]. The hydroxyl radical scavengers -carbo-
lines and tetrahydrocarbolines have activity comparable 
to indole melatonin, a potent scavenger of hydroxyl radi-
cals and antioxidants [49].

Several studies suggest various pharmacological 
actions, such as antioxidant, antibacterial, anti-inflam-
matory, and neuroprotective effects, present in harmala 
alkaloids [50]. Proximate analysis is a quantitative analy-
sis performed to confirm the amount of identified phy-
tochemicals to understand their role in the treatment of 
disease. Proximate analysis of various processing meth-
ods was seen in luffa gourds and confirmed the presence 
of several variables, including dry matter, crude protein, 
crude fiber ash, etc. [51, 52]. Alkaloids are renowned 
for their ability to scavenge free radicals, inhibit hydro-
lytic and oxidative enzymes, and have anti-inflammatory 
properties [53]. Alkaloids have been studied for their 
neuroprotective properties for a long time. They have dis-
closed their neuroprotective properties and can be useful 
for curing cognitive impairments and associated diseases 
such as Alzheimer’s [54, 55]. Alkaloids are essential in the 
pharmaceutical and cosmetic industries. They have anti-
parasitic properties, anti-plasmodial, anti-corrosive, anti-
oxidative, antibacterial, and insecticidal properties [56]. 
Among the most common diseases of the twenty-first 
century, dementia and depression are becoming more 
significant as the world’s population ages [57].

The most recent therapeutic approach, which takes 
into account the primary pathobiochemical changes in 
the system caused by Alzheimer’s disease, is an anti-amy-
loid therapy intended to slow down the progression of 
the disease [58]. Cucurbitan species are reported highly 

Fig. 4  Structure of perlolyrine
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Fig. 5  Ms zoomed spectrum of perlolyrine
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on inflammation, cancer, and genotoxic activities [59–
61]. Antineoplastic and anti-inflammatory action is the 
pharmacological activities that have received the greatest 
attention in the Cucurbitaceae family, where anti-inflam-
matory, antioxidant, and immunomodulatory potential 
has been studied recently. Mechanisms of the inhibi-
tion of COX-2, NOS, oxidative stress, pro-inflammatory 
cytokines, and modulation of acquired immunity pro-
teins are highly focused and can also be studied in neuro-
degenerative diseases like Alzheimer’s disease, which also 
works on a similar mechanism [62].

Acetylcholine is one of the molecules responsible 
for communication between nerve cells and the brain. 
Alzheimer’s disease symptoms begin when its level 
is lowered. The drugs known as acetylcholinesterase 
inhibitors stop the body from breaking down acetyl-
choline. Alzheimer’s line of research lies on anticho-
linesterase and antioxidant mechanisms as it targets 
multiple pathways of dementia [63]. Acetylcholinest-
erase inhibitors (AChEIs) are primarily used to inhibit 
AChE since there is enough evidence of a deficit in cho-
linergic neurotransmission in AD to support therapy 
intended to repair this deficiency. AChE inhibitors also 

have antioxidant properties and control amyloid plaque 
development. Tacrine, donepezil, and rivastigmine are 
a few AChE inhibitors that have already received FDA 
approval. The majority of these inhibitors, however, are 
connected to limited availability and acute toxicity [64].

The extract of Luffa cylindrica (L.) showed inhibi-
tory activity on the AchE enzyme. Similar reports 
have been reported by Patel SB et  al. (2021) in Luffa 
echinata [1]. Liquid chromatography–high-resolution 
mass spectrometry (LC-HRMS) has become a robust 
analytical method for massive target screening. Its use 
can be expanded to assess the possibility of natural 
product poisoning in clinical situations [65]. An ultra-
performance liquid chromatography–quadrupole-
time-of-flight-mass spectrometry has been employed 
in several studies to characterize the potential compo-
nents [66]. Additionally, LC–MS analysis revealed the 
presence of compounds like Mahaleboside (Coumarin 
glycosides), Chlorogenic acid (Polyphenols), Crotane-
cine (Pyrrolizidine alkaloids), Perlolyrine (Harmala 
alkaloids), Phrymarolin I (Benzodioxoles), Diplodia-
toxin (Gamma keto acids), Dihydrocapsaicin (Capsai-
cinoid), Morindone (Anthraquinone), Corchorifatty 
acid (Linoleic acid), and Polyporusterone B (triterpene 
carboxylic acid) were known to possess anticancer, 
depression, hypertension, anti-inflammatory activities 
[67–70].

Compounds detected in high-resolution LC–MS anal-
ysis could help exhibit potent bioactivities in L. cylin-
drica. To find potential Alzheimer targeting compounds, 
affinity ultrafiltration LC–MS/MS was employed to 
screen and identify target compounds from the extract. 
A total of five AChE ligands were identified by LC–MS/
MS and confirmed the activity using molecular dock-
ing and in vitro acetylcholinesterase data [71]. Similarly, 
we employed HR-LCMS to screen extract and identify 
the potential components present and to confirm their 
activity by performing molecular docking and in  vitro 
acetylcholinesterase activity. We performed LC–MS/MS-
based molecular networking to ascertain their chemical 
composition and quantify existing metabolites using a 
pre-generated plant extract library. This provided a novel 
method for metabolite authentication and profiling and 
enabled the discovery of new, allegedly undiscovered 
metabolites for biological separation and evaluation in 
the future [72]. We identified various bioactive com-
pounds, among which perlolyrine molecule showed less 
toxicity in comparison with other compounds by OSIRIS 
property explorer, and it had the potential to cross the 
blood–brain barrier. We planned for in-silico molecular 
docking of perlolyrine with several receptors, which are 
closely associated with Alzheimer’s disease and oxidative 
stress, a pathological hallmark of Alzheimer’s disease.

Fig. 6  Percentage Inhibition of Ache in Luffa cylindrica extract

Fig. 7  Percentage inhibition of AchE in extract
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Fig. 8  Docking of perlolyrine with various receptors in Alzheimer’s disease associated with oxidative stress
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Conclusion
The current therapeutic strategies against AD include 
acetylcholinesterase inhibitor, anti-tau, N-methyl-D-
aspartate antagonist, etc., However, core pathogenesis 
of AD lies in oxidative stress mechanism and efficient 
compound with less toxicity is the need. Moreover, 

many researchers are focusing on oxidative stress-related 
mechanism in order to prevent extension of disease. This 
study’s investigation of the extracts revealed that Luffa 
cylindrica (L.) extracts act on many target proteins of Alz-
heimer’s disease and have sufficient AchE activity. Fur-
thermore, this extract showed the highest concentrations 

Fig. 8  continued
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of various phytochemical components (alkaloids, phe-
nolics, flavonoids, and saponins). Numerous investiga-
tions have confirmed that these phytochemical elements 
give the extract its bioactivity. The LCMS profile iden-
tified prominent metabolites that were reported to be 
good antioxidants and reported various other biological 
activities. The compound perlolyrine could be of interest 
against oxidative stress-related diseases like Alzheimer’s 
and other pharmacological benefits. Based on current 
findings, the study reports the presence of a promising 
bioactive compound (perlolyrine) and, in turn, provides 
an optimistic note in exploring its biological activity (in 
vivo) in oxidative stress-related Alzheimer’s disease.
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