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Abstract 

Background Cancer is an increasing medical condition that poses a threat to worldwide populations, despite 
improvements in scientific research. For normal cancer treatment, a variety of chemotherapeutics, radiation, and 
medications are available; however, recurrent side effects and multi-drug resistance have limited treatment options 
and harmed our immune system. Marine algae are a promising source of novel components for the development of 
new complementary and alternative medications with anti-carcinogenic properties.

Results In this review, we discussed several breakthrough studies on the anti-carcinogenic effects of several macro- 
and micro-algal components, demonstrating the inhibition of cancer cell development via multiple mechanisms. 
These components, often referred to as algal biopolymers, have been demonstrated to exhibit a wide range of chemi-
cal compositions and physical properties; as a result, they are used in pharmacological, pharmaceutical, nutraceutical, 
and microbiological applications in different sectors. Moreover, treatment of antimicrobial-resistant Helicobacter pylori 
infection-derived gastric cancer prevention may benefit from the use of algae in addition to standard antibiotics. 
Additionally, in recent years, it has been shown that algae have incredibly promising low-cost biomedical potentials as 
therapeutic applications for the treatment of cancer.

Conclusion In recent years, several preclinical studies with the algal bioactive components in the field of novel 
drug discovery substituting synthetic drugs have been conducted. To demonstrate their potential anticancer actions 
on various cancerous signaling pathways and consequently reduce cancer, the enormous plasticity of these algae 
biopolymers has been intensively explored.

Keywords Cancer, Macroalgae, Microalgae, Helicobacter pylori, Marine biotechnology, Biomedical approaches, Cancer 
therapy

Background
Cancer is the world’s second most prevalent debilitating 
disease, accounting for a significant share of all deaths. 
The multifactorial etiology  of cancer encompasses a 
wide range of illnesses connected to the body’s uncon-
trolled cell development [1]. The three cancer kinds that 

account for the bulk of instances worldwide are breast, 
lung, and colorectal cancers [2]. According to the Inter-
national Agency for Cancer Research, 19.3 million cases 
of cancer were reported in 2020, and by 2040, that fig-
ure is expected to rise by 47% to 28.4 million cases [3]. 
Furthermore, facilitating replicative immortality, boost-
ing angiogenesis, evading growth promoters, pro-
longing proliferative signals, resisting cell death, and 
initiating metastasis and invasion are all trademarks of 
cancer malignancy [4]. Although the development of new 
chemotherapeutic drugs for cancer treatment is crucial 
for halting the disease’s progression, improving cancer 
therapies remains a challenging undertaking [5]. Chemo-
therapeutic resistance is a key barrier in the treatment of 
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various cancers, as a large proportion of tumors relapse 
and develop resistance, inevitably leading to multi-drug 
resistance following exposure to multiple anticancer 
medications with similar structures and modes of action 
[6]. Over 195,000 plant-derived bioactive components 
have been identified as preventing cancer growth, either 
directly or indirectly through immune system activation 
[7]. The taxonomically diverse marine flora (microal-
gae, macroalgae, cyanobacteria, bacteria, actinobacteria, 
fungi, and other halophytes) constitute over 90% of the 
oceanic biomass offering a great scope of novel antican-
cer drugs [8]. Similarly, bioactive components found in 
algae have recently been identified as having anticancer 
properties by inducing apoptosis and suppressing cell 
divisions through interfering with signaling pathways 
[9]. Although, due to a lack of ethnomedical history, the 
creation of novel components from marine flora is still 
in its initial phases, leaving them under-represented in 
today’s pharmacopeia [8]. Algal metabolites, also known 
as algal biopolymers, have been demonstrated to con-
tain a diverse spectrum of chemical compositions and 
physical properties, and are thus used in pharmacologi-
cal, pharmaceutical, nutraceutical, and microbiologi-
cal applications in different sectors [10]. Later bioactive 
components found in algal metabolites (polysaccharides, 
proteins, polyunsaturated fatty acids (PUFAs), phyco-
colloids, vitamins, soluble dietary fibers, phycobilins, 
carotenoids, phycocyanins, minerals, tocopherols, and 
terpenes) have been shown to have biological therapeu-
tic potential [11]. Further, the algae-derived bioactive 
components were later identified to antagonize cancer 
malignancy hallmarks [12]. Microalgae and macroalgae 
are the two types of algae that live in the sea. Microal-
gae are photosynthetic autotrophic microorganisms that 
contribute significantly to the marine food chain [13]. Of 
the top 10 producers, China leads with 54,850 tonnes, 
followed by Chile, Greece, Tunisia, Burkina Faso, Cen-
tral African Republic, Chad, Bulgaria, and Spain. The 
total output of microalgae is expected to reach 56,456 
tonnes globally [14]. They have been demonstrated to 
have substantial nutraceutical and therapeutic poten-
tial due to their high bioactive metabolite content [13]. 
Along with, cyanobacteria (blue-green algae), Spirulina 
sp., and Nostoc sp. bioactive components have medicinal 
values [15]. Furthermore, around 5000 years ago, Chinese 
physicians began using seaweeds, which are macroalgae 
that predominate the marine flora [13, 16]. The abun-
dance/production of macroalgae worldwide is estimated 
at 35,762,504 tonnes (wet weight), with Asia contribut-
ing the majority of that amount (97.38%), followed by 
the Americas, Europe, Africa, and Oceania at estimated 
1.36%, 0.80%, 0.41%, and 0.05%, respectively [14]. The 
potential for seaweeds to be used as several therapeutics 

has piqued the interest of scientists over thirty years. 
Additionally, seaweeds’ medicinal and nutraceutical 
properties have been applied to the treatment of a num-
ber of diseases (stomach ailments, renal disorders, can-
cer, psoriasis, arteriosclerosis, lung diseases, cancer, gall 
stones, ulcers, heart disease, and scabies) [13, 17]. Overall 
algae are known to exhibit anti-tumor, anti-viral, antimi-
crobial, immune-boosting, and anti-inflammatory activ-
ity [15]. Although various research literature works have 
looked at the potency of anticancer substances, in this 
article we have focused on the comprehensive anticancer 
effectiveness of bioactive components derived from algae 
against a variety of cancer signaling pathways, including 
gastric cancer caused by the Helicobacter pylori bacteria, 
as well as various cutting-edge techniques in biomedical 
applications. Alongside, in this review, many other neo-
plastic indicators are highlighted in silico, in  vivo, and 
in  vitro for the identification of novel pharmaceuticals 
and biomedical treatments to be used in algae-derived 
cancer therapy in the near future (Figs. 1, 2).

Main text
Cancer biology: a molecular immunopathology
Cancer in humans has been prevalent for a long time, 
even before the advent of innovation and the use of 
synthetic substances. Percivall Pott discovered the first 
evidence of cancer in 1775 when he associated scrotal 
cancer and chimney soot. However, with the creation 
of improved scientific investigations, the mechanism of 
carcinogenesis has been widely studied. In 1971, a war 
on cancer was declared with the goal of generating new 
treatments [28, 29]. Cell division is the key phenomenon 
in the development of a living organism. Approximately 
 1015 cells are present in an adult human which exhib-
its cell turnover and regeneration due to the presence 
of stem cells having compartments with approximately 
 1012 divisions/day. Throughout an individual’s life, sev-
eral overlapping biological pathways regulate cell dif-
ferentiation, balancing the ratio of cell proliferation and 
apoptosis. Any disruption in homeostasis causes neo-
plasia or uncontrolled cell proliferation [30]. Cancer has 
traditionally been studied through the lens of Darwin’s 
three fundamental contextual evolutionary principles 
(variation, heredity, and selection), which Peter Nowell 
postulated to be an evolutionary process after analyzing 
carcinogenesis in advanced malignancies [31]. Further-
more, the mathematical idea of Darwinian evolution has 
been widely employed to comprehend somatic selection, 
diversity, and extinction [28]. A succession of gene muta-
tions disturbs cellular function and creates gene dysfunc-
tion, resulting in cancer [18].

The intrinsic and non-intrinsic factors that link them 
to deoxyribonucleic acid (DNA) damage impacting 
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cellular homeostasis due to discordant signaling path-
ways substantially influence the underlying etiology of 
carcinogenesis [32]. Random replication mistakes owing 
to spontaneous mutation are intrinsic factors, whereas 
proto-oncogene mutations are non-intrinsic factors. 
Radiation, chemical carcinogens, xenobiotics, a terri-
ble routine, viruses, and other external and endogenous 

causes (hormone levels, abnormal immune system, bio-
logical metabolism, repair machinery, etc.) [32, 33]. 
Chemical carcinogens or xenobiotic components directly 
or indirectly affect the cellular cytoplasm and/or nucleus 
which induces proto-oncogenes leading to genetic disor-
ders and mutations [18]. Apart from these carcinogenic 
factors, infectious oncogenic pathogens contribute 15% 

Fig. 1 Mechanism of action of algal bioactive components with anticancer potential via regulating the aberrant expression of cancer signaling 
pathways. Following a thorough analysis of the literature from articles, the figure is illustrated schematically [18–21]

Fig. 2 Percentage of total algae-derived bioactive components [22–27]
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of global malignant tumor heterogeneity responsible 
for thousands of neoplasias [34]. Bacteria, helminths, 
and fungi cause inflammation and disease-mediated 
cancer, whereas oncoviruses cause carcinogenesis by 
oncogene integration with the host genome [35]. The 
oncopathogens in humans mostly cause organ-specific 
or site-specific carcinoma. Therefore, the virus-induced 
cancers include Human papillomavirus (HPV) which 
causes oropharyngeal, cervical, anal, and penile cancer; 
Human T-cell leukemia virus (HTLV)-1 which causes 
adult T-cell leukemia-lymphoma; Hepatitis B virus 
(HBV) which causes non-Hodgkin lymphoma, breast, 
hepatocellular, and pancreatic cancer; Hepatitis C virus 
(HCV) which causes non-Hodgkin lymphoma, thyroid, 
and liver cancer; Human immunodeficiency virus (HIV) 
which causes Kaposi sarcoma, non-Hodgkin lymphoma, 
lung, liver, anal, and oropharyngeal cancer; Epstein–Barr 
virus (EBV) which causes Burkitt’s lymphoma, gastric, 
smooth muscle, and nasopharyngeal cancer. Helicobac-
ter pylori confer bacterial-induced carcinoma that causes 
gastric and pancreatic cancer. Among fungi, Aspergil-
lus sp. causes liver cancer, and Candida sp. causes oral 
and lung cancer. Various helminths such as Schistosoma 
haematobium, Schistosoma japonica, Schistosoma man-
soni, Plasmodium falciparum, Clonorchis sinensis, and 
Opisthorchis viverrini are also known to cause cancer [34, 
35].

Overall oncogene activation is caused by mutations 
arising due to erroneous genetic alterations such as point 
mutations (G12V Ras gene), insertional inactivation (C-
myc gene), deletion (Erb-B gene), amplification (N-myc), 
hypomethylation, hypermethylation, deacetylation, and 
chromosomal translocation (Abl and Bcr gene) [18, 36]. 
Furthermore, epigenetic silencing, promoter methyla-
tion, and the production of oncometabolite all play a part 
in oncogenesis [36]. In addition, under normal condi-
tions, including the p21 gene, the p53 gene on human 
chromosome 17 favorably regulates DNA metabolism, 
cell differentiation, and cell death. When the p53 gene is 
altered, cancer cells in the G1 and G2 phases of the cell 
cycle are generated, followed by a relationship between 
cyclin-dependent kinase (CDK)1-P2 and cell division 
cycle (CDC)2. The p53 protein binds to DNA after other 
genes have produced DNA damage, causing the WAF1 
gene to be stimulated. This action causes p53 to bind to 
CDK2, which then blocks the effect of p21 for the follow-
ing juncture of the cell cycle. Furthermore, the anticancer 
effect of p53 causes apoptosis in addition to stopping the 
cell cycle throughout the G1/S phase [18]. The dysregu-
lation, progression, and dissemination of cancer cells are 
fueled by several signaling pathways such as receptor-
tyrosine kinase mitogen-activated protein /rat sarcoma 
virus /receptor tyrosine kinase (MAP/RAS/RTK)-kinase 

signaling, Hippo signaling, Notch signaling, Phospho-
inositide 3-kinase (PI3K) signaling, oxidative stress 
response/Nrf, transforming growth factor-beta (TGFβ) 
signaling, PI3K-Akt signaling, nuclear factor-kappa B 
(NF-κB) signaling, β-catenin/wnt signaling, Jun N-ter-
minal kinases (JNK)/p38 signaling, and Ras-extracellular 
signal-regulated kinase (Ras-ERK) signaling [36–38]. 
Carcinomatous signaling pathways were activated by 
these alterations, causing cancer cells to stop dying and 
proliferate by supplying them with extra metabolites [39]. 
These cancer cells spread and migrate by accessing the 
extracellular matrix (ECM), which leads to circulation by 
alternate migration such as collective cell, mesenchymal, 
and amoeboid cell migration, despite the fact that they 
are rarely investigated [40].

Cancer development eludes immune monitoring due to 
immune checkpoint dysregulation caused by malignan-
cies. Furthermore, immune factor activity is suppressed 
by hyperactivation of signal transducer and activator of 
transcription (STAT)-3, a signal transducer and activator 
of transcription [41]. Both STAT-3 and NF-κB activate 
anti-apoptotic proteins (B-cell lymphoma (Bcl-2 and Bcl-
XL)) that enhance tumor growth by interfering with p53 
[42]. Neutrophils are a controversial topic due to their 
dual function, i.e., tumor-promoting and attacking plas-
ticity. Angiogenesis, metastasis, and immunosuppression 
are all facilitated by tumor-associated neutrophils (TAN) 
[43]. Simultaneously, tumor-associated macrophages 
(TAM) inhibit T-cell and natural killer (NK) cell prolif-
eration by releasing cytokines and immune-suppressive 
factors thereby stimulating tumor progression [44]. Can-
cer initiation, progression, and metastasis are all influ-
enced by inflammation. Several mediator molecules, 
including tumor necrosis factor (TNF-α), NF-κB, and 
signaling pathways, link inflammation and cancer [45]. 
Inflammation promotes cancer cell proliferation by rais-
ing mutation rates, which are mostly caused by chemi-
cal carcinogens and pathogenic microorganisms [42]. 
Tumor cells boost neutrophil production by secreting 
growth factors (interleukins (IL)-3, granulocyte–mac-
rophage colony-stimulating factor (GMCSF), and granu-
locyte colony-stimulating factor (GCSF) or inflammatory 
cytokines (IL-1/6/17 and TNF-α), which promote tumor 
progression by inducing cancer-related inflammation. 
Anti-tumor responses are mediated by TANs, which 
destroy tumor cells [43, 46]. Alongside, macrophages, 
dendritic cells, B cells, and T cells also exhibit dual func-
tions as neutrophils. In contrast, mast cells and  TH2 
cells only promote tumorigenesis whereas NK cells only 
exhibit anti-tumor immunity [42]. Moreover, the major 
histocompatibility complex (MHC) system, cytokines, 
lymphocytes (B and T cells), and antigen-presenting 
cells (APCs) are also used by the host’s adaptive immune 
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system to recognize and kill tumor cells with abnor-
mal cell surface antigens. As a result, using a functional 
adaptive immune system to target mediators and inhibit 
immunological checkpoints is a strong cancer therapeu-
tic technique. In the near future, further development of 
cancer vaccines and modified T-lymphocytes will be the 
most effective technique for treating cancer with fewer/
no side effects [45] (Fig. 3).

Anticancer potentials of algae‑derived metabolites
Microalgae anticancer potential
Microalgae are photosynthetic microorganisms that 
are categorized into prokaryotic (Cyanobacteria) and 
eukaryotic microalgae (diatoms, dinoflagellates, and coc-
colithophores). These phytoplanktons, which are found 
in practically all biomes (temperate to extreme) can be 
widely classified as fresh and marine water microalgae, 
providing up to 40% of global productivity [19]. These 
microalgae can be widely classified as autotrophic, het-
erotrophic, oligotrophic, and mixotrophic depending on 
their nutrient requirements [49]. Microalgae can be used 
to produce a wide range of bioactive compounds with 
various biotechnological purposes. They can be grown 
easily in photobioreactors and have quick generation 
times. Several factors influence the bioactive potential of 
microalgae, including species, growth phase, and culture 
conditions (temperature, nutrient availability, and light 
conditions). Although, due to its tremendous prominence 

in the field of biofuel production, microalgae’s medical 
potential has been overlooked more  than  that of mac-
roalgae [50]. Microalgae, in addition to marine bacteria 
and fungi, are ecologically important as producers and 
decomposers in the aquatic environment. Second, after 
food and biorefinery, their metabolic plasticity may stim-
ulate therapeutic development to combat a diversity of 
diseases [51]. These algae have been shown to produce 
a variety of bioactive components (carotenoids, polysac-
charides, and fatty acids) that have gained popularity due 
to their antimicrobial and antioxidant characteristics 
[19]. In recent eras, new therapeutic  components  can 
be developed and synthesized from natural resources by 
means of modern technology. Using the Discovery Studio 
3.1 platform, the 3D models of the ligand ((9-Ethylim-
inomethyl-12-(morpholin-4-ylmethoxy)-5,8,13,16-
tetraaza-hexacene-2,3-dicarboxylic acid) EMTAHDCA) 
obtained from cyanobacterium Nostoc sp. MGL001 were 
found to have a functional resemblance to existing drugs 
against 11 cancer-related proteins [52]. However, the in 
silico characterization of anticancer bioactive compo-
nents from microalgae has only lately been addressed to 
a limited extent. Further, the microalgal compounds also 
have anti-inflammatory and immunomodulatory char-
acteristics, making them a potential immunotherapeutic 
weapon against cancer. Sulfo-polysaccharides, PUFAs, 
sulfated lipids, and carotenoids (astaxanthin) are all 
microalgal immune-stimulatory components that drive 

Fig. 3 Schematic representation of the molecular mechanism of cancer topography. Following a thorough analysis of the literature from articles, 
the figure is illustrated schematically and adapted [4, 18, 47, 48]
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macrophage and dendritic cell proliferation and matura-
tion. Apart from APCs, the dendritic cells often entitled 
“nature’s adjuvant,” are known to trigger cytotoxic T-lym-
phocytes, ultimately culminating in neoplastic cell death 
[53]. However, the current study indicates that micro-
algae might be a source of cancer treatments that work 
by promoting natural killer cells production, apoptosis-
mediated cell death, cell cytotoxicity, and reducing tumor 
cells invasion either via a caspase-dependent or caspase-
independent mechanism [19].

Microalgal carotenoids
Carotenoids from microalgae have been identified as a 
potential regime for treating inflammatory disease and 
cancer. Chlorella sp. (Chlorella sorokiniana, Chlorella 
zoofingiensis, Chlorella vulgaris, Auxenochlorella pro-
thecoides, Auxenochlorella pyrenoidosa, Chlorodium 
saccharophilum, Jaagichlorella luteoviridis) is the major 
source of carotenoids followed by Arthospira platen-
sis (cyanobacteria), Dunaliella salina, Chlamydomonas 
reinhardtii, Tetraselmis suecica, Tetraselmis striata, 
Scenedesmus quadricauda, Dactylococcus dissociates, 
Asterarcys quadricellulare, Odontella aurita, Chloro-
botrys regularis, Isochyrsis galbana, Chlorobotrys gloe-
othece, Nitzschia laevis, Chaetoceros neogracili, Munda 
aquilonaris, Phaeodactylum tricornutum, Porphyridium 
purpureum, Cantharellus cinnabarinus, Haematococ-
cus lacustris, etc. Carotenoids have been studied in vitro, 
in  vivo, and in humans for their anti-inflammatory, 
anti-tumor, and anticancer activities [20, 54].β-carotene 
derived from D. salina, C. reinhardtii, T. suecica, I. gal-
bana exhibit anticancer potentials against neuroblas-
toma, non-Hodgkin lymphoma, prostate, breast, liver, 
pancreatic, colorectal, and gastric cancer [54]. Among 
other microalgae that have been shown to kill prostate 
cancer cells by triggering apoptosis, D. salina is the main 
source of β-carotene [55]. Studies conducted in  vitro 
indicate that β-carotene has been found to inhibit the Ku 
proteins, M2 macrophage polarization, and NF-κB acti-
vation [56]. Additionally, caveolin-1 protein expression, 
calcium/calmodulin-dependent protein kinase IV activ-
ity, the NF-κB/Akt pathway, the PI3K/Akt pathway, and 
the ERK pathway are all downregulated by β-carotene’s 
antiproliferative activity, thereby arresting cell cycle and 
inducing apoptosis [54]. The inhibition of these signaling 
pathways has arrested the in vitro growth of distinct can-
cer cells/cell lines such as colorectal cancer cells (HT-29, 
Caco-2), hepatic cancer cells (HepG2, SK-Hep-1), colon 
cancer cells (HCT116), H. pylori-infected gastric cancer 
cells, esophageal carcinoma cells, adrenocorticotropic 
hormone-secreting pituitary adenoma cells (AtT-20) 
(further inhibiting cervical, breast, and hepatoma can-
cer cells), and lymphoblast cells (K562) apoptosis [54]. 

In in vivo murine model studies, β-carotene administra-
tion for a specific time period resulted in various anti-
cancer actions. For example, β-carotene administration 
for 11  weeks suppresses M2 macrophage polarization 
thereby reducing colitis-associated colon malignancy 
[56]. Alongside, β-carotene’s anticancer potential dem-
onstrates DNA methylation, epigenetic modulation, and 
miRNA expression, all of which reduce the ability of 
colon cancer stem cells to proliferate and self-renew [57]. 
Oral treatment of β-carotene reduced the tumor weight 
of rat models suffering from liver cancer in hepatic cell 
lines (H22) [58]. In humans, β-carotene has been linked 
to the prevention of numerous malignancies due to 
its powerful antioxidant properties that reduce reac-
tive oxygen species (ROS) formation, although further 
research is required to fully comprehend their potential 
[54].β-cryptoxanthin obtained from P. trichornutum, A. 
pyrenoidosa, P. purpureum, and Cyanophora paradoxa 
has been identified with antiproliferative, anti-migratory, 
and anticancer potentials. In  vitro analysis has demon-
strated suppressed migration, inhibition, and cell viabil-
ity with increased apoptosis in the lung, colon (HCT116), 
and gastric cancer cells [54]. By causing caspase and 
cytochrome C mediated apoptosis as well as halting the 
cell cycle at the G0/G1 phase in a nude mouse xenograft, 
in  vivo murine trials with β-cryptoxanthin treatment 
for 20  days have reduced angiogenesis and tumorigen-
esis of gastric cancer [59]. Furthermore, β-cryptoxanthin 
supplementation at 10 and 20  mg/kg inhibited tumor 
growth by downregulating sirtuin-1 (SIRT-1), retinoic 
acid receptor-β, and p53 [60], while 1 and 10 mg/kg treat-
ment inhibited nicotinic acetylcholine receptor α7, both 
of which suppressed lung cancer in mice [61]. In human 
studies, β-cryptoxanthin reduced the risk of non-Hodg-
kin lymphoma, lung, breast, renal, head, and neck can-
cer [54]. Additionally, β-cryptoxanthin has been shown 
to cause apoptosis in human skin, lung, breast, and HeLa 
cancer cells and demonstrate cytotoxicity [20]. Further 
combination treatment with a chemotherapeutic drug 
(oxaliplatin) in colon cancer reduces the drug’s toxicity 
[62].

Astaxanthin, a carotenoid with a potent antioxi-
dant potential, shields cells from cyto- and genotoxic-
ity brought on by ROS, epigenetic changes, cell cycle 
arrest in the G0/G1  or G2/M phase, activation of anti-
apoptotic proteins, blocking angiogenesis and metas-
tasis, and chromatin remodeling, ultimately enhancing 
tumor  immunity [19, 63]. Haematococcus pluvialis is 
the predominant microalgal supplier of astaxanthin fol-
lowed by Tetraselmis sp., G. sulphuraria, Chlorococ-
cum sp., C. sorokiniana, and C. Zofingiensi [20]. This 
carotenoid induces several tumor suppressors (MAPK4, 
mapsin, breast cancer metastasis suppressor 1, and kail) 
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[64]. Apoptosis is triggered by stopping the cell cycle in 
a number of in  vitro experiments on various cell lines. 
Astaxanthin induced cytotoxicity against ovarian cell 
lines by inhibiting NF-κB and stimulating apoptosis 
[65]. According to research, astaxanthin has the abil-
ity to decrease angiogenesis and metastasis in a variety 
of cell lines, including glioblastoma, murine hepatoma 
cells (H22), and adenocarcinoma gastric cell lines (AGS, 
KATO-III, MKN-45, and SNU-1). It also has the ability 
to control epigenetic changes [54]. In colon cancer, asta-
xanthin therapy was shown to downregulate Akt phos-
phorylation, cyclin D1, and Bcl-2 expression, as well as 
promote the production of p53, p21, p27, Bax, and cas-
pase-3 [66]. Several dose-dependent in vivo applications 
of astaxanthin showed an  anticancer effect on different 
malignancies such as gastrointestinal cancer (downregu-
lates ERK-2, NF-κB, and cyclooxygenase (COX)-2; acti-
vates apoptosis), colon cancer (downregulates NF-κB 
and oxidative stress markers), oral cancer (downregulates 
Wnt/B-catenin and NF-κB signaling), esophageal can-
cer (downregulates NF-κB and COX-2), hepatic cancer 
(downregulates oxidative stress; upregulates serum adi-
ponectin protein), skin cancer (downregulates tyrosinase 
activity), and lung metastatic myeloma (downregulates 
Bcl-2, ERK, and NF-κB; upregulates apoptosis) in murine 
models [54]. Moreover, astaxanthin is a good antioxi-
dant agent that has been identified to elevate IL-6 and 
TNF-α in murine models prior to tumor initiation [67]. 
In human studies, astaxanthin is majorly evidenced to 
inhibit immune dysfunction alongside regulating the 
inflammatory response [68]. Additionally, the antipro-
liferative effect of carbendazim in MCF-7 cells in the 
G2/M phase is enhanced by the addition of astaxanthin 
[69]. Nevertheless, there is still a paucity of information 
on astaxanthin-related dose-dependent human cancer 
investigations.

Lutein obtained from C. sorokiniana, C. zoofingiensis, 
A. protothecoides, D. salina, T. suecica, and C. reinhardtii 
has demonstrated anticancer and anti-proliferative 
activity against non-Hodgkin lymphoma, renal cell car-
cinoma, hepatocellular carcinoma, pharyngeal, esopha-
geal, neck, pancreatic, colon, bladder, and breast cancer 
[54]. According to in vitro studies in breast cancer lines 
(MCF-7 and MDA-MB-231), lutein inhibits transcrip-
tion factor Nrf2 (including genes superoxide dismutase 
(SOD)-2 and HO-1), glycolysis, cell growth, and progres-
sion, as well as down-regulating NF-κB, pAkt, and pERK 
markers, inducing p53 signaling, transcription factor 
hairy and enhancer of split (HES)-1, and cellular apopto-
sis [70]. Other cell lines, including prostate cancer (PC)-3, 
sarcoma S180, lung cancer A549, colon adenocarcinoma, 
and leukemia cells, were also investigated to determine 
lutein’s anticancer activity [54]. Lutein’s anti-proliferation 

slows the progression of the cancer cell cycle by down-
regulating biomarker genes in prostate cancer and culmi-
nates breast cancer by upregulating pro-apoptotic genes 
and p53 signaling pathway inducing apoptosis alongside 
downregulating Bcl-2 genes further generating ROS [20]. 
In vivo studies reported lutein administration of 50 mg/
Kg for 1 month alongside 4T1 cells injection, inhibiting 
breast cancer in murine models [71]. Similarly, 0.002% 
of dietary lutein downregulated cell proliferative pro-
teins (β-catenin, K-ras, and Akt/protein kinase B) thereby 
reducing tumor formation [72]. Alongside the suppres-
sion of cytochrome P450 phase I enzyme in N-nitroso-
diethylamine-stimulated hepatocellular carcinoma was 
also observed via lutein administration in murine models 
[73]. Further coadministration of lutein with doxorubicin 
exhibited higher inhibition of sarcoma S180 cells prolif-
eration in mice [74]. The human dietary consumption of 
lutein has reduced the efficacy of different cancers which 
are discussed before in this topic.

Zeaxanthin is a xanthophyll mostly obtained from 
Nannochloropsis oculata, Chloroidium saccharophilum, 
and Dunaliella sp. with good anticancer potentials. Few 
in vitro, in vivo, and human investigations have examined 
the chemopreventive activity of zeaxanthin, despite its 
limited research [54]. This carotenoid has been identi-
fied to activate gastric cancer cell apoptosis by upregulat-
ing pro-apoptotic factors and MAPK signaling pathway 
alongside downregulating anti-apoptotic factors (Bcl-2) 
[75]. The anti-melanoma potential of zeaxanthin has 
also activated human uveal melanoma cells apoptosis by 
downregulating the melanoma cell-induced fibroblast 
migration and platelet-derived growth factor [54].

Many microalgae also contain the orange-colored 
marine xanthophyll molecule known as fucoxanthin such 
as Chaetoceros neogracili, Isochrysis sp., Cylindrotheca 
closterium, Pleurochrysis carterae, Odontella aurita, 
Phaeodactylum tricornutum, Nitzschia laevis, Conticri-
bra weissflogii, Tisochrysis lutea, Thalassiosira sp., Navic-
ula sp., Amphora sp., and Pavlova sp., OPMS 30543 [20, 
54]. The anticarcinogenic characteristics of fucoxanthin 
include decreased tumor  incidence,  cancer cell inhibi-
tion, cell cycle arrest, induction of apoptosis, and con-
trolled  metastasis. Furthermore, Bcl-2 protein, caspase 
pathway (caspase-3, caspase-8, caspase-9), signaling 
pathways (MAPK, JAK/STAT, stress-activated protein 
kinases (SAPK)/JNK, and PI3K/Akt/mechanistic target 
of rapamycin (mTOR)), growth arrest and DNA-dam-
age-inducible protein (growth arrest and DNA damage 
(GADD)45α), NF-B, CYP3A4 enzyme, connexin genes, 
expression of N-myc oncogene, angiogenesis, and sur-
vival are all involved in fucoxanthin-induced apoptosis. 
Alongside apoptosis, fucoxanthin also confers chromatin 
condensation, DNA laddering, and degradation [20, 76]. 
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According to in  vitro research, various cancer cell lines 
have shown fucoxanthin to have anticancer potential. 
Regarding gastric cancer, fucoxanthin suppresses myeloid 
cell leukemia 1 protein and cyclin B1 via JAK/STAT sign-
aling pathway alongside the reduction in Bcl-2 thereby 
inducing autophagy and apoptosis by stimulating cleaved 
caspase-3, beclin-1, and microtubule-associated protein 
1 light chain 3 [77, 78]. Similarly, fucoxanthin’s antican-
cer properties reported beta-glucuronidase activity and 
NF-κB mediated pro-apoptotic activity in DLD-1 and 
HCT116 colorectal cancer cells, respectively [79, 80]. The 
further combined therapy of fucoxanthin with 5-fluo-
rouracil exhibited a cytotoxic effect on both HCT116 
and HT29 cell lines [81]. Alongside, the antiproliferative 
potential of fucoxanthin has been observed to down-
regulate the NF-κB pathway/expression in hepatic carci-
noma (HepG2), Burkitt’s and Hodgkin’s lymphoma, and 
breast cancer (MCF-7 and MDA-MB-231) cells. Fucox-
anthin’s ability to kill human cervical cancer cell lines 
(HeLa) has also been linked to the downregulation of the 
Akt/mTOR pathway, PI3K/Akt, NF-κB, and a member 
of the histone cluster 1 H3 family [54]. Fucoxanthin has 
also been found to boost GADD45 expression in HepG2 
and HTLV-1-infected T cells, causing G1 cell cycle arrest 
[82]. Regarding lung cancer, fucoxanthin has been identi-
fied to exhibit inhibitory effects by upregulating the pro-
apoptotic p53 gene and Fas, alongside suppressing Bcl-2 
[83]. Moreover, activation of different cell lines via mor-
talin (anti-apoptotic)-p53 binding can be suppressed via 
fucoxanthin application [84]. Regarding the central nerv-
ous system, fucoxanthin not only modulates the MAPK 
pathway but also downregulates PI3K/Akt/mTOR and 
p38 signaling pathway thereby stimulating ROS-triggered 
apoptosis by reducing invasion, angiogenesis, and cell 
proliferation. Based on in  vivo studies, fucoxanthin has 
shown good chemopreventive potentials against colon 
cancer, lung cancer, hepatocellular carcinoma, cervical 
cancer, adenocellular carcinoma, and various tumor xen-
ografts in various murine or rat models [54].

Violaxanthin, a compound isolated from Dunaliella 
tertiolecta, induces apoptosis in MCF-7 breast cancer 
cells without fragmenting DNA. Alongside, violaxanthin 
from Chlorella ellipsoidea exhibits apoptosis in colon 
cancer cells [20]. This carotenoid also results in the rever-
sion of multi-drug resistance (MDR)  in human MDR1 
gene-transfected mice lymphoma cells (L1210) and 
human breast cancer cells (MDA-MB-231 and MCF-7) 
[51]. Furthermore, it has been demonstrated that violax-
anthin from Eustigmatos cf. polyphem has radical scav-
enging activity [20].

Neoxanthin, being a xanthophyll carotenoid has been 
evidenced to upregulate cytotoxic effect upon treatment 
on HeLa and A549 cancer cells [51].

Siphonaxanthin, a keto-carotenoid obtained from 
Codium fragile, Caulerpa lentillifera, and Umbraulva 
japonica, has been evidenced with anticancer potential 
on various cancer [51]. Regarding the human leukemia 
cell line (HL-60), siphonaxanthin induces apoptosis by 
downregulating Bcl-2 expression. Simultaneously the 
condensation of chromatin, GADD45α, and apoptosis-
inducing death receptor-5 (DR5) are upregulated [82]. 
Moreover, the anti-angiogenic effect of siphonaxanthin 
exhibits downregulated expression of mRNA, fibroblast 
growth factor receptor (FGFR)-1, early growth response 
(EGR)-1, and fibroblast growth factor (FGF)-1 [51].

Canthaxanthin is a keto-carotenoid primarily obtained 
from the mushroom Cantharellus cinnabarinus. Later, 
this carotenoid was also found in microalgae such as 
Dactylococcys dissociates, H. pluvialis, Chlorella emer-
sonii, C. zofingiensis, Coelastrella sp., Chlorococcum sp., 
and cyanobacteria (Aphanizomenon flos-aqua, Trichor-
mus variabilis, Nodularia spumigena, and Anabaena sp.). 
This carotenoid is known to exhibit anti-tumorigenic, 
chemopreventive, and antioxidant activity against human 
colon adenocarcinoma, melanoma cells, prostate cancer 
cells, and in vitro oral cancer [20].

Microalgal polysaccharides
Polysaccharides derived from microalgae are broadly 
classified as intracellular and extracellular (structural/
cell-bound/cell wall) polysaccharides. The important 
parameters used in microalgae cultivation boost bio-
mass productivity. Microalgae, on the other hand, pro-
duce fewer exopolysaccharides (EPS) than bacteria under 
normal growth conditions [85]. Furthermore, stress and 
limited nutrient availability have been shown to increase 
EPS content in microalgae. The primary EPS compo-
sition of microalgae includes polysaccharides, lipids, 
DNA, and proteins [86]. As a result, two-stage cultiva-
tion is required for efficient polysaccharide production. 
Although microalgae polysaccharides are mostly used 
for industrial purposes, their biostimulant characteristics 
have been related to anticancer properties [87]. Sulfate 
concentration and molecular weight affect polysaccha-
ride potentiality. Therefore, the polysaccharides obtained 
from several microalgae/cyanobacteria are Chlorella vul-
garis, Chlorella pyrenoidosa, Arthospora platensis, Dixo-
niella grisea, Neochloris oleoabundans, Nostoc carneum, 
Porphyridium aerugineum, Dunaliella salina, Phaeodac-
tylum tricornutum, Haematococcus pluvalis, Botryococ-
cus braunii UC 58, Nostoc flageliforme, Rhodella violacea, 
Chlamydomonas reinhardtii, Anabaena sp. 33,047, Gloe-
ocapsa sp., Graesiella sp., Spirulina sp. LEB18 [85]. The 
sugar composition of these microalgae includes glucose, 
fructose, xylose, fucose, arabinose, rhamnose, mannose, 
galactose, maltose, and lactose. The inclusion of uronic 
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acids, pyruvates, and carbohydrate acyl groups thus 
gives EPS its anionic properties [88]. In contrast to mac-
roalgae, microalgae have a lower proportion of sulfated 
and methylated polysaccharides. The partially purified 
EPS obtained from C. pyrenoidosa FACHB-9, Scenedes-
mus sp., and Chlorococcum sp. has been explored with 
radical scavenging generating abilities and anti-tumor 
activities (inhibiting cell viabilities and reducing colony 
count) upon treatment on HCT116 and HCT8 cell lines 
[89]. In  vivo and in  vitro studies using Graffi myeloid 
tumors, sarcoma S180 tumor  cells, and breast cancer 
cells revealed additional anti-proliferative, anti-tumor, 
immunostimulatory, and cytotoxic characteristics of 
EPS produced from Porphyridum cruentum [90]. Simul-
taneously, nostoglycan, derived from the microalgae 
Nostoc sphaeroids, has been shown to enhance caspase-
3-dependent apoptosis, limiting lung cancer cell pro-
liferation while also protecting against ROS generation 
[91]. Moreover, dinoflagellate Gymnodinium sp. A3 EPS 
(GA3P (D-galactan sulfate, associated with L-( +)-lac-
tic acid)) has been identified with both anticancer and 
enzyme inhibition (DNA topoisomerase I and II) activ-
ity [92]. Microalgae’s polysaccharides have anticancer, 
antibacterial, and anti-adhesion capabilities that have 
been demonstrated to be crucial in the management of 
gastric carcinoma brought on by H. pylori [93]. Addition-
ally, the anticancer and anti-proliferative properties of 
chrysolaminarin polysaccharides derived from the dia-
tom Synedra acus have been demonstrated in HCT116 
and DLD-1 cell lines [94]. Contrarily, despite a paucity of 
data and information, Navicula sp., Tribonema sp., and P. 
cruentum microalgal sulfated polysaccharides (SPs) have 
been investigated for anticancer potential in  vivo and 
in  vitro [20]. Nonetheless, the anticancer potentials of 
microalgal polysaccharides have received far less atten-
tion, with far fewer data available than for macroalgal 
polysaccharides.

Microalgal peptides
Therapeutic peptides, which are known to offer greater 
advantages than antibodies or proteins, have lately been 
explored in microalgae [45]. Enzymatically degraded 
microalgal byproducts produced from protein hydro-
lysates are the most common source of these bioactive 
peptides with unique amino acid residues. As a result, 
antiproliferative, antioxidant, and anti-microtubule 
action has been demonstrated on numerous cancer cell 
lines using these isolated therapeutic bioactive peptides 
[95]. Additionally, peptide-driven immune responses in 
cancer patients have produced previously unheard-of 
reactions. Microalgae hold great promise for the extrac-
tion of bioactive peptides for cancer treatment due to 
their accessibility and inexpensive cost [45]. However, 

only a few microalgae have been recognized as contain-
ing bioactive peptides exhibiting anticancer potential. 
Among all other microalgae, Chlorella sp. (C. vulgaris, 
C. sorokiniana, and C. pyrenoidosa) is mostly used 
for the production of bioactive peptides followed by 
Dunaliella sp. and Pavlova lutheri [45, 96]. Biologically 
active peptides extracted from C. vulgaris pepsin hydro-
lysate induced anti-proliferation and death of AGS cells 
after 24 h of exposure, arresting cell growth after the G1 
phase. Additionally, antioxidant characterization showed 
that peptide-induced ROS generation is accountable for 
a number of harmful events in biological systems, includ-
ing the attack on crucial biological components (DNA, 
protein, and lipid), and has been suggested as a prospec-
tive chemopreventive therapeutic for gastric carcinoma 
[97]. Human liver cancer cells (HepG2) were shown to 
be inhibited by enzymatic hydrolyzed derived polypep-
tides from C. pyrenoidosa by triggering apoptosis and 
necrotic death. The altered modifications, such as cell 
membrane shrinkage, nuclear condensation and disin-
tegration, and the generation of black apoptotic bod-
ies, were corroborated using phase-contrast microscopy 
[98]. Furthermore, malignant tumors  gain the ability 
to spread by generating numerous metalloproteinases 
(MMP) that promote tumor  migration and invasion, 
considering them potential targets for cancer treatment. 
Human fibrosarcoma (HT1080) cells are inhibited by 
bioactive peptides derived from P. lutheri via suppress-
ing mRNA and MMP-9 expression [45, 99]. Tyrosinase 
activity can be decreased to lessen the risk of melanoma, 
which is brought on by UV radiation exposure that dam-
ages DNA. In mouse melanoma (B16F10) cells, bioac-
tive peptides from P. lutheri have been shown to limit 
tyrosinase and melanogenesis activity, as well as reduced 
ROS generation, by boosting ERK phosphorylation [100]. 
Dolastatins derived from Lyngbya sp. and Symploca sp. 
has been shown to inhibit ovarian and cancer cell lines 
in humans. In addition, a dolastatin 10 derivative (TZT-
1027) suppresses solid tumors (B-16 melanoma, colon 
26 adenocarcinoma, M5076 sarcoma, and human can-
cer xenograft) in mouse models. Furthermore, although 
being less potent than dolastatin, auristatin PYE had 
better outcomes against colon cancer cells (DLD-1, HT 
29, and COLO 205) [19]. Apart from dolstatins, grassy-
peptolide and curacin A are other bioactive peptides 
obtained from cyanobacterium L. confervoides and L. 
majuscule, respectively. Moreover, a wide variety of 
cyanobacterium-derived peptides (apratoxin (A-D, F), 
aurilides, coibamade A, lyngbyabellin (A, B, E, F, G, H, 
I, N), hoiamide (A-B), homodolstatin 16, largazole, oby-
anamide, majusculamide C, desmethoxymajusculamide, 
Palau amide, palmyramide, pitipeptolide (A and B), ulon-
gapeptin, tasipeptin (A-B), veraguamide (A-G), wewak 
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peptin (A-D), nostocyclopeptide (A1-A2), symplocamide 
A, belamide A, etc.) have been investigated with anti-
cancer potentials against different cancer cell lines [51]. 
However, only a few studies on the anticancer activities 
of microalgal peptides have been conducted, with posi-
tive results on six different cancer types [45]. Phycocya-
nin from cyanobacteria (Arthospora platensis) and red 
algae are phycobiliproteins that have been studied for 
their ability to stop cell cycle (G0/G1 or G2/M phase), 
reduce Bcl-2/Bax, COX-2, p-ERK, PEG2, CDK4, cyc-
lin D1, NF-B, Fas, p53, ICAM-1, CD44, chromatin con-
densation, Cyt c release. By suppressing the Akt/mTOR/
p70S6K pathways, phycocyanin also inhibits angiogenesis 
and metastasis while also inducing autophagy [101]. Fur-
thermore, amino acid supplementation has been shown 
to reduce muscle protein breakdown while also suppress-
ing inflammation. It has been discovered that microal-
gae contain glutamic acid in addition to 18 other amino 
acids. Along with glycine, C. vulgaris and C. sorokiniana 
have higher levels of alanine, valine, and leucine. Further-
more, antioxidant-active Mycosporine-like amino acids 
(MAA) are abundant in Glenodinium foliaceum, Scened-
esmus sp., and C. sorokiniana [20].

Microalgal lipids
Microalgae lipids are classified into two types: polar 
(glycerophospholipids) and non-polar (triacylglycerols). 
Long-chain fatty acids combine with polar lipids to gen-
erate PUFAs, which are divided into three classes: Doco-
sahexaenoic acid (DHA), Docosapentaenoic acid (DPA), 
and Eicosapentaenoic acid (EPA). Non-polar lipids, on 
the other hand, are primarily involved in energy con-
servation. Polar lipids are involved in the functioning of 
cellular signaling  pathways in addition to maintaining 
structural integrity and membrane fluidity [102]. EPA 
and DHA are the omega (ω)-3 PUFAs obtained from 
Porphyridium sp., Phaeodactylum sp., Nannochlorop-
sis sp., Skeletonema sp., Thalassiosira sp., Cryptomonas 
sp., Tetraselmis sp., Heterocapsa niei, Isochrysis sp., and 
Chaetoceros sp. [20]. DHA is the largest ω-3 (n-3) fatty 
acid among all PUFAs, and it has been demonstrated to 
have anti-tumor effects by triggering apoptosis via regu-
lating the nucleus and mitochondria, culminating in lipid 
peroxidation (generating ROS) and cell cytotoxicity [19]. 
Alongside, PUFAs’ anti-angiogenic characteristics aid in 
the generation of anti-metastatic activity in many malig-
nancies. Moreover, PUFAs with a double bond location 
n-3 (EPA and DHA) have been investigated to confer 
better anticancer activity compared to PUFAs with n-6 
(ω-6). Unlike unsaturated lipids, saturated lipids with 
shorter chain lengths (≤ C10) are only known to dem-
onstrate anti-tumor activity [103]. Multiple cancer cell 
lines, including breast cancer (MDA-MB-231, MCF-7, 

and KPL-1), prostate cancer, pancreatic cancer, and 
colon cancer (ACL-15 and HT-29), have been linked to 
dietary supplementation with n-3 PUFAs. In contrast, 
the anti-tumorigenic property of n-6 PUFAs has been 
disputed, as it has been shown in numerous human stud-
ies to promote carcinogenesis, which is inhibited when 
n-3 PUFAs are consumed [103, 104]. However, to date, 
inadequate data are available suggesting n-3 PUFA’s 
anticancer potentials against skin carcinoma [105]. 
Alongside, atherosclerosis, increased pro-inflammatory 
eicosanoids/cytokines, cardiovascular and autoimmune 
diseases can all result from an excess of n-6 PUFAs con-
sumption [104]. Additionally, DHA-mediated apop-
tosis is promoted in gastric cancer by activating JNK, 
ERK, and actuator protein (AP)-1, halting cell growth 
by increasing the levels of p53, Bax, and intracellular 
cytochrome c [106]. Among the n-3 PUFAs, DHA and 
EPA have been examined for their capacity to elicit cell 
cycle arrest in regard to ROS production, which down-
regulates death-regulating factors (Bcl-2) and releases 
mitochondrial cytochrome c to the cytoplasm, activat-
ing intrinsic pathway-induced caspase-dependent cyto-
toxicity [107, 108]. When cytochrome c is released as a 
result of stress-induced mitochondrial permeabilization, 
it activates caspase-3 by attaching to the N-terminal cas-
pase-recruitment domain (CARD), which then activates 
caspase-9 by recruiting to the apoptosome, resulting in 
biochemical and cellular apoptosis [109]. Simultane-
ously, the interaction of n-3 and n-6 PUFAs alongside 
their molecular pathways in cancer therapy is still con-
tentious and complicated, and there is a need for more 
research [104]. Anticancer medications are further modi-
fied by conjugating them with fatty acid molecules (such 
as doxorubicin conjugates, paclitaxel conjugates, cytara-
bine conjugates, gemcitabine conjugates, and ciprofloxa-
cin conjugates), which boosts the efficacy of therapeutic 
selectivity against various cancer cells with lower doses 
[103]. In advanced breast cancer, a combination of ω-3 
PUFAs, doxorubicin, cyclophosphamide, and fluorouracil 
chemotherapy, as well as mastectomy, inhibits prolifera-
tion and angiogenesis by downregulating Ki-67 and vas-
cular endothelial growth factors (VEGF) expression. In 
addition, vitamin D supplementation decreases inflam-
matory markers (IL-1b, IL-6, IL-8, TNF-α) and tumor 
markers in colorectal malignancies. In cancer patients 
receiving chemotherapy, supplementing with ω-3 fatty 
acids reduces cancer-related fatigue [20]. Simultaneously, 
fluorouracil conjugated with DHA has been shown to be 
more efficient in treating gastric cancer [110]. Additional 
research and clinical studies (phases I–III) are needed, 
however, to ensure and define the biochemical processes 
and pharmacokinetics of these novel conjugates.
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Polyunsaturated aldehydes (PUAs) are oxylipins pro-
duced by a variety of marine and freshwater diatoms 
when subjected to various environmental stresses. The 
abundance of various microbial (bacterial, virus, and 
plankton) communities have been hypothesized  to be 
influenced by PUAs [111]. After cell disruption, PUAs 
are produced by oxidative degradation of PUFAs [112]. 
The diatoms that produce PUAs are mainly Skeletonema 
costatum, Thalassiosira rotula, Skeletonema marinoi, 
Attheya longicornis, Chaetoceros socialis, Porosira gla-
cialis, Chaetoceros furcellatus, and Pseudo-nitzschia 
delicatissima. When grown in Conway’s medium, Daigo 
IMK medium, Guillard’s F/2 medium, or versions of 
both media, these diatoms/microalgae exhibit antican-
cer properties [5]. PUAs have been shown to have anti-
proliferative activity, reducing the sustainability of the 
human colon adenocarcinoma cell line (Caco-2) to 0% 
after 48 h of incubation at a concentration of 11-17 µg/
mL. To validate the presence of apoptosis, the TUNEL 
assay was employed [113]. The cytotoxic potential of 
PUAs has also been established on cancer cells (lung 
(A549), colon (COLO 205), and adenocarcinoma cells, 
but not on healthy cells when incubated for 24 and 72 h 
[114].

On the other hand, few microalgae such as Chlo-
rella sp., Chlamydomonas sp., Scenedesmus sp., 
Ankistrodesmus sp., Nannochloropsis limnetica, Stepha-
nodiscus hantzschii, Gomphonema parvulum, Cyclotella 
meneghiniana, Cryptomonas sp., and Monoraphidium 
sp. have been evidenced for alternatively producing com-
mercial sterols (β-sitosterol, stigmasterol, ergosterol, 
campesterol, and brassicasterol) [115, 116]. According to 
research, sterols have cytotoxic and anticancer proper-
ties. Furthermore, sterols suppress tumor growth, metas-
tasis, and angiogenesis by inducing caspase-3-dependent 
apoptosis, Bax/Bcl2 increase, or blood cholesterol reduc-
tion, reducing the risk of cancer [20].

Other miscellaneous microalgal components
Vitamins, minerals, polyphenols, and Coenzyme Q, 
besides carotenoids, were demonstrated to possess 
strong anticancer properties [20]. Vitamin A obtained 
from various microalgae (Tetraselmis suecica, Dunaliella 
tertiolecta, Chlorella stigrnatophora, Skeletonema cos-
tatum, Isochrysis galbana, Aphanizomenon flos-aquae, 
Tetradesmus Obliquus, and Spirulina sp.) is composed 
of retinol, once in the body, it is metabolized into reti-
noic acid and retinoids [20, 117]. However, retinoic acid’s 
activity is contradictory because it can activate the ERK 
pathway, which promotes angiogenesis and metastasis. 
In combination with other chemotherapeutic medicines 
and antioxidants, retinoic acid, on the other hand, pre-
vents various cancer prognoses, enhancing the patient’s 

survival rate [118]. Vitamin C is derived from various 
microalgae (Nannochloropsis oculata, Nannochloris ato-
mus, Chaetoceros muelleri, Pavlova lutheri, Rhodomonas 
salina, Skeletonema costatum, etc.) and has been shown 
to have higher anticancer potential when administered 
intravenously rather than orally [119]. Cancer cells are 
sensitized and killed by vitamin C via a number of meth-
ods, including oxidative stress, immune cell stimulation, 
inflammation modulation, and signaling pathway inter-
ference [20]. Furthermore, vitamin C has been shown 
to cause protein modification and mitochondrial mal-
function in cancer cells when it enters through sodium-
dependent vit C transporter2 (SVCT2) and glucose 
transporters (GLUTs), respectively, boosting cancer cell 
mortality [120]. Furthermore, exposure to sunlight is 
the principal source of vitamin D, sometimes described 
as the “sunshine” vitamin. Microalgae, compared to ter-
restrial and aquatic plants and animals, have been found 
to synthesize  more vitamin D when exposed to UVB. 
Several microalgae such as Nannochloropsis oceanica, 
Skeletonema costatum, Pavlova lutheri, Isochrysis gal-
bana, and Tetraselmis suecica are excellent producers 
of vitamin D [20]. Although there is a lack of research 
and evidence on vitamin D from microalgae as an anti-
cancer agent. However, fewer studies suggest that it has 
anticancer potential by  interfering with gene expres-
sion and improving cancer patients’ relapse-free survival 
[121, 122]. Among all other vitamins, marine microalgae 
(Skeletonema costatum, Pavlova lutheri, Isochrysis gal-
bana, Chlorella stigmatophora, Spirulina sp., Tetraselmis 
suecica, and Dunaliella tertiolecta) is a good source of 
vitamin E. Supplementing with vitamin E (300–1000 mg/
day) has been shown to reduce patient mortality [20, 
123]. Vitamin E comes in eight different major isoforms 
(α, β, δ, γ-tocopherols and -tocotrienol). Vitamin E is 
frequently used to treat nephrotoxicity and ototoxicity 
brought on by the drug cisplatin [20]. Vitamin E (espe-
cially tocotrienol) has been found to have anticancer 
properties in addition to its neuroprotective ones, inhib-
iting cell proliferation, angiogenesis, and cell cycle arrest 
while simultaneously inducing autophagy, paratopsis, 
and apoptosis through various mechanisms involving the 
Bax/Bcl ratio, death receptor activation, and caspase-9 
activations [20, 124]. There are two forms of vitamin K, 
sometimes known as “Koagulation vitamin”: vitamin K1 
(phylloquinone) and vitamin K2 (menaquinone). Vitamin 
K and its derivatives have been shown to have antican-
cer properties against a variety of malignancies. Several 
microalgae, including Chlorella ellipsoidea, Tetraselmis 
suecica, Skeletonema costatum, Isochrysis galbana, and 
Pavlova lutheri are good sources of vitamin K [20]. Fur-
thermore, it has been demonstrated that vitamin K acti-
vates p21 and CDK1 inhibitors through a number of 
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methods, killing cancer cells, including upregulation 
(Fas/FasL, NF-kB, and p53) and downregulation (Bcl-2/
Bcl-xl and Bax/Bak) of numerous factors, as well as cas-
pase-3 activation pathways [125].

Marine microalgae (Tetraselmis chuii, Botryococcus 
braunii, Phaeodactylum tricornutum, Chlorella sp., and 
Spirulina sp.) are high in macrominerals and micromin-
erals, both of which have been shown to have antioxidant 
properties, lowering cancer risk [20]. Further antioxi-
dant multivitamin and mineral (AMM) supplementation 
reduces oxidative damage caused by chemotherapy and 
radiotherapy in cancer patients, restoring endogenous 
and exogenous antioxidants and trace elements [126].

Microalgae (Diacronema lutheri, Phaeodactylum tri-
cornutum, Haematococcus pluvialis, Chlorella vulgaris, 
and Tetraselmis suecica) produce polyphenols and their 
derivatives (phenols, flavonoids, dihydrochalcones, and 
proanthocyanidins). Researchers have discovered that 
polyphenols have anticancer and antioxidant capabili-
ties [20, 127]. Certain cancers are inhibited from prolif-
erating by the antioxidant characteristics of polyphenols 
(phenols and flavonoids), which elevate radical scaveng-
ing capability [128]. By activating pro-apoptotic, anti-
proliferative, and anti-metastatic pathways, polyphenols 
(genistein, quercetin, and ellagic acid) have been demon-
strated to alter molecular targets, suggesting their anti-
cancer potential [20].

Ubiquinone, often known as coenzyme Q (CoQ10), is 
a well-known inducer of mitochondrial oxidative phos-
phorylation and adenosine triphosphate (ATP)  produc-
tion [129]. Few microalgae (Porphyridium purpureum, 
Chlorella pyrenoidosa, and Isochrysis galbana) have been 
shown to produce more CoQ10, either naturally or when 
freeze-dried. CoQ10 and Alpha-Lipoic acid (ALA) com-
bination therapy has been shown to reduce inflammation 
and cancer risk by considerably enhancing antioxidant 
activity. Nonetheless, a higher risk of cancer has also 
been connected to low ubiquinone levels [20] (Table 1).

Macroalgae anticancer potential
Marine macroalgae are a substantial source of bioactive 
substances including polysaccharides, lipids, and proteins 
(primary metabolites) as well as phenolic compounds, 
halogenated compounds, sterols, terpenes, and short 
peptides (secondary metabolites) [144]. Based on their 
morphology and pigmentation, macroalgae are divided 
into three groups: green (Chlorophyta), red (Rhodo-
phyta), and brown (Phaeophyta) [21]. Several biological 
properties of macroalgae have been considered notably 
anti-diabetic, anti-inflammatory, anticancer, antimicro-
bial, antihypertensive, anti-viral, neuroprotective, and 
fat-lowering activities [144]. The biological properties of 
the macroalgae-derived bioactive compounds depend 

on their extraction process which is available in detail in 
[21].

Macroalgal polysaccharides
SPs are anionic polymers biosynthesized by macroalgae 
as an important component of their cell walls and are 
regarded to be vital for physiological adaptation to the 
high ionic strength of the marine environment. The SPs 
that are widely used as potential bioactive compounds 
include ulvans, galactans (agarans and carrageenans), 
and fucoidans from green, red, and brown macroalgae, 
respectively [145]. In terms of anticancer activity, SP with 
low molecular weight and high sulfate content is consid-
ered advantageous [1]. The sulfate groups are covalently 
bonded in varying quantities (0 to 41%) to the carbohy-
drate atoms via ether bonds [146].

Ulvan is a polysaccharide of green macroalgae derived 
from various genera of Ulva, Caulerpa, Monostroma, 
Codium, and others. The structure of ulvan consists of 
xylose, rhamnose, uronic acids (glucuronic and iduronic 
acid), sulfate groups, and trace amounts of mannose, 
and galactose. Both D-glucuronosyl-(1,4)-L-rhamnose 
3-sulfate and L-iduronic acid-(1,4)-L-rhamnose 3-sulfate 
are repeating disaccharide units that constitute the com-
pound; sulfate content (18.9%) with molecular weights 
ranging between 1.8 ×  105–2 ×  106 [147]. Ulvan’s inter-
action with the Toll-like receptor (TLR)4 receptor leads 
to  the P13K/Akt and NF-κB signaling pathways to be 
activated, which causes the expression of IL-8, TNF-, and 
CCL20 to be induced to prevent tumor growth [148]. In a 
study using the human hepatoma (HepG2) cell line, ulvan 
administration triggered apoptosis by activating the 
caspases-mediated  mitochondrial signaling system that 
produced cytochrome c (Cyt c), activated caspase-3, − 9, 
and Bax-Bcl-2 ratio [149].

Carrageenan is mainly composed of a linear chain of 
alternating α-1,3- and β-1,4-glycosidic linkages connect-
ing 3-linked β-D-galactopyranose units and 4-linked 3, 
6-anhydro-α-galactopyranose [10, 150] and are extracted 
from Kappaphycus alvarezii, Eucheuma denticulatum, 
Chondrus crispus, Chondrus pinnulatus, Chondrus 
armatus, Chondrus yendoi [10, 146]. The molecular mass 
of carrageenan range from 500 to 1000  kDa. According 
to their sulfate content and position, carrageenans can be 
divided into six categories: kappa (κ-), mu (µ-), iota (ɩ-), 
beta (β-), lambda (λ-), theta (θ), and nu (ν-) carrageenan. 
Among them, the most important types are κ-, ι-, and λ- 
carrageenans with 20%, 33%, and 41% of sulfate content, 
respectively [146]. In the signaling pathway for Wnt/β-
catenin, Wnt interacts with the Frizzleds (Fr) receptors 
and coreceptors like low-density lipoprotein recep-
tors (LPR5/6) activating the dishevelled (Dvl) protein. 
It destabilizes the destructing complex (Wnt/Fr/LRP/
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Dvl/Axin), thus accumulating β-catenin. This pathway is 
considered crucial for the formation of cancer stem cells 
[146, 151]. The application of carrageenan on different 
cell lines has both the pro-tumor and anti-tumor activity 
of Wnts in line with the type of tumor and the Wnt ligand 
involved. Contradictory results on Wnt-cascade signaling 
have noted the tumor-suppressing efficacy against leu-
kemias, neuroblastoma, thyroid cancer, melanoma, and 
ductal breast cancer as well as tumor-promoting activity 
against gastric, prostate, pancreatic, melanoma skin, and 
non-small cell pulmonary cancer [151].

Fucoidan obtained from brown macroalgae (Ascophyl-
lum nodosum, Ecklonia cava, Undaria pinnatifida, Fucus 
vesiculosus, Sargasssum hemiphyllum) [152] have molec-
ular mass categorized into three groups: high molecu-
lar mass (> 10,000  kDa), intermediate molecular mass 
(10–10,000 kDa), and low molecular mass (< 10 kDa). It 
is composed of a backbone of 3-linked α-l-fucopyranose 
units or alternating 3-linked α-l-fucopyranose and 
4-linked α- l-fucopyranose units, along with traces of 
glucose, mannose, xylose, galactose, rhamnose [152, 
153]. Oversulfation of fucoidans promotes their bioactiv-
ity and is found to be a strong inhibitor of angiogenesis. 
The interaction of fucoidan with several cancer-related 
pathways makes it a multipotent compound. It inhibits 
the phosphorylation of phosphatidylinositol-4,5-bispho-
sphate 3-kinase/protein kinase B (PI3K/AKT), mTOR 
while decreases the level of MMP-2 and MMP-9 on dif-
ferent cancer cell lines [153]. P13K/AKT signaling regu-
lates the pro-apoptotic Bcl-2 subunits, which cause Cyt 
c to be released from the mitochondria and activate the 
caspase pathway [154]. In an in vitro investigation by Cho 
et  al. [155], fucoidan has been shown to reduce NF-κB 
activity on bladder carcinoma cell lines. The same study 
revealed that fucoidan treatment induced the level of 
p21WAF1, a cell cycle inhibitor, through upregulation 
of Akt signaling pathway. Fucoidan has shown promis-
ing results against various carcinoma cell lines includ-
ing acute myeloid leukemia (NB4, HL-60), colon, breast, 
lung, uterine, ovarian, endometrial, and colorectal can-
cer [153]. In the MAPK/ERK pathway, the protein level 
of the phosphorylated ERK1/2 is reduced by fucoidan for 
apoptotic induction. However, both the inhibitory and 
stimulatory expression of p38 MAPK has an anti-prolif-
erative effect on colon, leukemia, and gastric cancer cells 
[153]. Fucoidan’s anticancer effects are also linked to its 
capacity to obstruct a plethora of growth-related recep-
tors, including the estrogen receptor, TGF-β, bone mor-
phogenetic proteins (BMPs), and VEGFs (ER) [156–159].

Macroalgal peptides
Peptides with anticancer properties are low molecular 
weight cationic peptides. In comparison to conventional 

chemotherapy, anticancer peptides are known to effi-
ciently inhibit tumor growth, migration, and angiogen-
esis. Several mechanisms of anticancer peptides are 
involved in inhibiting tumorogenic activities includ-
ing cell membrane destruction, apoptosis, inhibition 
of tumor angiogenesis, and immune regulation [160]. 
A study of papain- and pepsin-digested hydrolysates 
obtained from Pyropia haitanensis showed anti-prolifer-
ative activity against breast (MCF-7), liver (HepG2), and 
lung (A549) carcinoma cell lines. They exhibited an  IC50 
value ranging between 59.09 to 272.67 μg/ml. In addition, 
a novel peptide (QTDDNHSNVLWAGFSR) was isolated 
with an inhibitory effect of 61.36% (at 500 μg/ml) on the 
HepG2 cancer cell line [161]. Another study by Fan X 
et al. [162] showed that polypeptides isolated from Por-
phyra haitanensis exhibited anti-proliferative activity 
against A549, HepG2, HT-29, MCF-7, SGC-7901 cancer 
cell lines with an  IC50 value within 191.61 and 316.95 μg/
ml. Furthermore, two novel peptides (VPGTPKNLDSPR 
and MPAPSCALPRSVVPPR) showed anti-proliferative 
activity against MCF-7  (IC50 = 200.97 μg/ml) and HepG2 
 (IC50 = 276.85 μg/ml). By halting the cell cycle at the  G0/
G1 phase and causing apoptotic cell death, polypeptides 
exerted an anticancer action on cancer cells. Undaria 
pinnatifida is a green macroalgae that is rich in proteins 
and has remarkable bioactive qualities; however,  there 
is little evidence of  its anticancer potential [163]. In an 
investigation by Rafiquzzaman [164], glycoprotein iso-
lated from Undaria pinnatifida functions as a natural, 
bioavailable antioxidant with DNA-protective properties. 
Because molecular weight and structural properties gov-
ern the migration and penetration of peptides inside the 
body, the low molecular weight hydrolysates of protein 
and peptides of U. pinnatifida are likely to exhibit high 
radical scavenging action [163].

Macroalgal lipids
PUFAs, which contain ω-6 and ω-3 fatty acids, are cru-
cial for maintaining various metabolic processes that 
lower the risk of heart disease, cancer, and inflammatory 
diseases. ω-6 fatty acids are the linoleic and arachidonic 
(AA) acids and ω-3 fatty acids are EPA and DHA [165]. 
The short-chain PUFAs are the ω-3 alpha-linolenic acid 
(ALA), and ω-6 linoleic acid (LA), while the long-chain 
PUFAs are the ω-3 EPA and DHA, and ω-6 AA [166]. 
Mammals lack the enzymes essential for the synthesis of 
PUFAs and hence have to be obtained through diet. The 
dietary ratio of ω-6:ω-3 has to be 2:1 in healthy individu-
als; however, excessive intake of ω-6 can lead to diseases 
like cancer [165, 167]. Epidemiological evidence on the 
association between PUFA and cancer indicates that 
ω-3 PUFA prevents cancer whereas ω-6 PUFA induces 
it [167]. Macroalgae possess an abundant amount of 
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long-chain PUFAs acting as a good source with nutri-
tional value. In comparison to green and red macroalgae, 
brown macroalgae contain the highest quantity of PUFAs 
[168, 169]. The potential sources of PUFAs from mac-
roalgae are Gracilaria corticata, Gelidium sp., Pyropia 
sp., Undaria pinnatifida, Ulva, Gelidiella sp., Polysip-
honia sp., Monostroma, Caulerpa, Rhodymenia sonderi, 
Acanthophora sp., Acrosiphonia, Bryopsis, Cryptone-
mia undulata, Halymenia sp., and Udotea [170]. PUFA 
from Adenocystis utricularis displayed growth inhibi-
tion of human breast tumor cells (MCF-7 and MDA-
MB-231) between 61.04% and 69.78%. The cell viability 
for MCF-7 (68.7%) and MDA-MB-231 (89%) reduced on 
exposure to fatty acids from Adenocystis utricularis for 
72 h. Furthermore, the 100 μg/ml concentration of fatty 
acids had > 50% anti-proliferative effect against breast 
tumor cell lines [171]. Fucus spiralis fatty acid-contain-
ing petroleum-ether fraction was cytotoxic to the HeLa 
cell line due to its anti-migratory, anti-angiogenic, and 
cell cycle-arresting effects. Its  IC50 value was 43.74  μg/
ml [172]. Sterols, belonging to a subset of steroids, are 
the amphipathic lipids with a hydroxyl group (C3 carbon 
atom) and a branching chain (C17 carbon atom). Many 
types of sterols such as cholesterol, clionasterol, isofu-
costerol, fucosterol, sargasterol, and others are found in 
macroalgae several biological properties [173]. According 
to Li et  al. [174], saringosterol acetate from Sargassum 
fusiformis had anti-proliferative action on the MCF-7 
cell line via inducing mitochondrial-mediated apoptosis 
 (IC50 = 63.16 μg/ml). Commercially purchased fucosterol 
induced mitochondrial-mediated apoptosis, endoplasmic 
reticulum stress, and anti-angiogenic effects on human 
ovarian tumor cell lines (ES2 and OV90) with an  IC50 
value of 62.4 μM (ES2) and 51.4 μM (OV90) [175].

Macroalgal vitamins
Vitamins are necessary to keep the body’s physiological 
and biochemical processes functioning properly. It has 
been reported that several macroalgae possess vitamins 
beneficial for preventing various diseases. Vitamin  B12 
is known to exist in the highest proportion in red algae 
(Porphyra sp.). Other species of macroalgae with vitamin 
 B12 are Palmaria longat, Porphyra tenera, Enteromor-
pha, etc. All species of green, red, and brown macroalgae 
possess vitamin C and vitamin E (α-tocopherol) includ-
ing Undaria pinnatifida and Laminaria digitata which 
have both the vitamins [176]. Vitamin A as already 
described above have anticancer property. By suppress-
ing the expression of myosin light chain kinase via the 
MAPK pathway, Zuo et  al. [177] found that All-trans 
retinoic acid (ATRA) has an antimigratory effect against 
human colorectal carcinoma cells (RKO). B vitamins  (B1, 
 B2,  B3,  B5,  B6,  B7,  B9,  B12) are important for generating 

cofactors required for important cellular and metabolic 
functions [178]. Vitamin  B1 (thiamine) (2  μg/ml) inhib-
ited the proliferation of the MCF-7 breast carcinoma 
cell line by 63% [179]. Vitamin  B6 comprises pyridoxal, 
pyridoxine, pyridoxamine, along with their phosphoryl-
ated forms: pyridoxal-5’-phosphate, pyridoxine-5’-phos-
phate, pyridoxamine-5’-phosphate [178]. The strong 
anti-inhibitory activity was observed at a concentration 
of 20  μM pyridoxal against B16F10 murine melanoma 
cells [180]. In an in vivo experiment, supplementation of 
folate and vitamin  B12 to azoxymethane-induced carcino-
genic mice combats against the cytotoxicity and oxidative 
stress of azoxymethane [181]. Based on the administra-
tion route mentioned above, Vitamin C, often known as 
ascorbic acid, exhibits anticancer effects. Hepatocellular 
tumor cells (Hep3B) were treated with low-dose metho-
trexate and vitamin C in combination to induce  H2O2 
production and activate caspase-8/-9, hence promoting 
cell death [182]. The proliferation of the anaplastic thy-
roid carcinoma cell lines (8505C and C643) was inhibited 
successfully on treatment with vitamin C at a concen-
tration of 1  mM through ferroptosis via GPX4/PTGS2 
pathway [183]. Our skin on exposure to sunlight (UVB, 
290–320  nm) produces vitamin D, a seco-steroidal pro-
hormone. It goes through metabolic processes in the 
liver and kidney to yield calcitriol (biologically active 
metabolite). Apart from its role in bone metabolism, it 
is reported to function in cancer treatment and preven-
tion [184]. In a recent study on breast cancer cell lines 
(MCF-7 and MDA-MB-231), the reduction in the cell 
viability was 72% (10 μM vitD) at 24 h for MCF-7. This 
was due to the imbalance in cellular iron homeostasis 
inducing oxidative stress contributing to cell death [185]. 
Also, a study by Casadei-Gardini et  al. [186] evaluated 
patients with cholangiocarcinoma undergoing surgery 
for disease-free survival (DFS) and found that intake of 
vitamin D improves DFS. Vitamin E and Vitamin K have 
already been described above and show anticancer activ-
ity. α-tocopherol (Vitamin E) exhibits anti-tumor activ-
ity on squamous carcinoma cell (ORL-48) at  IC50 value 
of 2.5  μg/ml through apoptotic cell death and sub-G0 
phase cell cycle arrest [187]. A recent study on vitamin 
 K2 depicted AMPK-dependent autophagic cell death in 
human bladder tumor cells (T24, EJ, and J82) on induc-
tion of PI3K/AKT/hypoxia-inducible factor-1α (HIF-
1α)-mediated glycolysis [188]. Most of the vitamins have 
shown controversial results on cancer and further inves-
tigation needs to be performed for analyzing their exact 
roles.

Other miscellaneous macroalgal components
Carotenoids are a macroalgal pigment that includes 
fucoxanthin, β-carotene, astaxanthin, violaxanthin, 
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capsanthin, siphonaxanthin, lutein, neoxanthin, and 
others [189]. Among them, the major carotenoids are 
the fucoxanthin widely distributed in brown algae 
(Undaria pinnatifida, Laminaria japonica, etc.). The 
structure of fucoxanthin possesses an allenic bond, a 
5,6-monoepoxide, and an acetylated group [190]. With 
regard to anticancer activity, fucoxanthin, and fucox-
anthinol (metabolite) induce apoptotic cell death, cell 
cycle arrest, antiproliferation, and anti-angiogenic 
effect [189]. Fucoxanthin exhibits its effect by downreg-
ulating MAPK, Bcl-2, MMP-9, and mRNA expression 
levels of CD44, CXCR4 and stimulation of poly-ADP-
ribose polymerase (PARP), and caspase-3,-8,-9 [1]. An 
analysis by Wang et  al. [191] showed that the human 
bladder cancer T24 cell line was inhibited by fucox-
anthin at a concentration of 5  μM and 10  μM via  G0/
G1 cell cycle arrest through downregulation of CDK-2, 
CDK-4, cyclin D1, cyclin E, and upregulation of p21, 
CDK-inhibitory protein. Fucoxanthin was also respon-
sible for the downregulation of the mortalin-p53 com-
plex. On treating with Undaria pinnatifida-derived 
fucoxanthin, the growth of MDA-MB-31 (human breast 
cancer) and tumor-induced lymphangiogenesis were 
suppressed by reducing the concentrations of VEGF-
C, phospho-AKT, VEGF receptor-3, phospho-P13K, 
NF-κB in human lymphatic endothelial cells. However, 
in in vivo MDA-MB-31 nude mouse model micro-lym-
phatic vascular density (micro-LVD) was reduced [192].

Polyphenols are produced by seaweeds to boost their 
antioxidant properties and act as radical scavengers. They 
produce polyphenolic compounds including phlorotan-
nins, flavonoids, bromophenols, mycosporin-like amino 
acids, and phenolic terpenoids [1]. Phlorotannins are 
the major polyphenols unique to brown algae [20] such 
as kelps, rockweeds, Ecklonia cava, Laminaria japonica, 
and Sargassacean sp. and comprise a monomeric unit 
phloroglucinol (1,3,5-trihydroxybenzene) [1]. On the 
basis of the links between the monomeric units, phloro-
tannins are divided into four classes: phlorethols and fuh-
alols (ether links), fucols (phenyl links), fucophlorethols 
(ether and phenyl links), and eckols and carmalols (diben-
zodioxin links) [193]. Zenthoefer et al. [194] produced an 
acetonic extract of Fucus vesiculosus (thallus) for inhib-
iting the viability of pancreatic cancer cells (Panc89 and 
PancTu1). The  EC50 value for Panc89 was 71.47  μg/ml 
and PancTu1 was 76.96  μg/ml. Also, the inhibitory rate 
of Panc89 and PancTu1 was 80.3% and 82.6%, respec-
tively. The application of phlorethols from Costaria cos-
tata showed an  IC50 value of 92 μg/ml, 94 μg/ml, 96 μg/
ml, and 102  μg/ml for HT-29, HCT-116, MCF-7, and 
SK-MEL-28, respectively [193]. Eckol prohibited Reg3A-
induced SW1990 cells from multiplying (pancreatic 
human cells) [195], while dieckol had anti-proliferative 

and anti-migratory impact on non-small-cell pulmonary 
cancer by regulating PI3K/AKT pathway [196].

Similar to microalgae, many macroalgae-derived 
components have also been investigated using in silico 
methods, albeit with very scanty data. Although cauler-
pin from Caulerpa racemosa was molecularly docked, it 
showed that it was an efficient ligand but had a reduced 
total binding energy when considering whether it 
could be used as a therapeutic molecule [197]. Simul-
taneously, another study of the anticancer activity of 
metabolites from Caulerpa sp. has been identified as an 
effective ligand against glucose 6-phosphate dehydroge-
nase (G6PDH) and 6-phosphogluconate dehydrogenase 
(6PGD) for targeting the pentose phosphate pathway in 
colorectal cancer treatment [198] (Fig. 4, Table 2).

Can multi‑drug‑resistant gastric cancer be effectively 
treated with algal metabolites?
Antimicrobial resistance has rendered many conven-
tional antibiotics ineffective in a number of people with 
H. pylori infection [245]. Antimicrobial resistance to 
metronidazole, tetracycline, quinolones, clarithromycin, 
and rifabutin has emerged as a result of gene modula-
tions or mutations, according to molecular investigations 
[246, 247]. H. pylori has been classified as priority 2 by 
the World Health Organization (WHO) due to antibiotic 
resistance, despite the fact that it is found colonizing in 
50% of the human stomach [248]. As a result, a method 
to lower cancer’s morbidity and mortality has been found 
in algae with special metabolites that can stop the pro-
gression of an H. pylori infection into gastric cancer in 
the era of multi-drug resistance [247]. However, there is a 
scarcity of data on the antibacterial activity of microalgal 
bioactive components (mostly carotenoids) against H. 
pylori. In macroalgae, fucoidan is widely used for its anti-
H. pylori activity. Infection with H. pylori raises the risk 
of gastric and colon cancer. Gastric cancer (GC)  arises 
from a complicated, multi-step process that starts with 
normal mucosa and progresses to non-atrophic gastritis. 
In a cascade, the progression of superficial gastritis to 
atrophic gastritis leads to the production of metaplasia, 
dysplasia, and intestinal-type cancer [249]. The expres-
sion of several outer membrane proteins/adhesins by the 
bacteria (BabA, SabA, AlpA/B, HopZ, and OipA) aids in 
the establishment of an intimate  relationship with the 
gastric mucosa cells of the host. Alongside adhesins, 
numerous virulence factors (vacuolating cytotoxin A 
(VacA), cytotoxin-associated gene A (CagA), and urease) 
produced by H. pylori are integrated into host cells via 
the type 4 secretory system (T4SS) within cag patho-
genicity island (cag PAI) for initiating pathogenesis [249, 
250]. Instead of using bactericidal drugs, antiadhesives 
can prevent the pathogenesis that results from H. pylori 
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adhering to stomach mucus via lectin-like molecules. In 
microalgae, Chlorella sp. and Spirulina sp. can be 
exploited cost-effectively for their polysaccharides have 
been evidenced to favor anti-adhesive action in the gas-
tric environment reducing > 90% H. pylori load observed 
in BALB/c mice models [251]. These algal polysaccha-
rides  have not been shown to impede in  vitro bacterial 
growth, but they can prevent H. pylori infection/reinfec-
tion due to their anti-adhesive characteristics, making 
them a safe and cost-effective option [252]. In silico anal-
ysis of algal peptide interaction with H. pylori suggested 
peptides from green microalgae Tetradesmus sp. have 
been found active inhibitors against three virulent factors 
(Cag A, VacA, and Htr A) of H. pylori [253]. Additional 
probiotic therapy utilizing the carrageenan-encapsulated 
Lactobacillus fermentum UCO-979C strain has demon-
strated anti-H. pylori efficacy under fasting conditions 
(pH 3.0) [248]. Although about 2% to 3% of people 
develop gastric cancer, this is primarily owing to the 
infection’s persistence. Biofilm development, in addition 
to mutation, enhances bacterial antibiotic resistance. 
Considering algae’s powerful predator defense 

mechanisms, bioactive substances identified in them are 
among the most promising sources. Algal extracts have 
also been shown to degrade the biofilm polymer matrix, 
resulting in an anti-film effect that, when coupled with 
antibiotics, prevents bacterial colonization  from pro-
gressing and developing into gastric cancer [254]. In 
addition to genetic and environmental factors, modifica-
tions to the stomach adaptive system result in endoplas-
mic reticulum (ER)  stress, which activates the unfolded 
protein response and causes precancerous lesions to 
form at the precancerous stage [255]. Because pro-apop-
totic proteins (Bim and Bax) are present while VacA 
interference is present, ER stress causes CHOP transcrip-
tion, which speeds up apoptosis. Activation of NF-κB, on 
the other hand, inhibits apoptosis via A20 deubiquitiny-
lase activity, resulting in infection-mediated GC that per-
sists [249, 256]. Furthermore, the increase in 
autophagosomes as a result of autophagy activation/inhi-
bition enhances invasion and metastasis by causing ROS-
mediated oxidative stress in the early stages of cancer. 
The autophagy generated by VacA exposure has been 
shown to be contradictory; nevertheless, autophagy 

Fig. 4 Different algal growth and extraction methodologies for bioactive components, as well as their potential applicability to various cancers and 
cell lines
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inhibition via the CagA protein, which is involved in the 
c-Met-PI3K/Akt-mTOR signaling pathway, was identified 
as a confirmation of GC development [257]. Bromophe-
nol and its derivatives (BOS-93 and BOS-102) from 
marine algae have been shown to inhibit and downregu-
late the PI3K/Akt/mTOR and MAPK signaling pathways, 
as well as Bcl-2, MMP, and Cyt-c expression, while upreg-
ulating ERK, Bax, Atg14, beclin-1, and phosphorylated 
p38 expression thereby stimulating apoptosis and pre-
venting carcinogenesis [258]. Inflammation has long 
been a key factor in the development of cancer. CagA 
protein and peptidoglycan, as well as activating TLRs, 
NF-κB, TNF-α, STAT-3, IL-1β, IL-2, IL-4, IL-8, IL-10, 
IL-12, TNF, IFN, epidermal growth factor response 
(EFGR), and COX-2/prostaglandin E2 (PGE2) pathways, 
cause gastric inflammation [44, 159, 249, 259]. Apart 
from TLR/MYD88 adapter signaling, COX-2 stimulation, 
as well as Wnt signaling activation and β-catenin accu-
mulation, promotes carcinogenesis. Furthermore, acti-
vating PI3K and MAPK signaling via PGE2 signaling 
causes the growth of CD33 + CD44 + cancer stem cells 
[159]. Astaxanthin and fucoxanthin from various micro-
algae and macroalgae have been found to inhibit tumor/
cancer progression in  vitro experiments by regulating 
and preventing cell cycle arrest, p27 expression, ERKs 
expression, NF-κB expression, MMP-2/9 expression, and 
apoptosis induction [247]. Moreover, the ability of human 
carcinoma MKN45 gastric cells to invade was shown to 
be inhibited by a new polysaccharide derived from brown 
algae (Sargassum sp.). In cancer cells, this polysaccharide 
caused JNK phosphorylation, p53, Caspase-3 and 9, and 
ROS, halting the cell cycle (G2/M phase) and triggering 
apoptosis through the ROS/JNK signaling pathway [260]. 
This polysaccharide, on the other hand, had no effect on 
migration and no effect on p38 MAPK signaling or 
downstream MMP-9/2 [261]. Moreover, porphyran from 
Porphyra sp. has anticancer characteristics that inhibit 
in  vitro adenocarcinoma cell lines (AGS) by triggering 
apoptosis via the mitochondrial pathway [262]. Apart 
from dislodging  H. pylori from human AGS cells, 
fucoidan fraction (Fucus B) has been shown to cause 
dose-dependent cytotoxicity in AGS cancer cells, which 
was verified using a lactate dehydrogenase assay. Addi-
tionally, 6 gms of fucoidan taken regularly seems to be 
non-toxic and has the potential for use in treating H. 
pylori infection and GC formation [263]. Inflammation-
mediated GC is accelerated by other inflammatory 
cytokines (CXCL1, CXCL2, CXCL5, CCL3, CCL4, and 
TLR2) under COX2/PGE2 signaling [264]. At 100 mg/kg/
day, a carotenoid-rich acetone extract of Chlorococcum 
sp. decreased inflammation, lowered IFN-γ and IL-4 lev-
els in splenocytes, and lowered bacterial density in 
infected BALB/c mice [265]. Furthermore, brown algae 

sulfated polysaccharides (fucoidan) have been shown to 
decrease the expression of IL-1β, IL-6, iNOS, PGE2, NO, 
and TNF-α. In addition, the anti-inflammatory fucoidan 
has suppressed complement-related inflammation in the 
stomach wall [254]. As indicated before, it has been dem-
onstrated that phycobiliproteins from cyanobacteria 
reduce the production of pro-inflammatory cytokines 
including NO and COX-2 [266]. Furthermore, oxidative 
stress caused by H. pylori in the gastric cells contributes 
to GC. In addition to CagA’s fatal impact, pro-oxidant 
activities like host spermine oxidase, NADPH oxidase, or 
mitochondria-mediated ROS production reduce antioxi-
dant or glutathione activity in H. pylori-infected patients. 
Furthermore, nitric oxide (NO) produced in mac-
rophages, gastric cells, and lymphocytes causes DNA 
adducts and nitrotyrosine, instigating DNA and protein 
damage [249]. It has been demonstrated that the antioxi-
dant properties of polysaccharides, carotenoids, lipids, 
peptides, and pigments of micro- and macroalgae can 
repair ROS-induced damage in cancer cells, as previously 
mentioned in this review. Consumption of antioxidant or 
selenium supplements at the same time not only replen-
ishes SOD, catalase, and glutathione levels but also regu-
lates positive gene expression on intracellular and 
intercellular signaling, preventing deadly damage in  GC 
[267]. Nonetheless, using algae in combination with con-
ventional antibiotics to treat antimicrobial-resistant H. 
pylori infection and prevent GC may be beneficial. 
Because these bacteria have developed resistance and 
there is no cure or prophylactic available, more progress 
in developing vaccines using biomedical approaches is 
required.

Biomedical approaches
The development of biomaterials has become one of the 
foremost significant fields of research in contemporary 
science, with tremendous promise for biological appli-
cations [268]. Furthermore, due to their non-toxic, bio-
degradable, and biocompatible properties, the biological 
exploration of natural materials has risen [152]. Despite 
the fact that various biomaterials have been employed 
as biological agents to combat drug resistance. Algae, 
a ubiquitous photosynthetic organism, has long been 
regarded as interesting naturally active biomaterials with 
a range of applications including drug administration, 
bioengineering, wound repair, bioanalysis, and hypoxia-
mediated tumor therapy [268]. Microalgae have demon-
strated strong targeted drug delivery capabilities in both 
in vitro and in vivo investigations, with an emphasis on 
anticancer effects, by loading drug molecules through 
their active surfaces. Microalgae (Spirulina platensis)-
based oral medication delivery systems containing (SP@
Curcumin) have been shown to be easily trapped and 
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adhered to intestinal villi and wall, in contrast to con-
ventional oral drug delivery problems. In colon can-
cer and colitis, the SP@Curcumin has been studied for 
its ability to operate as a radioprotector by scavenging 
ROS generated by healthy tissues after X-ray exposure, 
as well as lowering pro-inflammatory cytokine produc-
tion and increasing drug bioavailability [269]. Addition-
ally, it has been demonstrated that C. reinhardtii that 
has been engineered to contain chitosan-coated iron 
oxide nanoparticles (CSIONPs) coupled to the chemo-
therapeutic medication doxorubicin (DOX) enhances 
the drug uptake in SK-BR3 cancer cells [270]. Simulta-
neously, the development of Spirulina sp. as a biotem-
plate-based magnetic microrobot ((Pd@Au)/Fe3O4@
Sp.-DOX) exhibited excellent synergistic chemo-pho-
tothermal therapeutics for both 769P and EC109 can-
cer cells [271]. When combined with cell-targeting 
antibodies and chemotherapeutic chemical molecules 
(camptothecin and 7-ethyl-10-hydroxy-camptothecin), 
genetically modified biosilica frustules from the altered 
diatom Thalassiosira pseudonana specifically targeted 
and killed in  vivo neuroblastoma cells in mice models 
(SH-SY5Y) [272]. Furthermore, it has been demonstrated 
that lung-targeted administration of positively charged 
DOX molecules using negatively charged S. platen-
sis kills 4T1 and CT26 tumor  cells [273]. Furthermore, 
tumor hypoxia is caused by unregulated cell proliferation, 
altered metabolism, and aberrant tumor blood cells, all 
of which result in inadequate oxygen and nutrient trans-
fer. Hypoxia causes cell cycle arrest, suppresses apopto-
sis and cell death, modifies the activity of the p53 gene 
and the mitochondria, expresses the drug efflux pump 
(P-gp), and reduces oxygenation in the case of chemo-
therapy cytotoxicity [274]. Since the ROS generated by 
photodynamic treatment (PDT) and radiation therapy 
(RT) are converted from oxygen, these two therapeutic 
modalities rely largely on oxygen. Living algae are there-
fore anticipated to boost cellular oxygen levels  through 
photosynthesis, acting as a source for the production of 
ROS and thereby boosting the impact of PDT/RT [268]. 
Spirulina sp. and Chlorella sp. are microalgae that help to 
reduce tumor hypoxia by acting as oxygenators in in vivo 
tumor synergistic therapies (PDT, RT, or PDT/RT) [269]. 
A cancer-targeted theranostic approach involving bio-
hybrid microswimmers based on engineered S. platensis 
has been shown to increase oxygen generation in a 4T1 
bearing mouse model, as well as innate chlorophyll and 
magnetic resonance derived fluorescence and photoa-
coustic imaging for monitoring effective tumor therapy 
procedures and modifying tumor microenvironment 
hypoxia [275]. Additionally, an autotrophic light-trig-
gered green affording oxygen engine (ALGAE) made of 
calcium alginate and C. pyrenoidosa was implanted into 

4T1 tumor-bearing mouse tumors. This engine was trig-
gered three times to induce hypoxia-resistant PDT and 
successfully limit tumor growth and metastasis [269]. 
Mice with 4T1 tumors were given an intravenous injec-
tion of a modified C. vulgaris-based biohybrid Algae@
SiO2 system, which inhibited tumor  growth. Moreover, 
ROS generated from Algae@SiO2-derived chlorophyll 
induces cytotoxicity to cancer cells throughout the pho-
todynamic therapy [276]. In addition, in breast tumors 
(4T1) and ovarian tumors (SKOV3) mice models, the 
red  blood cell membrane (RBCM)  was included in  the 
surface modification of C. vulgaris dramatically lower-
ing tumor development, hypoxia-dependent radioresist-
ance, angiogenesis, and proliferation, triggering death. 
Downregulation of HIF1 and VEGF, as well as a decrease 
in Ki67 and CD31 expression, raises cleaved caspase-3, 
which aids in apoptosis induction and could lead to the 
development of algae-mediated hypoxia-related tumor 
therapy in the future [277].

Macroalgae-derived bioactive compounds have a 
vast array of biomedical applications. Among them, 
the priority focus is on polysaccharides due to their 
maximum content in green, brown, and red algae 
[10]. They are considered advantageous therapeuti-
cally as they are biocompatible, non-toxic, biologi-
cally tunable, and biodegradable [152]. The presence 
of biologically active metabolites in seaweeds has 
gained attention as food supplements in East Asia for 
centuries. Polysaccharides from macroalgae act as 
dietary fibers stimulating the production and thick-
ness of intestinal mucus, thus protecting against car-
cinogenic compounds. Consumption of recommended 
intake of seaweeds can prevent colon, rectal, stom-
ach, and breast cancer [2, 278–280]. Dietary intake of 
Laminaria sp., Saccharina sp., Undaria pinnatifida, 
and Porphyra/Pyropia sp. are all known to reduce the 
risk of breast cancer [278, 281]. Through the activa-
tion of NK cells, macrophages, and T cells, seaweeds 
have immunomodulating properties that enable them 
to recognize  cancer antigens and harm target cells 
while also enhancing the immune system to prevent 
the growth of cancer [2]. Laminaria digitata-derived 
Laminarin stimulated the maturation of dendritic 
cells and production of  Tc cells, IFN-γ, and TNF-α at 
a concentration of 25 mg/kg to inhibit B16-ovalbumin 
melanoma tumor growth and metastasis in a mouse 
model [282]. According to research by Sun et al. [283], 
fucoidan from Fucus vesiculosus suppressed MHCC-
97H (human hepatoma cell line) motility by down-
regulating CCL22 in M2 macrophages, hence reducing 
NF-B-dependent transcription. Specifically, the sea-
weed polysaccharides being hydrophilic are suitable to 
act as drug delivery agents for hydrophobic anticancer 
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drugs. Nevertheless, these polysaccharides have the 
ability to reduce the side effects of drugs, prevent the 
dispersion of chemotherapeutic agents throughout 
the body as well as optimize the release of anticancer 
compounds [284]. Oligocarrageenan obtained from 
the K. alvarezii κ-carrageenan was modified with 
polycaprolactone (PCL) chains to form PCL-grafted 
oligocarrageenan nano-micelles (187  nm) that encap-
sulated curcumin (hydrophobic drug). This enhanced 
the anti-inflammatory activity in TNF-triggered 
inflammatory trials [285]. Hydrophobic anticancer 
compound docetaxel is encapsulated with fucoidan-
poly(lactic-co-glycolic acid) nanocarrier (FPN-DTX) 
[284]. According to Kahya et  al. [286], the controlled 
release of methotrexate is achieved by crosslinking 
sodium alginate (NaAlg)/sodium carboxymethyl cel-
lulose (NaCMC) composite hydrogel beads with a 
barium chloride solution. A superabsorbent hydro-
gel was prepared using carboxymethylagarose (CMA) 
and polyacrylamide (PAm) while extracting agarose 
from Gracilaria dura and forming CMA-Ag-PAm. The 
hydrogel showed extensive pH-responsive behavior 
causing an enhanced release of DOX with a decline in 
pH from 7.4 to 5.0. This DOX-loaded hydrogel attrib-
utes to cytotoxicity against A549 and Hep-G2 cell lines 
[287]. Nanoparticles derived from macroalgae show 
a wide spectrum of anticancer properties. In order 
to create biocompatible silver nanoparticles with an 
 IC50 value of 95.35 g/ml against Ehlrich Ascites Carci-
noma cell lines, the aqueous extract of Enteromorpha 
compressa is used [205]. Fabrication of methyl gallate 
encapsulated zeolitic imidazole framework (MG@
ZIF-L) prepared from the extracts of Gracilaria debilis 
showed good biocompatibility, high loading capacity, 
and rapid release of drugs in the tumor microenviron-
ment. The nanocomposite is cytotoxic to A549 (lung 
cancer cell line) because of enhanced ROS genera-
tion, which causes mitochondrial damage and encour-
ages apoptosis. The cytotoxicity of MG@ZIF-L was 
tested in an in  vivo zebrafish embryo model system 
and found to be non-toxic [288]. The harmful effects 
of radiotherapy/chemotherapy can be overcome by 
using protective agents that are derived from macroal-
gae. In this area, the most exploited compound of sea-
weeds is phlorotannins. Phlorotannins extracted from 
Ecklonia cava include phloroglucinol, dieckol, eckol, 
and triphlorethol A that show radioprotection activity 
against radiation-induced damage and oxidative stress 
through inhibition of apoptosis [289–291]. Similarly, 
methanolic extracts of Polyopes lancifolia have been 
found to contain higher amounts of SOD and catalase 
(cytoprotective enzymes) that demonstrate radiopro-
tective activity via antioxidant processes [292].

Conclusions
The abundance of bioactive components found in algae 
has aroused the interest of many experts, who have pro-
posed potential applications in the industrial and medi-
cal sectors. Over the past few decades, numerous in vitro 
and in  vivo investigations have demonstrated that algae 
offer a wide range of applications in cancer therapy. By 
activating either the caspase-dependent or caspase-
independent apoptosis pathway, which is followed by the 
upregulation of various tumor suppressor factors and the 
downregulation of particular cancer genes, markers, and 
signaling  pathways, it has been shown that these algal-
derived components are effective at inducing cytotoxic-
ity and cellular death. Furthermore, these ingredients’ 
anti-adhesive, immunostimulating, and anti-inflamma-
tory properties boost the effectiveness of the anticancer 
potential that has been shown to be effective in the treat-
ment of H. pylori-infected stomach cancer. Algal metab-
olites therefore can be used to protect humans from 
various cancers, in addition to their biomedical applica-
tions, which are still being studied. Furthermore, based 
on their molecular weight and viscosity, algal metabo-
lites have been used in a number of other nutraceuticals, 
proving their plasticity. In the realm of innovative drug 
development, which replaces manufactured pharmaceu-
ticals, various preclinical investigations using these bio-
active components have also been carried out recently. 
Microalgae have, however, been used much less fre-
quently as anticancer drugs than macroalgal metabolites. 
Advanced extraction procedures, as well as ideal growth 
factors and genetic engineering, must be considered for 
improved metabolite production. Nonetheless, to solve 
the conundrum, thorough clinical trials and standard 
dosage recommendations must be devised, allowing the 
potentiality of these bioactive components to be assessed.
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