
Vani et al. 
Future Journal of Pharmaceutical Sciences            (2023) 9:50  
https://doi.org/10.1186/s43094-023-00499-9

REVIEW Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Future Journal of
Pharmaceutical Sciences

A narrative review on bacterial biofilm: 
its formation, clinical aspects and inhibition 
strategies
S. Vani1, Kayeen Vadakkan2 and Bince Mani1*   

Abstract 

Background The predominant mode of life of most of the bacteria is their biofilm state. Based on the type of bacte-
ria existing within the biofilm, it might be beneficial or harmful. Its beneficial aspects have been exploited mostly in 
waste management strategies. These biofilms affected the food industry, dairy industry and oil industry, causing huge 
losses by food spoilage, reduced heat transfer efficiencies and corrosion caused by biofilms in pipelines. They were 
considered a crucial risk to human well-being. Biofilms were responsible for more than 75% of the clinical infections 
caused in humans.

The main body of the abstract Biofilms are multimicrobial complex structures that are resistant to antibiotics and 
stressful environments. The biofilm stage may provide various advantages to the bacteria during bacterial infections 
in human beings. The extracellular polymeric substances hold the bacterial community colonized in the biofilm. The 
bacteria within the biofilm are more resistant to antibiotics, whereas the planktonic bacteria are susceptible to them. 
Quorum sensing regulated biofilm formation, which can be manipulated to eradicate devastating effects caused by 
biofilms. The occurrence of biofilm on the clinical devices leads to the malfunction of the implants and complicates 
the patients’ health conditions. Biofilms also cause non-device-associated health problems. The major anti-biofilm 
strategies are the utilization of enzymatic activity and hindrance of quorum sensing. The auto-inducers, which play a 
major role in quorum sensing, are mimicked by inhibitors. This prevents the binding of auto-inducers to the receptors, 
eventually leading to blockage of biofilm formation.

Short conclusion The significant background knowledge regarding the biofilm, its formation, clinical aspects and 
inhibition strategies has been highlighted in this review. This information dissipated anticipates new applications of 
plant compounds as an alternative to antibiotics, since they may act as anti-quorum sensing molecules. For instance, 
inhibitory compounds like Linalool and eugenol from the essential oil of different plants displayed antibiofilm activ-
ity against biofilms formed by Streptococcus pyogenes and Porphyromonas gingivalis, respectively. Further research is 
required to exploit the inhibitory properties of the various other bioactive compounds present in plant extract, and 
thereby, we can protect human beings from several device and non-device-related infections caused by biofilms such 
as catheter-related bloodstream infections, tuberculosis, cystic fibrosis, chronic obstructive pulmonary diseases, dental 
caries and periodontitis.
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Background
Biofilms are defined as a well-organized, multimicrobial 
three-dimensional community composed of a group of 
microorganisms encased within self-produced poly-
meric matrix, adhered to each other on biotic or abiotic 
surfaces. Initially, a small group of cells or a single cell 
divides and differentiates into a so-called complex struc-
ture [1]. The bacterial population within the biofilm can 
be homogenous or heterogeneous. Even though biofilms 
are frequently perceived as potentially harmful for the 
clinical and various other industrial domains, many bio-
films are beneficial, and there are numerous reports about 
the beneficial use of these biofilms [2]. Beneficial biofilms 
have a variety of uses in agricultural, medical, environ-
mental, food and other fields, including biofertilizer, 
antibacterial, antimicrobial agents, filtration, corrosion 
prevention, wastewater treatment biofouling, microbial 
fuel cells, bioremediation and food fermentation [2–4]. 
In cheese manufacturing, raw milk and Tina biofilm are 
the sources of the fermentative microflora which includes 
bacteria such as Lactobacillus lactis, Streptococcus ther-
mophiles, Enterococcus faecium and Lactobacillus del-
brueckii [5]. The primary bacteria that promote plant 
growth are Bacillus, Rhizobium, Acinetobacter, Entero-
bacter, Alcaligenes, Azospirillum, Burkholderia, Arthro-
bacter, Erwinia, Azotobacter, Flavobacterium, Serratia 
and Beijerinckia [6]. For a very long time, biofilms have 
been used successfully in the production of vinegar. Vin-
egar was produced on free-floating wood chips by Ace-
tobacter or Gluconobacter with a higher output, which 
promotes the proliferation of vinegar bacteria [7].

Bioremediation is a method of pollution control in 
which various contaminants are destroyed or changed 
into less harmful forms. In bioremediation, microorgan-
isms are used to break down environmental pollutants 
like plastic wastes, toxic heavy metals, synthetic dyes and 
other toxic compounds. Protection of the environment 
and human health depends on the bioremediation pro-
cess [8]. Synthetic wastewater containing 2,4-dichloro-
phenol was degraded by P. putida, supplemented to the 
biofilm reactor with activated microbial sludge culture 
[9]. Alkanes, pesticides, polyaromatic substances and 
hydrocarbons can be broken down by aerobic microor-
ganisms like Pseudomonas, Rhodococcus, Alcaligenes, 
Mycobacterium and Sphingomonas, and they use these 
pollutants to meet their needs for carbon sources and 
energy. In river sediments, anaerobic bacteria are used to 
break down polychlorinated biphenyls and dechlorinate 
the solvents trichloroethylene and chloroform [8]. The 
emergence and endurance of biofilms in the human body 
lead to the occurrence of above 75% of microbial infec-
tions, by the National Institutes of Health. Some bacte-
rial biofilms have both functional and defensive roles, 

such as the gut microbiota [10]. Homeostasis has been 
maintained by interactions between the beneficial bacte-
ria inside the intestine and the intestinal epithelium [11]. 
Dysbiosis is a state of imbalance in the microbiota, which 
is also related to various diseases [12].

Biofilms formed by bacteria play various roles in 
industries and are widely dispersed. In the dairy indus-
try, equipment impairment and food spoilage caused by 
biofilms lead to economic loss for the industry as well as 
cause major hygienic problems (Fig. 1) [13]. Heat trans-
fer efficiencies of the pipelines and heat exchangers can 
be reduced if a suitably thick layer of biofilms is formed; 
whereas corrosion in pipelines and tanks is caused by 
the biological and chemical reactions catalysed by the 
microbes present in the biofilms [14, 15]. Several bacte-
rial populations producing biofilms display resistance 
against antibiotics [16]. The structure of the biofilms 
has been modulated to enable the bacteria to survive 
in different stressful environments [17]. The survival of 
single-celled organisms in adverse conditions has been 
facilitated by “group behaviour”, which is due to the bio-
film that safeguards and promotes these organisms to 
lead a multicellular lifestyle [18]. On liquid surfaces, the 
biofilms are found to be seen as a floating mat and the 
biofilms are also found in submerged conditions [19]. 
Since the biofilms have diverse structural elements, both 
undifferentiated flat biofilms, as well as mushroom-like 
tall biofilms with distinct water channels, have been visu-
alized, according to the type of bacteria responsible for 
their formation [20, 21].

EPS are extracellular polymeric substances on which 
the bacterial communities are lodged. Polysaccharides 
are the main biomolecules present in EPS and it also 
consists of lipids, proteins and nucleic acids [23]. The 

Fig. 1 Scanning electronic microscopy image of stainless steel of 
3-day biofilms formed by Pseudomonas fluorescens. ©Carrascosa C 
et al. [22]
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bacterial community prevailing in the biofilm are held 
together by the scaffold formed by lipids, lipopolysac-
charides and glycopeptides, which are polymers. The 
formation and stabilization of biofilms require cell-to-
surface interactions and also interactions between the 
cells. This is mediated by bacterial polysaccharides [24]. 
It was discovered that viscoelastic behaviour, which 
helps to resist mechanical stress, is displayed by the 
biofilms and it was also revealed that they are hydrogels 
[25]. The water and nutrients are trapped in the matrix 
of EPS, which is used by the bacteria for its existence. 
Inside the matrix of EPS, the water is efficiently cap-
tured by its hydrogen bonding with the hydrophilic 
polysaccharides within the EPS [18]. Conceptual frame-
work of the functions of microbial extracellular poly-
meric substances (EPS) in soil is depicted in Fig. 2

Biofilms aid the bacteria to thrive in the environment 
by increasing their attachment to different surfaces; 
protecting them from desiccation, antibiotics, preda-
tion, immune attack and starvation. All these properties 
prevailing in the biofilms provide bacterial fitness to the 
concerned bacteria [27, 28]. Biofilm formation is regu-
lated by quorum sensing; in addition to this quorum 
sensing also regulates spore formation and the produc-
tion of secondary metabolites [29, 30]. Bacterial cell-
to-cell communication is synchronously called quorum 
sensing, in which they communicate through auto-
inducers (signalling molecules) in a density-dependent 

manner; it aids the coordination of the bacterial colony 
to exist as a sole component [31–33].

Main text
Types of biofilms
Based on the type of bacteria present in the biofilm, they 
are two types: Gram-positive biofilm and Gram-nega-
tive biofilm. On the cell walls of Gram-positive bacteria, 
teichoic acid (TA) is found, whereas in Gram-negative 
bacteria there is the presence of lipopolysaccharides 
(LPS). These components supply charges to the bacte-
rial outer surface, which may also be responsible for the 
adherence to the surfaces and also in biofilm formation 
[34, 35]. The adhesion of the Gram-negative bacteria to 
the surface and their progression to biofilm formation is 
determined by the length of LPS and its dissimilarity in 
various parts of the bacteria [35]. Colonization of bac-
teria is influenced by teichoic acid in the case of Gram-
positive bacteria and the case of Gram-negative bacteria, 
it is lipopolysaccharide that plays the role [36]. Cell wall 
teichoic acid present in Staphylococcus aureus plays a 
role in bacterial colonization on natural surfaces like 
nasal tissues and also on heart valve prostheses or cath-
eters, which are artificial surfaces [34].

Cell wall surfaces appear to be a notable and precise 
target for anti-biofilm approaches since the surface of 
the cell wall governs the surface properties of two types 
of bacteria [37]. Both the Gram-type bacteria have fla-
gella that helped them to move and are attached to the 

Fig. 2 Conceptual framework of the functions of microbial extracellular polymeric substances (EPS) in soil. ©Costa OYA et al. [26]
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surface through polysaccharide secretion [38]. The 
Gram-positive flagellated bacteria (Bacillus subtilis) show 
attachment to surfaces through the exopolysaccharide 
formation, and its flagellar expressions are downregu-
lated [39, 40], whereas its non-flagellated type (S. aureus) 
show Brownian motion since it has no organ for motility 
to reach the target surfaces [37]. The chemical nature of 
the quorum-sensing molecules varies by the production 
of AIP (autoinducing peptides) in Gram-positive bacteria 
and AHL (acyl-homoserine lactones) in Gram-negative 
bacteria [33]. Autoinducers-2 (AI-2) are non-species-
specific and affect both Gram-positive and Gram-nega-
tive bacteria [41].

Mechanism of biofilm formation
There are four prominent phases in the sequential pro-
cess of biofilm formation: (i) migration of cells and its 
adherence to the surface, (ii) micro-colony formation 
and EPS (extracellular polymeric substance) exudation 
from cells; irreversible attachment resulting in cell pro-
liferation and formation of matrix, (iii) maturation stage, 
(iv) cell detachment [42]. The different stages of biofilms 
are represented in Fig. 3. Each of these steps is described 
below.

Migration and adherence
In S. aureus, the initiation of biofilm happens when 
the floating cells are adhered to by the hydrophilic or 
hydrophobic interaction between the available surface 
and cell surface [43, 44]. The interaction of bacteria 
on the surface is strengthened by bacterial append-
ages like flagella, pili and fimbriae. This strengthening 
is due to the hydrophobic force on the surface, which 
causes the reduction of the repulsive force between the 
bacterial cell surface and the living or non-living sur-
face [45]. Other than these forces, certain proteins also 
play a major role in mediating the binding between 
them. Heilmann and co-workers [46] first described 
such specific proteins, autolysins, which possess dual 
roles: adhesive and enzymatic function [47]. To bind 
to biotic surfaces, the cells produce certain CWA (Cell 
Wall-anchored) proteins. Among these MSCRAMMs 
(Microbial surface components recognizing adhesive 
matrix molecules) are the well-distinguished group 
[48]. A small amount of exopolymeric material is pro-
duced in the initial stage and the bacterial cells are 
encased in it [1].

Fig. 3 Mechanism of biofilm formation
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Micro‑colony formation and EPS
The bacteria attached to the surface proliferate and form 
micro-colonies. Different types of micro-communities 
are present in a biofilm. Metabolic product distribution, 
exchange of substrates and excretion are facilitated by 
coordination among the micro-colonies [49]. Constitu-
ents present in a bacterial matrix vary depending on the 
environmental conditions, different bacterial species and 
their strain types [50, 51]. The extracellular polymeric 
substance released by the cells contains polysaccha-
rides, nucleic acids (eDNA), lipids and proteins [52]. This 
complex mixture is not only involved in structural sup-
port but also has a role in fetching nutrients and provid-
ing protection against antimicrobial agents and immune 
responses [53].

Maturation stage
Due to a change in microbial cell density, certain sig-
nalling molecules called auto-inducers are produced by 
these microbial cells. These auto-inducers play a vital role 
in quorum sensing (QS), the bacterial cell’s capability to 
sense the cell density through cell-to-cell communication. 
When a minimum threshold is attained, these signalling 
molecules induce alteration of gene expression [54]. The 
binding of the auto-inducer to the receptor causes the 
target genes to either be activated or repressed. Owing to 
this modification of the quorum sensing, the whole bac-
terial community in the biofilm benefits by exhibiting a 
combined response. This unified nature of the response 
is obtained by maintaining an ideal size of biofilm and 
synchronizing virulence phenotypes [55]. The integrated 
response of the bacteria enables it to act similarly to a 
multicellular organism, so it has the adaptation to live in 
a changing environment. In addition to managing bac-
terial population density, QS also assists the transfer of 
beneficial mutations among the colony, which provides 
tolerance to antibiotics and improves nutrient accessibil-
ity [56]. During the maturation stage, due to the action of 
auto-inducers, aggregation occurs between the bacterial 
cells by the secretion of EPS. A three-dimensional archi-
tecture is obtained by the biofilm and EPS is a prominent 
material responsible for this community. Voids are pro-
duced interstitially in the matrix and these structures act 
as channels which contain water. Nutrients are distrib-
uted and waste products are removed from the micro-
colonies through this channel that also functions as a 
circulatory system [57].

Cell detachment
After completing the maturation, the cells in the bio-
film produce certain chemicals and EPS lysing enzymes 
that degrade the matrix and help in the dispersion of 

the biofilm [18]. For this process of detachment, the cell 
communities within the biofilm use different degrading 
enzymes, for example, alginate lyase produced by Pseu-
domonas aeruginosa and P. fluorescens, hyaluronidase 
by Streptococcus equi and N-acetyl-heparosan lyase by 
Escherichia coli [58, 59]. Bacterial movement requires fla-
gella. Therefore, protein expression of genes for flagella 
formation is upregulated and this allows the free locomo-
tion of the organism, so that sessile cells are converted to 
free-floating motile cells [60, 61]. Finally, they can either 
form a new biofilm in a new area or they can get attached 
to the same region and recolonize [62].

Molecular mechanism
The decision of bacteria to either live as a planktonic 
form or to produce matrix and form biofilm is regu-
lated by c-di-GMP signalling [63, 64]. The lower cellular 
level of c-di-GMP results in down regulation of matrix 
constituent production, which leads to the detachment 
of bacteria from the surface. Higher levels of c-di-GMP 
promotes matrix component production and induces 
biofilm formation [65, 66]. In some Gram-positive bac-
teria and in all Gram-negative bacteria, the major regula-
tor of biofilm formation is c-di-GMP [64]. The bacteria 
produces certain enzymes such as DGCs (Diguanylate 
cyclase enzymes) and specific PDEs (Phosphodiesterase 
enzymes) which regulates the specificity of this signal-
ling process with its physical interactions with c-di-GMP 
effectors. In bacteria, DGCs contributes to c-di-GMP 
formation while PDEs aids the degradation of c-di-GMP 
[67]. In accordance to the environmental conditions, bac-
teria can live in any of the two forms (sessile or plank-
tonic) by regulation mediated through the enzyme’s 
regulatory domains in addition to its catalytic domains 
[68]. Both these enzymes, DGCs and PDEs have Gly-
Gly-Asp-Glu-Phe (GGDEF) and Glu-Ala-Leu (EAL) 
/ His-Asp-Gly-Tyr-Pro (HD-GYP) catalytic domains, 
respectively, which remains conserved [64]. Quorum 
sensing systems of Gram-negative bacteria use AHL 
(Acyl homoserine lactone) signal molecules produced 
by one or more AHL synthases. These signalling mol-
ecules can travel through the bacterial membranes and 
when they reach a threshold level of concentration, trig-
ger one or more transcriptional factors and induce tran-
scription of selective target genes. The correlation of 
signal molecule concentration to the bacterial popula-
tion density enables the control of gene expression in a 
density-dependent manner [68, 69]. Quinolones are also 
employed as signalling molecules in both Gram-positive 
and Gram-negative bacteria. Luxl and LuxR homologue 
genes synthesizes HSL (Homoserine lactones), an auto-
inducer which is also produced by Gram-negative bac-
teria. A transcriptional activator that senses the HSL is 
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Fig. 4 Quorum sensing modulators
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encoded by these homologous genes [70]. Some of the 
quorum sensing modulators are represented in Fig. 4.

Clinical aspects
Although there have been advancements in the clini-
cal field, biofilm infections caused by bacteria are still 
considered to be a major threat to human health. Lam, 
Hoiby and his teammates initially pointed out the fact 
that the recurrent infections are correlated with the bio-
film formation, principally by Pseudomonas aeruginosa 
in cystic fibrosis patients [71, 72]. As time passed, the 
major source or cause for the tissue associated infections 
are accepted to be biofilms [73]. Even though there is a 
possibility of biofilm infections in humans due to hospital 
environment or previous existence, most of these tissue 
related biofilm illness have been developed in patients as 
a consequence of impaired immune system and chronic 
ailments like cancer, diabetes, cardiovascular disease, 
breakage of skin barrier [74]. The medical devices, most 
commonly pacemakers, peripheral vascular catheter 
that are used in the human body provides a surface for 
the bacteria to attach and form biofilms which eventually 
leads to infections; more over urinary infections, central 
line bloodstream infections, pacemaker infections, venti-
lator pneumonia are the other common device associated 
infections caused by biofilms [75, 76].

Even though the microbial antigens trigger the anti-
body production, there is no effective killing of bacte-
ria present in the biofilm; the immune response by the 
antibody may also damage the tissues in its vicinity [77]. 
Antibiotic treatment do not affect the biofilm; it only 
affects the planktonic cells released from the biofilms 
[75]. Removal of the biofilm from the living tissue and 
the removal of the biofilm affected implants are the main 
ways to eradicate or avoid periodic infections [78]. Bio-
films are responsible for various clinical infections such 
as dental caries, otitis media, periodontitis and osteo-
myelitis [60] and pulmonary infections seen in cystic 
fibrosis patients. Biofilms also causes health care associ-
ated infections, majorly including bacteremia, lower res-
piratory tract, surgical site and urinary tract infections 
which are developed due to pathogens that are opportun-
istic that mainly occur when a medical device has been 
inserted [10]. Catheters are much needed for the admin-
istration of drugs, blood products, nutrition and flu-
ids into the veins; to filter the waste and water from the 
blood by haemodialysis; and to track the flow of blood 
within the organs and tissues of the body. The use of 
catheters paves way to a major health concern as it allows 
the growth of microbes on their surfaces, which even-
tually leads to infections causing serious health-related 
problems collectively named as CRBSIs (Catheter-related 
bloodstream infections). These infections were roughly 

calculated to amount to a total of 250,000 occurrences 
each year in the USA that are ruinous, involving a signifi-
cant rate of disease and death in a population, in addition 
to an increase in health maintenance costs [79, 80].

The bacteria and microbes colonizing inside the cath-
eter has the ability to avoid the host’s immune system and 
also the effect of antibiotics. Finally, the bacteria enters 
the blood stream by separating themselves from the bio-
film, thus leading to metastatic infections and CRBSIs. 
Several measures are taken to reduce the rate of CRBSIs; 
among them, a major preventive measure is the devel-
opment of locked catheter lumens using solutions with 
antimicrobial properties and using antimicrobial agent-
coated catheter surfaces [10]. Biofilms also have its exist-
ence on tumour cells say in colorectal cancer. They may 
also be considered as the secondary cause for the tumour 
formation, since the initiation of tumour itself is due to 
the impairment of the mucus barrier [81] that may pro-
vide the conditions for the formation of biofilm. The tis-
sue structure in the confined region is damaged because 
of the local immune response that occurs due to the pres-
ence of tumours. So the bacteria can effortlessly acquire 
its niche. Mucus production in tumour cells increases 
when there is a coordinated action between the bacte-
rial biofilm and inflammation. Thus, the mucus released 
by these cells serves as a constituent for the formation of 
potent biofilms [82].

Bacterial biofilm infections involve both device-associ-
ated and non-device-associated infections. For example, 
pacemakers, mechanical heart valves, urinary catheters, 
peritoneal dialysis catheters, voice prostheses, central 
venous catheters, prosthetic joints and contact lenses are 
the examples of major medical devices placed inside the 
body that formed biofilms on the surface or inside the 
device [83]. There are two types of contact lenses: soft 
and hard, on which microbes can attach. Staphylococ-
cus aureus, S. epidermidis, E. coli, P. aeruginosa, species 
of Serratia, Candida and Proteus, etc., are the microor-
ganisms that adhere to the contact lenses. According to 
the nature of the substrate, water content, bacterial type, 
electrolyte concentration and polymer composition, the 
strength of adherence varies. The most frequent reason 
for lens contamination is biofilm formation in the con-
tact lens store cases [84]. In consonance with the nature 
of the fluid delivered by means of a central venous cath-
eter, the multiplication of microbes may be influenced; 
for instance, the effect varies in both types of bacteria; 
growth in the fluids are sustainable in some Gram-neg-
ative aquatic species like P. aeruginosa, Klebsiella spe-
cies and Enterobacter species, whereas in some cases 
microbes do not show proper growth in intravenous flu-
ids; these include Gram positive bacteria, like S. aureus 
and S. epidermidis [85, 86].
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Bacteria such as S. epidermidis, S. aureus, Streptococcus 
species, Gram-negative Bacillus, Candida and Enterococ-
cus species are attached to the mechanical heart valves 
and the tissues present in the surroundings and devel-
ops biofilm on them. This uncomfortable state is known 
as prosthetic valve endocarditis [87]. Pseudomonas aer-
uginosa, Klebsiella pneumoniae, E. coli, S. epidermidis, 
E. faecalis, Proteus mirabilis and other Gram-negative 
bacteria generally establish biofilms on urinary catheters 
[88]. This severely affects the health of the public and 
also affects instrumental and surgical procedures. Non-
device-associated diseases produced by biofilms com-
prise persistent respiratory infections found in patients 
with cystic fibrosis, tuberculosis, chronic obstructive pul-
monary diseases, chronic sinusitis, chronic wound infec-
tions, endocarditis, dental caries, chronic otitis media, 
biliary tract infections, osteomyelitis, bacterial prostati-
tis and periodontitis. Bacteria within the biofilm gained 
antibiotic resistance when there is only minimal regular 
exposure of antibiotics to the soft tissues inside the lungs 
or intestine. This minimal exposure may also affect the 
phenotypic and genetic variability in biofilm, bacterial 
physiology and also the potential of antibiotics to act as 
signalling molecules [89].

Non-device-associated infections also cause health 
issues. These infections occur in the oral gums, damage 
the bone where the teeth are held and in addition, affect 
the soft tissues. Poor oral hygiene causes such dam-
age and tooth loss may also occur [90]. This infection 
is known as periodontitis in which the causative organ-
isms are Porphyromonas gingivalis and Fusobacterium 
nucleatum, which can form biofilms in the oral cavity on 
the mucosal surfaces [91]. The entry of the bacteria into 
the bloodstream sometimes helps the bacteria enter the 
bones and infect the metaphysis of the bone, leading to 
osteomyelitis. Then WBCs are recruited to the site and 
they secrete enzymes to lyse the pathogens and to phago-
cytose them. Sometimes, these lysing enzymes may cause 
damage or lysis to the bone, forming pus and circulate it 
through the bone blood vessels. This causes a block in the 
normal blood flow, leading to the damage of tissues and 
loss of function in the affected area [92, 93].

One of the most important biofilms in the human body 
is dental plaque. On the surface of the teeth, diverse 
microbial communities build up. These plaques are con-
tained in a polymeric matrix that is bacterial and salivary 
in origin [94]. The dental biofilms are primarily con-
stituted by organic and inorganic materials on which 
micro-organisms exist. Dental plaques contain about 20% 
carbohydrates by dry weight, of which 2–10% constitutes 
homopolymers of glucose (glucans). The enzyme gluco-
syltransferases, extracellularly converts sucrose into glu-
cans [95, 96]. Fructans (fructose polymers) are produced 

by fructosyltransferases from sucrose [97]. At the initial 
stage of plaque formation, Neisseria and Streptococci 
were the pioneer species. Most predominant among 
them were S. sanguis, S. oralis and S. mitis [94]. After the 
plaque was transformed into a mature community, the 
fraction of pioneer species steadily reduced while that of 
anaerobic bacteria including Fusobacterium, Veillonella, 
and Actinomyces grew. These anaerobic bacteria are 
established in the deeper layers of the plaque [98].

The bacteria inside the biofilms are in close proximity; 
therefore, the metabolic product (lactate) of the primary 
feeder (Streptococci) is utilized as a source of nutrition 
by the secondary feeder (Veillonella). This interaction 
can exert a controlling influence on the enamel dem-
ineralization by strong bacterial acids. Since lactate is 
converted to weak acids like acetic and propionic acids 
by Veillonella spp., caries causing ability of other plaque 
bacteria are reduced. Some oral bacteria produce inhibi-
tory factors that are antagonistic in nature, among them 
bacteriocins are the most common antagonistic com-
pound. Bacteriocins are bacterially derived antimicro-
bial peptides with high molecular weight. Examples of 
bacteriocins produced by oral streptococci are sanguicin 
produced by S. sanguis and mutacin by S. mutans. They 
are also produced by A. actinomycetemcomitans, black-
pigmented anaerobes and C. matruchotii. Despite the 
fact that bacteriocins typically have a narrow range of 
action, several of the streptococcal bacteriocins have a 
broad spectrum of activity and can inhibit organisms 
from a variety of gram-positive genera, including Actino-
myces spp. Similar to this, a bacteriocin from S. sanguis 
proved effective against both Gram-positive and Gram-
negative bacteria, including species of Capnocytophaga 
and Prevotella. [94].

There is also another category of biofilm disease which 
is biofilm-related device malfunctioning. When a medi-
cal device is implanted, there is inflammatory and wound 
healing responses in the body since the device incorpo-
rated is a foreign body. There are several steps in a for-
eign body reaction [99] in which the surface properties 
of the biomaterial play a significant role in modulating 
these reactions. These modulations happen for two to 
four weeks once the medical device is implanted; but the 
foreign body reactions persists in the tissues and bioma-
terial contact regions until the implanted device is pre-
sent inside the body [100]. The failure or malfunction of 
the clinical implant paves way to the appearance of mild 
symptoms like slight contracture or functional disability 
of soft tissue along with negative inflammatory markers 
and light pain [101, 102]. The malfunction of the biofilm 
associated medical device brings about disastrous clinical 
issues that includes physical damage and chemical deg-
radation of the pacemaker leads, biliary tube blockage, 
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malfunction of cerebrospinal fluid shunt, breast implant 
capsular contracture, crystalline encrustations on uri-
nary stents, prosthetic joint failure and intravascular 
catheter malfunction. Finally, all these conditions lead to 
increase in morbidity and mortality, removal of implants 
and added hospital charges. Colonization of C. tropicalis 
and C. albicans on the transdermal endoscopic gastron-
omy feeding tubes give rise to polyurethane degeneration 
[103].

Inhibition of biofilm
Plant extract possess antibiofilm activity against biofilms 
produced by different microorganisms. The rhizome 
extract of Hedychium larsenii contained a compound 
Linalool in its essential oil that exhibited potential anti-
biofilm activity against Streptococcus pyogenes [104]. 
Eugenol obtained from the essential oil of Syzygium 
aromaticum (L.) Merr. & L. M. Perry (clove) leaf, sup-
pressed the biofilm formation of an oral anaerobe Por-
phyromonas gingivalis [105]. The essential oil extracted 
from the leaves and flowers of Plumeria alba displayed 
good potential to inhibit the formation of Pseudomonas 
aeruginosa biofilms [106]. Most of the biofilm inhibi-
tors are isolated from natural sources; some synthetic 
compounds, enzymes and chelating agents also possess 
anti-biofilm activity. Usnic acid, a secondary metabolite 
produced from lichen; synthetic halogenated furanones, 
bacteriophage-encoded endolysin (PlyC) and enzymes 
like Deoxyribonuclease I, glycoside hydrolase (dispersin 
B) are examples of other biofilm inhibitors [107–110]. 
Certain promising methods are developed from the exist-
ing hindrance mechanism that prevented biofilm forma-
tion, other than the common antibiotic therapy [111]. 
The two main novel strategies against the biofilm are the 
blockage of quorum sensing and enzyme-mediated bio-
film inhibition.

By blockage of Quorum sensing
Quorum sensing (QS) has been considered as a signifi-
cant mechanism in the synthesis of biofilms; hence, its 
blockage is one of the major strategies to inhibit the 
biofilm. The QS inhibitors prevent the communication 
among the bacteria, and this makes the bacteria sensi-
tive to the antibiotic response and host immune system 
[112, 113]. Therefore, in order to control biofilm-associ-
ated infections, QS is considered as an effective target. 
Quorum quenching is the repression of QS sensing; in 
this mechanism, the communication signals are blocked 
by structural modification or by competitive inhibition, 
instead of degrading them [114, 115]. The antagonist of 
QS bound with signal molecules or with the receptor on 
which the signal molecules are usually bound; in either 
way, the receptor-signal molecule interaction has been 

disabled [116]. There are three main strategies used to 
block quorum sensing in Gram-negative bacteria: AHL 
biosynthesis blockage, AHL degradation or inactivation 
and signal receptor interference [117]. Various reac-
tions take place sequentially during the AHL biosynthe-
sis. To produce the homoserine lactone ring in the AHL, 
SAM (S-adenosyl methionine) is utilized. The acyl side 
chain in AHL is produced from an acyl carrier protein 
(ACP) precursor molecule that is charged sufficiently 
[118–120]. According to Zano et al. [121] and Masevicius 
and colleagues [122], for methylation processes, S-aden-
osyl-L-methionine (AdoMet) is produced by various 
Gram-negative bacteria as an initial methyl donor [117]. 
Two types of signal molecules involved in QS are synthe-
sized from AdoMet and hence inhibition of AdoMet can 
cause the prevention of biofilm formation as reported 
by Zano et  al. [121] [117]. S-adenosylhomocysteine and 
S-adenosylcysteine, analogous to SAM, are effective 
inhibitors that hindered the biosynthesis of AHL [118]. 
The AHL molecule biosynthesis of P. aeruginosa is shown 
to be inhibited by antibiotics like erythromycin and 
azithromycin when delivered at sub inhibitory concentra-
tions. This suppression restricts the virulence factor and 
inhibits the biofilm formation [123–125].

AHL degradation or inactivation is a promising tac-
tic to eliminate bacterial infections associated with bio-
films. By enzyme activity, the AHL molecules are also 
degraded, thus avoiding the accumulation of AHL. The 
homoserine lactone ring of AHL is exposed without any 
disturbances to the rest of the molecule, by breaking the 
leftward bond of the double bonded oxygen with AHL 
lactonases and the bond present on the rightward of the 
double bonded oxygen is broken by enzyme decarboxy-
lases. AiiA 240B1 produced by Bacillus spp. 24B1 is the 
first protein molecule identified to have the capability to 
hydrolyze the lactone ring of AHL molecule [126]. In the 
AHL molecule, the AHL acylase hydrolyzes the amide 
bond that is between the acyl side chain and homoserine 
lactone. This hydrolysis reaction in turn releases free fatty 
acid and homoserine lactone [127]. The carbon atoms in 
the acyl chain of this signal molecule are oxidized by uti-
lizing AHL oxidase [128]. AHL signal molecules has not 
been broken by AHL oxidoreductases but has undergone 
alteration by which the binding efficiency of the signal 
molecule with the receptor proteins was modified [129].

Another strategy to prevent quorum sensing is the 
interruption of receptor molecules by analogous com-
pounds. The physiological behaviours, mainly bio-
film activity, virulence and antibacterial tolerance, are 
reduced in a bacterial community when the signal rec-
ognition is not happening. This is achieved when there is 
an interference in the binding of the AHL signal molecule 
with the receptor protein. The interruption is caused due 
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to the binding of antagonist molecules with the recep-
tors, making the receptor unavailable to the signal mol-
ecule for binding. In Staphylococcus epidermidis, an 
efficient QS inhibitor, furanone has been identified as an 
analogue molecule that successfully inhibits biofilm for-
mation [130]. In some cases, the antimicrobial peptides 
also affect biofilm formation, besides the three strategies 
mentioned above. These peptides could hinder the QS 
system by either disturbing the transport of the signal 
molecules outside or within the cell, through which the 
cascade of signal transduction and the formation of bio-
films are affected. CRISPRi is a recent technology applied 
in the latest research to minimize biofilm formation in 
Escherichia coli by blocking lux gene expression at the 
time of QS signalling [131]. Targeting c-di-GMP signal-
ling systems is also considered as an efficient strategy to 
control biofilm [132].

By enzyme activity
Certain enzymes act as antibiofilm agents to remove the 
biofilm that had already formed. These include six main 
categories, such as oxidoreductases, transferases, syn-
thetases, ligases, lyases and hydrolases. The cells from 
the bacterial biofilm are released from it when its dis-
integration happens due to the activity of saccharolytic 
enzymes yielded by some bacteria [133]. The enzymes 
block adhesive production and EPS formation, thereby 
inhibiting biofilm formation [134]. In biofilm formation, 
starch is a vital chemical component [135]; therefore, 
biofilm removal results due to polysaccharide degrada-
tion [133]. Biofilms of various bacteria are disrupted by 
some enzymes like protease, glycosidases and DNase, 
which are produced by the bacteria itself. These enzymes 
degrade the matrix, and therefore, the biofilms are dis-
persed. DNase has an inhibitory action on biofilms 
formed by both types of bacteria [136].

At the initial stage of biofilm formation for the exist-
ence of biofilm in a long run and to provide intactness, 
the extracellular DNA (e-DNA) play a significant role in 
the attachment of bacteria, matrix accumulation, stabil-
ity, regulation and biofilm formation [137, 138]. Accord-
ing to Nijland and co-workers [139], the e-DNA in the 
EPS matrix of biofilm is dispersed by using DNase (NucB) 
[117]. In Staphylococcus species, biofilms have been 
reported to be inhibited by various proteases like trypsin, 
proteinase K, chymotrypsin, carboxypeptidase A and 
serratiopeptidase [140]. Alginate lyase produced from 
the marine bacterium source is considered an enzyme 
involved in biofilm disassembly [141–144]. Pseudoalte-
romonas is a marine bacterium from which the alginate 
lyase has been retrieved and it displays inhibitory action 
against biofilms formed by S. enterica, P. aeruginosa and 
E. coli [145, 146].

A potential antibiofilm activity has been found in amyl-
ase [147]. Alpha amylase aids the inactivation and eradi-
cation of the biofilm formation in S. aureus, as reported 
by Craigen and co-workers [148]. α amylase is considered 
as the most potent enzyme in polysaccharide inhibition 
from the investigation conducted by Divakaran et  al. 
[149]. A combination of different enzymes is employed 
for biofilm eradication rather than using a single enzyme. 
The combined action of amylase, dextrin hydrolase and 
levan hydrolase has helped in biofilm removal [150]. 
Three enzymes like alpha-amylase, beta-glucanase and 
protease combined is found to be advantageous in indus-
trial slime removal [151]. Various plant extracts are also 
reported to be effective against biofilm by having anti-
virulence, antiseptic and anti-QS properties and can 
damage the structure of mature biofilm and also prevent 
biofilm formation. Fresh Allium sativum extract displays 
competent activity against biofilms [152]. The different 
stages of biofilm formation and their inhibitors at each 
stage are represented in Fig. 5.

Proposed mechanism
The enzymes like amylase break down the exopolysac-
charide of bacteria that are attached to the surface as 
biofilms. The starch in the exopolysaccharide is broken 
down into sugars. Due to this, the bacteria in the bio-
film are detached, and thus, further biofilm formation 
is inhibited. The exo-amylases and endo-amylases are 
the two groups formed by the classification of amylases 
on basis of the mode of action. End products formed 
are shorter when the substrates are hydrolyzed by exo-
amylases and these enzymes act from the substrate’s 
non-reducing end [154], while oligosaccharides (end 
products) of different lengths are produced when the 
endo-amylases act unevenly on the glycosidic linkage 
present internal to the starch molecule [155]. Starch is 
a polysaccharide with amylose and amylopectin glucose 
polymers that are considered the main substrate on 
which α-1,4-glucan-4-glucanohydrolase efficiently acts. 
A disaccharide (maltose) and a monosaccharide (glu-
cose) are produced when the α-1,4 and α-1,6-glycosidic 
bonds are hydrolysed with the help of α-amylase [133]. 
This enzyme needs  Ca2+ metals for its stability since it 
is a metalloenzyme [156]. α-amylase can proceed with 
its action on the substrate from anywhere and can act 
faster, whereas β-amylase acts on α-1,4-glycosidic bond 
exclusively from the non-reducing end of starch. This is 
the cause for the higher inhibitory action of α-amylase 
compared to β-amylase [157]. Figure 6 depicts the pro-
posed mechanism of biofilm inhibition.
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Conclusions
Biofilm formation is an advantageous strategy employed 
by bacteria to protect themselves from antibiotics and 
to ensure their survival in stressful environmental con-
ditions. Cell-to-cell and cell-to-surface adherences are 
assisted by the bacterial polysaccharide. The commu-
nication between the cells is regulated by quorum sens-
ing, which utilizes auto-inducers as signalling molecules. 
The biofilms are pathogenic and cause several device and 
non-device-related clinical problems. To get rid of bio-
films, either quorum sensing or c-di-GMP signalling is 
targeted. There are different enzymes which hinder the 
formation of extracellular polymeric substances and also 
disintegrate the matrix, which leads to the disassembly of 

biofilm. Plant extracts can also promote biofilm eradica-
tion since some of them have anti-QS compounds.
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