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Abstract 

Background Bacterial cells communicate via small extracellular molecules that facilitate gene expression which 
is dependent on cell density and this mechanism is known as Quorum Sensing (QS). At low cell density, these bac-
teria show a single cellular type of behavior but once they reach the threshold level they alter to a multicellular type 
and hence a QS is established by the transfer of signalling molecules called autoinducers. Quorum sensing inhibitors 
(QSI) are those that hinder the quorum sensing pathway.

Main body of the abstract The emergence of antimicrobial resistance has become a threat to mankind with quo-
rum sensing being one of the mechanisms responsible for this resistance. Hence Quorum Quenching can be con-
sidered to interrupt bacterial communication. This review focuses on the effects of different synthetic and natural 
quorum-sensing inhibitors on different organisms and how it affects their gene regulation.

Conclusion Different natural and synthetic agents can quench quorum sensing by various mechanistic pathways. 
The various quorum-sensing inhibitors against both Gram-positive and Gram-negative bacteria provide a wider scope 
to prevent emerging antimicrobial resistance.
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Introduction
The discovery of antibiotics in the 1920s made a great 
revolution in the history of medicine [1]. A century later, 
the unrestrained, inappropriate, and continuous use of 
these antimicrobials led to the evolution of Multiple 
Drug Resistant species [2]. It was identified that one of 
the main reasons behind this is the biofilm formation of 
the bacterial colonies [3]. Other bacterial behaviors also 
contribute to the evolution of resistant species; this is 
regulated by a phenomenon called Quorum Sensing [4]. 
Quorum Sensing (QS) is a cell-to-cell communication 
between bacteria. It regulates gene expression by pro-
ducing small extracellular signalling chemical molecules 

known as Auto-Inducers (AIs). QS is a significant mech-
anism for regulating various physiological activities 
like virulence [5], motility [6], sporogenesis [7], biolu-
minescence [8], and biofilm formation [9]. It also regu-
lates other infections related to phenotypes for a signal 
response, usually small molecules like oligopeptides, 
furanones, or fatty acid derivatives [10].

Advantage that QS offers the microorganism is to con-
trol its response to environmental stimuli. The QS system 
also strengthens the biotransformation pathways and 
hence plays an important role in the biodegradation of 
contaminants [11].

Quorum sensing is a population-dependent mecha-
nism, when the concentration reaches the threshold level, 
the signalling molecules reach a detectable level which 
activates the responses of the bacteria [12].

There are three mechanistic concepts through which 
this QS works.
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 I. By density-dependent action—At Low Cell Den-
sity (LCD) since, there are fewer signalling mol-
ecules, it doesn’t reach the threshold level to 
identify the AIs. At High Cell Density (HCD) 
there are enough signalling molecules to estab-
lish the QS between bacterial cells, as depicted 
in Fig. 1.

 II. There are specific receptors present in the cyto-
plasm of a bacterial cell that identifies these signal-
ling molecules for the QS activity to initiate.

 III. As the AIs get detected and activation takes place, 
it would therefore boost more auto-inducers [13].

The AIs are different for Gram-positive and Gram-
negative bacteria [14]. In Gram-positive bacteria, the 
signalling molecules are known as Autoinducing Pep-
tides (AIPs) whereas in Gram-negative bacteria the auto-
inducer is N-Acyl-homoserine Lactone (AHL). AI-2 are 
the autoinducers adopted as the communication media 
between the bacterial cells in both Gram-negative and 
Gram-positive. The secretion of these signalling mol-
ecules is by the diffusion process [15].

Quorum sensing in Gram‑negative bacteria
N-Acyl Homoserine Lactone (AHL) is responsible for 
the signalling in Gram-negative bacteria, and it was first 
observed in a marine bacteria known as Vibrio fischeri. 
The LuxI/LuxR-type quorum sensing in Gram-negative 
happens through different operons. LuxI proteins are 
responsible for the biosynthesis of the signalling mol-
ecules specifically for the Homoserine lactone whereas 
LuxR binds to the autoinducers and activates the target 
gene transcription once they reach the threshold level 
(Fig. 2). On high cell density, there will be an increase in 
the concentration of the signalling molecules [16].

Quorum sensing for Gram‑positive bacteria
The autoinducers in Gram-positive are Auto-Inducing 
Peptides (AIPs). The Gram-positive bacteria produce 
small oligopeptides in their cells. Once they mature, they 
are transported across their cell membrane through an 
ABC transporter. The AIP concentration on reaching 

Fig. 1 The signalling molecules at low and high cell density 
of the bacterial cells

Fig. 2 Quorum sensing mechanism in Gram-negative bacteria involves the biosynthesis of autoinducer, N-Acyl Homoserine Lactone produced 
from LuxI followed by attachment of the autoinducer on LuxR receptor which leads to target gene transcription
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the threshold level binds to a histidine sensor kinase 
segment, this then activates the kinase and successively 
auto-phosphorylates on histidine residue, which then 
passes to a response regulator protein and activates the 
gene expression (Fig. 3) [16].

Quorum Sensing Inhibitors
QS Inhibitors (QSI) act by inhibiting bacterial cell-to-cell 
communication without exerting pressure on the bac-
teria. Thus, QS inhibition disrupts cell-to-cell signalling 
and inhibits the autoinducer-induced QS system [17]. QS 
inhibition reduces bacterial virulence [18]. Antimicrobial 
resistance has been a major concern in various diseases 
through quorum-sensing inhibition mechanisms we can 
conquer this obstacle. QS inhibiting agents don’t destroy 
or inhibit bacterial growth, they quench QS-regulated 
pathogenic activities like toxin production, swimming, 
swarming, motility, and biofilm formation which leads 
to loss of the ability of bacteria to cause disease and thus 
drug-resistant mutations [19].

Various mechanisms of QS inhibition are as follows:

1. Inhibiting the synthesis of signalling molecules [20]
2. Inactivation or enzymatic degradation of signalling 

molecules [20, 21]
3. Competing with signalling molecules [22]
4. Restricting the signal receptor complex [21]

To select effective quorum-sensing inhibitors, various 
factors have to be considered as follows [1, 23, 24]:

1. There must be a small molecule for the adequate 
depletion of the QS-regulated gene expression.

2. There must be no adverse effect with a particular 
quorum sensing regulator.

3. It must be chemically stable and tolerant to meta-
bolic degradation.

4. The QSI must act longer than the native AHL

There is a wide range of Quorum sensing inhibitors 
like:

Natural QSIs include Prokaryotic QSIs that consist of 
various enzymes responsible for quenching the quorum 
sensing activities. For example, Bacillus sp. and Agro-
bacterium tumefaciens consist of Lactonase enzyme 
that degrade the AHL signalling molecules [1, 25–27], 
another such example is Pseudomonas aeruginosa (P. 
aeruginosa) PAO1 consisting of the enzyme AHL-
acylase that degrade the long chains of AHLs [1, 28].

Animal-based QSIs include interaction between the 
eukaryotic host and bacterial pathogen, which also 
acts by enzymatic inhibition, as seen in fungi Penicil-
lium which consists of patulin and penicillic acid act-
ing as a QSI by inhibiting the biofilm formation in P. 
aeruginosa.

Fig. 3 Quorum sensing mechanism in Gram-positive bacteria includes the production of oligopeptides (AIP) which are transported 
into the bacterial cell through the ABC transporter and bind to histidine sensor kinase segment, once activated it auto-phosphorylates and activates 
targeted gene expression
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Plants act as QSI by exhibiting chemicals like those of 
QS signals and additionally their ability to degrade the 
signalling receptor. In Agrobacterium tumefaciens, GABA 
promotes the AHL signal OHC8HSL degradation by the 
enzyme lactonase [27].

Synthetic QSIs outwit the limitation of lower concen-
tration of signalling molecules in natural QSIs by chemi-
cally synthesizing them. A synthetic QSI mainly aims at 
the biosynthetic pathway that steers the production of 
signalling molecules, by changing the chain length, by 
substituting the signalling molecules, modifying the AHL 
ring moiety, and many more.

Synthetic compounds
Ibrahim et  al., synthesized and evaluated 5-acetyl-
4-methyl-2-(3-pyridyl) thiazole (AMPT) (Fig.  4) for the 
anti-quorum sensing activity against the MRSA strain. 
Chromobacterium violaceum produces a violet pigment 
called violacein through quorum sensing. Compounds 
that inhibit quorum sensing of the bacteria, reduce the 
violet colour. C. violaceum is used as a reference stand-
ard for quorum sensing inhibition sensing. It was found 
that AMPT can interfere with the quorum-sensing 
mechanism in Staphylococcus aureus and C. violaceum. 
The effect of AMPT on violacein of C. violaceum was 
observed based on the diameter of the yellowish opaque 
zone The plate with 4  mg/l concentration of AMPT 
showed the best anti-QS activity followed by 2, 1, and 
0.5 mg/l concentration [29–31].

Rajkumari et  al., evaluated 5-hydroxymethylfurfural 
(5-HMF) against P. aeruginosa PAO1. The QS boosts bac-
terial virulence by stimulating biofilm formation in P. aer-
uginosa. The anti-QS activity was also detected against C. 
violaceum using the agar well diffusion method, resulting 
in a non-pigmented zone of C. violaceum around a well-
containing 5-HMF. 5-HMF decreased the production of 
C. violaceum by 98.12% at a conc. of 1.25 μL/mL. 5-HMF 
showed an effect against the biofilm formation of PAO1 
with a MIC and sub-MIC concentration of 2.5 μL/mL and 
1.25 μL/mL, respectively. 5-HMF inhibited the formation 
of biofilm by 29.80%. In the presence of 5-HMF, there 
was an inhibition of pyocyanin pigment up to 65.34%, a 
reduction of LasA staphylolytic activity by 77.92%, LasB 
elastase activity reduction by 36.48% and 57.71% reduc-
tion of chitinase activity. There was a decrease in cell 

surface hydrophobicity and production of eDNA by 
16.01% and 17.57%, respectively. Caenorhabditi elegans 
infected with the PAO1 strain showed an improved mor-
tality rate of 78.33% resulting from the effect of 5-HMF 
on killing C. elegans by PAO1. On treatment with sub-
MIC of 5-HMF, there was a significant down-regulation 
by 92.79% and 90.15%, respectively, on the expression of 
lasI and lasR. On the exposure of 5-HMF, there was also 
an influence on lasB and rhlA by 59.66% and 66.20% inhi-
bition, respectively [32–34].

Seleem et  al., describe whether the analgesic drugs, 
indomethacin, and paracetamol act as quorum sensing 
inhibitors. In this study, P. aeruginosa O1 (PAO1) a QS 
positive strain and a violacein-negative mutant strain 
C. violaceum 026 (CV026) in the presence of AHL, the 
violacein purple pigment is induced. About 20 Acineto-
bacter baumannii isolates were used in this study. Dur-
ing the screening of the analgesic drugs for suppression 
of QS activity, it was seen that paracetamol inhibits the 
QS in CV026 and there was an inhibition of violacein 
pigment due to the halo formation around the well on 
purple background. Inhibition in CV026 was in presence 
of 1/8 MIC of paracetamol with an optical density (OD) 
value of 0.138 and optical density value of 0.332 in con-
trol CV026 therefore, leading to 58.4% violacein pigment 
inhibition. In the presence and absence of paracetamol, 
the virulence factors for PAO1 were determined. The 
MIC value of paracetamol against PAO1 was 256 μg/mL. 
In the presence of 1/8 MI of paracetamol, with a signifi-
cant decrease in OD value (p < 0.05)from 0.723 to 0.243 at 
600 nm an inhibition of biofilm formation by 66.4 ± 0.4% 
was found. The absorbance of culture supernatant in the 
absence was 0.128 and in the presence of paracetamol, it 
was found to be 0.085 thus showing an inhibition of pyo-
cyanin production by 33.1 ± 0.3%. Paracetamol also inhib-
ited the swarming motility of PAO1 by 57.1 ± 0.5%. In the 
presence of sub-MIC concentration of paracetamol, the 
twitching motility of PAO1 was inhibited by 7.7 ± 0.2%. 
Gelatinase production was inhibited by 17.5 ± 06% which 
was noted in the Gz value of 0.40 in the presence of par-
acetamol and the absence of paracetamol showed a Gz 
value of 0.33. Protease production and Rhamnolipid 
(in the presence of sub-MIC of paracetamol) produc-
tion were inhibited in the PAO1 strain by 8.7 ± 0.4% and 
33.3 ± 0.74%, respectively. Inhibition of sensitivity to 
hydrogen peroxide was by 9.1 ± 0.2%. The virulence fac-
tor of clinical A. baumannii isolates in the presence and 
absence of paracetamol were studied. Out of 20, 13, and 
7 clinical isolates of A. baumannii showed the MIC of 
paracetamol of 512  μg/mL for  MIC50 and 1024  μg/mL 
for  MIC100, respectively. Biofilm formation was inhibited 
in the range of 39.7% to 93% in various isolates indicat-
ing that ≥ 50% of inhibition was observed in 75% of A. Fig. 4 5-Acetyl-4-methyl-2-(3-pyridyl) thiazole
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baumannii. In the presence of 1/8 MIC of paracetamol, 
there was an inhibition of twitching motility in the range 
of 6.7–82.5% with 40% isolate showing ≥ 50% inhibi-
tion of twitching motility and surface motility inhibition 
ranging from 7.7–29.4% with ≥ 20% inhibition of surface 
motility in 4 isolates. In the presence of 1/8 MIC of par-
acetamol, the sensitivity to hydrogen peroxide inhibition 
was in the range of 3.3–36.4% with 2 isolates inhibiting 
> 20%. The production of phospholipase in 8 isolates was 
detected, moderate in 2 isolates and weak in 6 isolates, 
the inhibition of phospholipase activity observed was in 
the range of 8.7–100% with 4 isolates ≥ 50% [35–37].

Vila-Sanjurjo et  al., depicted the crosslinking of a cat-
egory of nanoparticles of Chitosan with sodium trip-
olyphosphate (TPP) and Genipin (GNP) for its quorum 
quenching activity. In this study, the chitosan is first 
crosslinked with Genipin (as it is more compatible) and 
further an ionotropic formation of nanoparticles in the 
presence of TPP which leads to quorum quenching. The 
GNP Pre-Crosslinked Nanoparticles (PC-NPs) can effec-
tively reduce the AHL-interfered quorum sensing of 
fluorescent biosensors in Escherichia coli. Two types of 
prototypes, Prototype A (PC-A) and Prototype B (PC-
B) were prepared for the evaluation of the inhibition 
of quorum sensing activity of PC-NPs. PC-A and PC-B 
both showed a remarkable decrease in the fluorescence 
response of biosensor FI/OD600 but while comparing 
the two prototypes PC-B was more active than PC-A, 
with a decrease in the endpoint FI/OD600 in the range 
~ 50–92% and ~ 35–85%, respectively. Along with the 
fluorescence reduction, their growth inhibition was also 
significantly minimized but the growth impairment mag-
nitude by the PC-NPs was lesser than the fluorescence. 
The study also provided the data of standard deviation 
and mean in the experiment with replicates providing a p 
value of p ≤ 0.01, p ≤ 0.001, and p ≤ 0.0001 [38–40].

Molnar et  al., have come up with an ingenious 
approach for Cyclodextrin (CD) mediated inhibition 
of quorum sensing. The bioluminescence of A. fischeri 
was investigated. Various native cyclodextrin was con-
sidered in this article such as α-, ß- and γ-cyclodextrins 
(ACD),(BCD) and (GCD), 2-hydroxypropyl (HPACD, 
HPBCD) trimethylaminopropyl (QAACD), random 
methylated (RAMEA, RAMEB, RAMEG), sulfobutyl 
ether (SBEBCD) derivatives and their epichlorohydrin-
crosslinked polymer (ACDPS and BCDPS). There was 

a significant reduction in the bioluminescence with the 
highest inhibition observed was ~ 64% after 120  min 
obtained by 10  mM ACD; it was also low as 0.625  mM 
ACD concentration after 120 min. Inhibition of enzyme 
activity by the addition of ACD by 24% for 5  mM and 
29% for 10  mM. BCD correspondingly to ACD showed 
an inhibitory effect with an increase in time and concen-
tration but comparatively, the effect of BCD was less than 
ACD. Out of the studied BCDs, the SBECD revealed high 
QS inhibition ~ 30% at 5 mM concentration at 120 min. 
RAMEB and BCD exhibited a minute stimulatory effect 
< 20% on the bioluminescence at 30  min and 60  min at 
low concentration, whereas no effects showed at 120 min. 
With this, it was concluded that there were no significant 
antibacterial effects offered by BCD.

The data obtained Table  1 summarizes the efficiency 
order of cyclodextrins are: BCDPS < ACDPS, SBEBCD < 
RAMEB < QAACD < HPACD < BCD < RAMEA < ACD.

Efficiency order of cyclodextrin based on the MIC given 
in Table 1 are as follows: ACDPS, QAACD, RAMEB < ACD, 
BCDPS, HPACD, RAMEA, SBEBCD < HPBCD, BCD.

The low MIC of BCD and HPBCD indicates it can be 
considered for its effective quorum quenching activity. 
Based on the correlation coefficient(r) the ACD showed 
a well-built correlation between ACD concentration and 
bioluminescence at r > 0.85 at both time intervals depict-
ing the great QQ effect of ACD [41–43].

Liu et al., had evaluated the quorum-quenching effects 
of aromatic furanones and brominated pyrrolones. They 
additionally designed and synthesized a new series of 
aryl-substituted pyrrolones. Based on biofilm forma-
tion and pyocyanin production, the QS inhibition was 
evaluated. In this study, there is a structural optimiza-
tion of brominated furanone and pyrrolidones. First, the 
aromatic furanones were designed and synthesized, and 
then the aryl-substituted pyrrolidone derivatives were 
designed and synthesized for their QQ activity based on 
the series of furanones and pyrrolidones. The aromatic 
furanone didn’t show antibacterial activity in the case of 
both Gram-positive and Gram-negative bacteria, they 
also had no effect against the metabolic activity, whereas 
a slight effect on its growth. In comparison with it, the 
brominated pyrrolidone derivatives showed a fair inhibi-
tory effect on Gram-positive bacteria including S. aureus 
ATCC25923 and S. aureus ATCC43300, and Bacil-
lus subtilis ATCC9372. It didn’t show any effect against 

Table 1 EC20 and MIC values for ACD, BCD, and their derivatives at 120 min

ACD RAMEA HPACD QAACD ACDPS BCD RAMEB HPBCD SBEBCD BCDPS

EC20 2.300 3.200 3.500 6.000 7.390 3.240 6.790 4.080 7.390 10.000

MIC 0.625 0.625 0.625 2.500 2.500 0.156 2.500 0.156 0.625 0.625
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Gram-negative bacteria including E. coli ATCC25922 and 
P. aeruginosa PAO1. Since the bacterial cell wall of Gram-
negative bacteria has a protective action against the anti-
bacterial agents, the pyrrolidone derivatives exhibited 
a little inhibitory effect against Gram-negative bacteria 
such as E. coli and P. aeruginosa (Table 2).

Inhibition of pyocyanin production
Table 3 provides inhibition of pyocyanin production and 
protease activity of Compound 1 and Compound 3. Out 
of 6 compounds that exhibited potent inhibition about 
80% of pyocyanin production with an  OD520 value of 
0.0082. Compounds 2, 3, and, 4 were inhibited by 43.3%, 
52.6% and 43.1%, respectively. All six compounds showed 
protease inhibitory effect, in which compound 1 exhib-
ited as the most potent inhibitor with 78.5% followed by 
compound 4 with 75.6%, the remaining 4 compounds 
were in ratios around 65%. As the inhibitory effect of 
compound 1 (Fig.  5) and 3 (Fig.  6) was more than 50% 
their  IC50 values were also determined.

Based on the dose–response curve, it was observed 
that at high concentrations there was an increase in the 
inhibition rate of protease activity while at low concen-
trations there was an increase in the inhibition of pyocya-
nin production. Compound 1 showed better inhibition of 
biofilm formation with  IC50 value 0.260 ± 0.035 mM and 
the coefficient of determination i.e., R2 of 0.885 whereas 
compound 4 didn’t exhibit any inhibitory effect against 
biofilm formation [44–46].

Bueloni et  al., designed a complex of wide spectrum 
antibiotics that is nalidixic acid (NA) and oxidovanadium 
(IV) ion, and its incorporation into hybrid nanoparticles 

were also inspected. In this study, an encapsulation of 
vanadium and nalidixic acid (V-NA) is done. The swarm-
ing ability of Gram-positive bacteria and the quorum 
sensing of Gram-negative bacteria are evaluated. Chi-
coated and Eudragit nanoparticles and myristyl myristate 
NLCs were suggested as good bio carriers for encapsu-
lation. The complex V-NA showed better antibacterial 
results than the NA ligand with twofold decrease in the 
MIC and  IC50 values (Table  4). There was a great inhi-
bition observed in E. coli and B. cereus in both strains 
whereas lesser antibacterial effect concerning biofilm for-
mation in P. aeruginosa and S. aureus. 

An antibiogram assay was also done, which provided 
a more enhanced result compared to the MIC values. 
At the conc. of 10  mM an increase in the inhibition of 
halo formation was detected against P. aeruginosa and 
S. aureus. A halo increase ranging from 46 to 65% was 
observed for V-NA in contrast with NA indicating the 
effectiveness of the antibacterial activity with complexa-
tion. When treated with sub-inhibitory conc. of V-NA 

Table 2 MIC values (μg/mL)

Compound B. subtilis
ATCC9372

S. aureus
ATCC25923

E. coli
ATCC25922

P. aeruginosa
PAO1

S. aureus
ATCC43300

S. pneumoniae S. epidermidis

1 > 128 > 128 > 128 > 128 > 128 > 128 > 128

2 > 128 > 128 > 128 > 128 128 > 128 > 128

3 > 128 > 128 > 128 > 128 > 128 > 128 > 128

4 > 128 > 128 > 128 > 128 > 128 > 128 > 128

CLA (clarithromycin) < 0.25 < 0.25 32 64 16 128 128

CIP (ciprofloxacin) 2 8 > 128 4 4 2 2

Table 3 Inhibition of pyocyanin production and protease 
activity of Compound 1 and Compound 3

Compound Pyocyanin production Protease activity

IC50 (mM) R2 IC50 (mM) R2

1 0.2897 0.9464 0.4364 0.9540

3 0.7492 0.9020 0.7060 0.9390

Fig. 5 Compound 1: an aryl-substituted pyrrolidone derivative

Fig. 6 Compound 3: an aryl-substituted pyrrolidone derivative
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there was a significant reduction in swarming motil-
ity seen in S. aureus and P. aeruginosa, 2.5 to 10 times 
lesser compared to CIM value at 1,2, and 7 days. Quorum 
quenching when V-NA was encapsulated with NLCs and 
EuNPs, was evaluated based on the production of viola-
cein pigment by C. violaceum. From the obtained results, 
it showed that the encapsulated formulation with nano-
particles showed better loss of pigment of C. violaceum 
whereas the free V-NA didn’t exhibit a loss of pigment 
[47–49].

Chang et al., designed, synthesized various derivatives 
of halogenated furanones with 5-hydroxyl-3,4-halo-
genated-5H-furan-2-ones as a precursor and substitut-
ing with alkyl chains, vinyl bromide or aromatic rings. 
An evaluation of its biofilm formation in P. aeruginosa 
was done on the synthesized compounds. Compound 5 
(Fig. 7) and 6 (Fig. 8) showed a MIC value of 32 μg/mL 
for strain ATCC9027.

There was a remarkable inhibition of pyocyanin pro-
duction of P. aeruginosa when treated with phenolic 
compounds and their derivatives. Compound 7 ((Fig. 9) 
exhibited the best results in the depletion of pyocyanin 
production along with the inhibition of biofilm forma-
tion. There was a reduction in the GFP fluorescence that 

indicates the presence of 3-oxo-C12-HSL antagonist and 
thereby inhibition of lasB gene. With GFP values with 
 OD600, it was proved that compound 7 was effective in a 
dose-dependent manner for the inhibition of lasB expres-
sion [50–52].

Jiang et  al., have designed and synthesized eighteen 
oxazolidinone derivatives with 3-amino-2-oxazolidinone 
compounds using ZS-12 as the lead compound. The com-
pounds synthesized were evaluated against the quorum 
quenching activities on the CV026 strain of C. violaceum. 
An evaluation was done on the synthesized compounds 
there was an inhibition of violacein production observed 
in CV026 by considering C10-HSL as a positive control. 
Compound 8 (Fig.  10) showed the maximum inhibitory 
effect in C. violaceum with  IC50 1⁄4 3.686 ± 0.5790  mM. 
The inhibition of biofilm formation in P. aeruginosa was 
found in the range of 42.98%—17.67%. The inhibition 
was concentration-dependent, for the compound 8 at 
162.5 mM (p < 0.05) was 40.39%. With 162.5 mM as the 
concentration of compound 8, the suppression observed 
was 22.53% (p < 0.01) for pyocyanin, 16.25% (p < 0.01) for 
elastase, 57.91% (p < 0.01) for rhamnolipid and 14.91% 
(p < 0.01) for protease. There was also a decrease in the 

Table 4 MIC and  IC50 values of NA and V-NA complex using different ATCC strains showing its antibacterial property:

Organism NA V‑NA Reduction ratio 
(NA/V‑NA)

MIC (μM) IC50 (μM) MIC (μM) IC50 (μM) MIC IC50

E. coli 20.0 11.5 10.0 5.3 2.0 2.2

P. aeruginosa 1250.0 730.0 625.0 430.0 2.0 1.7

S. aureus 250.0 53.0 125.0 40.0 2.0 1.1

B. cereus 20.0 7.8 10.0 3.1 2.0 2.5

Fig. 7 Compound 5: 3,4-Dichloro-5-oxo-2,5-dihydrofuran-2-yl 
2-(pyridin-2-yl)acetate

Fig. 8 Compound 6: 3,4-Dichloro-5-oxo-2,5-dihydrofuran-2-yl 
2-(3,4-dimethoxyphenyl) acetate

Fig. 9 Compound 7: 3,4-Dibromo-5-oxo-2,5-dihydrofuran-2-yl 
2-(3,4-dimethoxyphenyl) acetate

Fig. 10 Compound 8: 4-(4-bromophenoxy)-N-(2-oxooxazolidin-3-yl) 
butanamide
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swarming motility when treated with the compound con-
cerning the control [53–55].

Marjani et  al., has detected the inhibition of bio-
film formation in A. baumannii using 1,3-oxazole and 
imidazole-5-one. The evaluation of biofilm formation 
was done on 127 A. baumannii out of which 119 that is 
93.7% were biofilm producers. 5 isolates were taken and 
the test and control isolates were evaluated. The differ-
ence between the rate of biofilm formation of test and 
control isolates was estimated at a significant level of 
p > 0.01. From the results obtained the lowest biofilm 
formation was observed in compound 9 with a value 
of 0.06350 ± 0.003536 and compound 10 with a value 
of 0.06350 ± 0.000707 against A. baumannii 114 and it 
was evaluated to the rate of control with a value 0.143 
[56–58].

Yang et  al., have synthesized 22 quorum quenching 
derivatives of 3-Hydroxy-2,3-dihydroquinazolin-4(1H)-
one that mimics the structure autoinducer and acineto-
bactin. To understand the effect of inhibition of biofilm 
formation 3-Hydroxy-2,3-dihydroquinazolin-4(1H)-one 
was modified at positions R and  R1 (Table 5).

Biofilm inhibition was evaluated using crystal vio-
let stain and at four different concentrations of 500 μM, 
250 μM, 50 μM and 10 μM. Inhibition of biofilm forma-
tion of compound 11 and Compound 12 was evaluated 
against A. baumannii, E. coli, and P. aeruginosa consider-
ing (S)-2-(3-bromophenyl)-N-(2-oxotetrahydrofran-3-yl)
acetamide(3-BrBAHSL) as the positive control (Table 6). 
Among the derivatives obtained, compound 11 and 12 
(Fig. 11) showed significant suppression of biofilm forma-
tion by 31% and 34%, respectively, proving to be the best 
quorum-quenching inhibitors. These two compounds (11 
and 12) were then evaluated against Gentamycin sulfate. 
The MIC value, FIC (Fractional Inhibitory Concentra-
tion), and FICI value were established, which showed a 
synergistic effect (Table 7).

Hence 2-hydroxyphenyl at 2nd position is critical for 
inhibition of biofilm formation. And there will be a syn-
ergistic effect with Gentamycin [56, 59, 60].

El-Khouly et al., designed and synthesized various ben-
zofuran-based derivatives. The quorum quenching activ-
ity of the Compounds 13, 15, 16, 17, 18, 19, 20, and 21 
(Fig. 12) against both Gram-positive and Gram-negative 

bacteria with ampicillin as the reference drug was eval-
uated (Table  8). In the Gram-positive bacteria, the 
compounds 15, 16, 17, 18, 19 and 20 with respect to 
ampicillin exhibited a good inhibition zone in S. aureus, 
likewise compound 13, 15, 16, 17, 18 and 19 showed inhi-
bition zone with respect to ampicillin in Bacillus cereus. 
In Gram-negative bacteria, compounds 17, 19, 20 and 21 
showed the inhibition zone in P. aeruginosa. The quorum 
sensing inhibitions were evaluated based on the violacein 
production of C. violaceum and from the compounds 
synthesized, compound 13 and 14 exhibited quorum 
quenching effect.

The MIC of compounds synthesized were evaluated in 
comparison with ampicillin (Table  9). The compounds 
19, m-Cl substituted, 18, p-NO3 substituted showed the 
best inhibition against S. aureus with a MIC value of 
8 μg/mL [61–63].

Table 5 R and  R1 substitution of Compound 11 and Compound 
12

Compound R R1

11 n-C10H21 2-OHPh

12 3-ClBn 2-OHPh

Table 6 Inhibition of biofilm formation at 50 µM

A. baumannii 
(%)

Escherichia coli 
(%)

P. aeruginosa (%)

3-BrBAHSL 
(positive 
control)

28.22 ± 6.47 50.10 ± 3.26 − 1.72 ± 2.16

11 43.38 ± 4.74 40.83 ± 5.25 44.51 ± 9.57

12 38.20 ± 9.43 27.46 ± 3.90 55.35 ± 4.29

Fig. 11 Compound 11: 1-decyl-3-hydroxy-2-(2-hydroxyphe
nyl)-2,3-dihydro quinazolin-4(1H)-one and Compound 12: 1-(3-chlor
obenzyl)-3-hydroxy-2-(2-hydroxyphenyl)-2,3-dihydroquinazolin-4(1
H)-one

Table 7 MIC, FIC, and FICI value of Gentamycin sulfate, 
Compound 11, and Compound 12

MIC 
alone 
(μg/mL)

MIC 
combination 
(μg/mL)

FIC (MIC 
comb/MIC 
alone)

FICI

Gentamycin sulfate 0.25 0.0625 0.25 0.252

11 1024 2 0.002

Gentamycin sulfate 0.25 0.0625 0.25 0.252

12 1024 2 0.002
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Nagasundaram et al., synthesized a series of azo fused 
2,3-dihydro-1H-perimidine scaffolds and its antibac-
terial activity were evaluated further the compound 

that showed the best results were evaluated for its vari-
ous bacterial functions that is governed by the quorum 
sensing activity like biofilm formation, swimming and 
swarming motility activity. The quorum quenching activ-
ity was evaluated against C. violaceum. The synthesized 
compound was (aryldiazenyl) − 2-(2,3-dihydro-1H-per-
imidin-2-yl) phenol and its derivatives. The antibacterial 
activity of the derived compound was evaluated based on 
the inhibition of the zone (Table 10), tested against vari-
ous Gram-positive and Gram-negative bacteria and was 
examined using 50 μL.

Based on the antibacterial activity, it was observed 
that the Compound 22 and 23 (Fig. 13) showed the bet-
ter activity among others against P. aeruginosa. Hence 
the two azo fused compounds were tested for antibiofilm 
formation. From the evaluation of biofilm formation 
against P. aeruginosa, the result obtained were showing a 
significant reduction in the biofilm production with MIC 
value 1.56 μg/mL for compound 22 and 3.13 μg/mL for 
compound 23 and the percentage obtained gives a com-
parison between 22 and 23, 22 is a p-nitro substituted 
compound with 37.08 and 23 is a m-nitro compound 
with 30.23% and Rifamycin that is taken as the standard 
positive control shows 52.75% of inhibiting biofilm for-
mation (Table 11).

The compounds 22 and 23 showed a significant 
decrease in the swimming and swarming motility of P. 
aeruginosa. The quorum quenching was also evaluated 
against C. violaceum CV026, the compound 22 and 23 
at a concentration of 50 μL, showed a remarkable reduc-
tion in the violacein production with Rifamycin taken as 
a control (Table 12).

From the results obtained (Table 12), it is evident that 
22 offers a stronger quorum quenching, anti-swimming, 
and anti-swarming activity than 23 [64–66].

Hopa et al., has synthesized novel mixed-ligand two Co 
(II) complexes, Compound 24-[Co(btmpp)(NCO)2] and 
Compound 25-[Co(btmpp)(NCSe)2] in which btmpp is 
2,6-bis(3,4,5-trimethylpyrazolyl)pyridine). These com-
plexes were tested against both Gram-positive and 
Gram-negative bacteria. The quorum sensing behavior 
in bacteria like swarming motility and biofilm production 
were evaluated. The MIC values expressed in mM, were 
evaluated by comparing the compound 24 and 25 with 
the standard drug (Table  13). From the values obtained 
compound 25 showed better results against P. aeruginosa 
and S. sonnei whereas compound 24 showed better results 
when it was evaluated against Yersinia enterocolitica in 
comparison with azithromycin and ampicillin which was 
taken as the standard drug. Antibacterial activity was 
evaluated based on the MIC values against various bac-
terial strains for both compound 24: [Co(btmpp)(NCO)2] 

Fig. 12 Compound 13: (E)-2-(2-(1-(benzofuran-2-yl)ethylidene)
hydrazineyl)-4-methylthiazole, Compound 15: (E)-3-(benz
ofuran-2-yl)-3-hydroxy-2-((E)-(4-methoxyphenyl) diazenyl)
acrylaldehyde, Compound 16: (E)-3-(benzofuran-2-yl)-3-hydrox
y-2-((E)-(4-cholorophenyl) diazenyl)acrylaldehyde, Compound 17: 
(E)-3-(benzofuran-2-yl)-3-hydroxy-2-((E)-(4-methylphenyl) diazenyl)
acrylaldehyde, Compound 18: (E)-3-(benzofuran-2-yl)-3-hydrox
y-2-((E)-(3-methylphenyl) diazenyl)acrylaldehyde, Compound 19: 
(E)-3-(benzofuran-2-yl)-3-hydroxy-2-((E)-(2-methylphenyl) diazenyl)
acrylaldehyde, Compound 20: (E)-3-(benzofuran-2-yl)-3-hydrox
y-2-((E)-(4-nitrolphenyl) diazenyl)acrylaldehyde, and Compound 21: 
2-(4-methoxyphenyl)-2-oxoethyl (E)-2-(1-(benzofuran-2-yl)ethylidene)
hydrazine-1-carbodithioate
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and compound 25: [Co(btmpp)(NCSe)2]. The bacterial 
strains were more sensitive to compound 25 than for 
24, also the inhibition of compound 25 was evaluated in 
contrast to S. sonnei with 30 mm and compound 25 was 
evaluated in contrast to P. aeruginosa with 21 mm. Hence 
compound 25 exhibited better antibacterial activity than 

compound 24 and this might be due to the selenocyanate 
group present in compound 25 (Table 14).

There was a complete inhibition of the bacterial strain 
with the treatment of compound 25 whereas there was 
an increase in the activity against swarming of bacte-
rial strains when treated with compound 24. As the rhl 
system is the key contributor to the swarming ability in 
P. aeruginosa, the results obtained indicate that the rhl 
inhibitor is present in compound 25 (Table 15).

When the activity of the complex against the biofilm 
formation was evaluated compound 25 showed signifi-
cant results in the range of 1–0.001 mM in contrast to it, 
compound 24 in the range of 10–0.01 mM, didn’t show 
significant results against S. sonnei and P. aeruginosa 
[67–69].

Qin et  al., synthesized and characterized compounds 
that are structurally related to homoserine γ-lactone, 
these compounds are known as TGK-series and its quo-
rum quenching activity was evaluated against E. coli. 
Hence in this study, the TGK series of compounds hin-
der the potential of the bacteria to produce GFP at 50 μM 
concentration. The compound TGK series were evaluated 
against E. coli top 10 strains for its potential to interfere 

Table 8 Zone of Inhibition and Quorum-sensing inhibition of synthesized compounds

Compound Inhibition zone diameter (mm) QS inhibition (mm)

Gram‑positive bacteria Gram‑negative bacteria C. violaceum

S. aureus B. cereus E. coli P. aeruginosa

13 7 11 – – 2

15 7 5 – – –

16 9 6 – – –

17 6 6 – 10 –

18 7 8 – – –

19 7 6 – 10 –

20 6 – – 10 –

21 – – – 8 –

Ampicillin 6 10 10 – NA

Table 9 MIC values of compounds synthesized (μg/mL)

Compound Minimal inhibitory concentration (MIC μg/mL)

S. aureus B. cereus P. aeruginosa C. albicans

13 64 128 – 128

14 – – – 256

15 128 256 – –

16 128 256 – –

17 128 256 512 –

18 64 128 – –

19 8 256 512 512

20 8 – 512 256

21 – – 512 256

Ampicillin 128 128 > 5000 –

Table 10 Zone of Inhibition (mm)

Compound Diameter of zone of inhibition (mm)

Gram‑positive bacteria Gram‑negative bacteria

B. cereus S. aureus S. epidermidis K. pneumoniae E. coli P. aeruginosa

22 4-NO2 15 – – 13 10 16

23 3-NO2 13 - – 11 8 14

Positive control Rifamycin 22 – – 17 11 16

Negative control DMSO – – – – – –
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with the GFP fluorescence produced by 3OC6HSL. The 
compounds TGK2, TGK3, and TGK4 suppressed the quo-
rum sensing activity by 53.5% (p ≤ 0.01), 56.9% (p ≤ 0.01) 
and 57.9% (p ≤ 0.01), respectively, as these compounds 
didn’t have any substituents added with it whereas TGK1 
compound had two benzene rings attached with methyl 
group at the para position with respect to methylene 
connected to nitrogen in that molecule hence there was 
a stronger quorum sensing inhibition by 47.9 (p ≤ 0.001) 
observed in compound TGK1 [70–72].

Maruthupandy et al., had prepared Nickel oxide nano-
particles (NiO NPs) and its quorum quenching and antib-
iofilm activity were evaluated. The violacein inhibition of 
C. violaceum was also evaluated. The antibacterial activ-
ity was evaluated at 50 μg/mL to check the zone of inhibi-
tion. Ceftazidime which was taken as the positive control 
exhibited a zone of inhibition of 6 mm. The Nickel oxide 
nanoparticles exhibited a zone of inhibition of 7 mm at 
10  μg/mL concentration and 12  mm at 5  μg/mL con-
centration hence indicating that the antibacterial effect 
of the NiO NPs is concentration-dependent and with 
an increase in concentration the antibacterial effect also 
increases. The introduction of NiO NPs with C6-HSL to 
C. violaceum CV026 showed an excellent inhibition of 
violacein up to 90% at a concentration of 60 μg/mL. The 
NiO NPs at concentration of 60  μg/mL showed 94% of 
inhibition of biofilm formation against P. aeruginosa with 

respect to the control which indicates activity against 
biofilm formation also increases with increase in the con-
centration of NiO NPs [73–75].

Li et al., describes the effect of Methyl anthranilate at 
sub-MIC30 for evaluating the phenotypes that are regu-
lated by quorum sensing against Aeromonas sobria. At 
a concentration ranging from 0.125μL/mL to 5 μL/mL 
the MIC value of methyl anthranilate was determined. 
The MIC value of C. violaceum CV026 was 2.0 μL/mL 
and A. sobria was 5.0 μL/mL. The inhibitory effect of 
methyl anthranilate to produce violacein was determined 
on C. violaceum CV026, it was observed that there was 
concentration-dependent inhibition of violacein. At a 
concentration of 0.5 μL/mL of methyl anthranilate, the 
maximum inhibition rate of violacein production was 
41.01% with no growth inhibition. The determination 
of the effect of methyl anthranilate on the biofilm for-
mation was done by treating methyl anthranilate with 
different sub-MICs against A. sobria. A remarkable sup-
pression of biofilm formation was observed to the level 
of 31.67%, 34.01%, 41.27% and 51.44% when treated with 
0.5μL/mL, 0.25 μL/mL, 0.125 μL/mL and 0.0625 μL/mL 
values of sub-MIC, respectively, against A. sobria. The 
swimming and swarming motility of A. sobria at a con-
centration of 0.5μL/mL of methyl anthranilate showed a 
gradual reduction with the maximum inhibitory rate of 
74.84% and 71.63%, respectively. The protease activity of 
A. sobria was also evaluated. At a concentration of 0.5 
μL/mL of methyl anthranilate there was a reduction of 
up to 43.08% of A. sobria. The incorporation of C4-HSL 
the protease activity enhances. With the treatment of 0.5 
μL/mL methyl anthranilate the minimal concentration of 
C4-HSL was reduced to 0.865 μL/mL [76–78].

Fig. 13 Compound 22 and 23: Azo fused 2,3-dihydro-1Hperimidine 
derivatives

Table 11 MIC values of compounds synthesized (μg/mL)

Compound Minimum inhibitory concentration (MIC) (μg/mL)

Gram‑positive bacteria Gram‑negative bacteria

B. cereus S. aureus S. epidermidis K. pneumoniae E. coli P. 
aeruginosa

22 3.13 – – 6.25 6.25 1.56

23 6.25 – – 6.25 12.5 3.13

Table 12 Anti-QS and Violacein Inhibition

Compound Anti‑QS (in mm) Violacein 
inhibition 
(%)

22 8 50.25

23 4 27.02

Standard (Rifamycin) 12 69.72
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Salini et  al., evaluates the biofilm formation of Vibrio 
harveyi when treated with undecanoic acid (UDA), the 
auxins such as Indole-3-Acetic Acid (IAA) and Indole-
3-butyric acid (IBA) individually, and in combination. 
The MIC values of UDA was 20 μg/mL and IAA or IBB 
was 200 μg/mL, respectively (Table 16). The biofilm for-
mation of V. harveyi was evaluated based on FICI value 
which was found to be 0.65 when UDA and auxins were 
combined (Table 16).

The biofilm formation was evaluated both individually 
and in combination. With a maximum conc. of 20 μg/mL 
the compounds undecanoic acid, Indole-3-Acetic Acid, 
and Indole-3-butyric acid, suppressed the biofilm forma-
tion up to 18.9%, 14.5%, and 8.6%, respectively, whereas 
on combination the reduction of biofilm formation was 
concentration dependent of UDA with IAA or IBA in the 
range of 21–79.7% and 25.8–60.1%, respectively. It was 
also observed that there was a concentration-dependent 
reduction during the evaluation of bioluminescence on 
V. harveyi. The reduction in bioluminescence with the 
combination of the UDA (at a conc. of 10  μg/mL) with 
IAA or IBA (at a conc. of 10, 20 and 30 μg/mL) observed 
were at a range of 75.9–93.6 and 13.2–76.7%, respectively 
[79–81].

Saqr et al., describes Allopurinol as a quorum quench-
ing agent when evaluated for the various virulence 
factors that are regulated by the QS system. The deter-
mination of MIC values of Allopurinol against P. aerugi-
nosa was done and the least concentration that hindered 
the growth of P. aeruginosa PAO1 was 2  mg/mL. There 
was a reduction of violacein production by 60% observed 
on C. violaceum CV026 when treated with allopurinol at 
1/10 MIC. There was an inhibition of biofilm formation 
by Allopurinol against P. aeruginosa PAO1 by 61%. On 
the treatment with Allopurinol at sub-MIC, the ability 
of P. aeruginosa to swim was reduced to 92%, the twitch-
ing ability was reduced to 87%, and swarming motil-
ity was reduced to 85%. Other virulence factors such as 
hemolytic activity, elastolytic activity, pyocyanin produc-
tion, and rhamnolipid production (which is determined 
by clearance zone) was significantly reduced by Allopu-
rinol against P. aeruginosa by 95%, 93%, 74% and 74%, 
respectively. The expression of QS genes was also tested 

Table 13 MIC values (mM) of compounds synthesized and Standards (Ampicillin and Azithromycin)

Compounds Bacteria strains (MIC values)

Bacillus subtilis ATCC 
6633

P. aeruginosa ATCC 
35032

Shigella sonnei ATCC 
25931

Salmonella typhimurium 
ATCC 14028

Yersinia 
enterocolitica 
ATCC 9610

24 1 10–1 100–10 10–1 1

25 1 1 1–0.1 10–1 100–10

Ampicillin 0.1 100–10 100–10 1–0.1 10

Azithromycin 0.1 10 10–1 10–1 100–10

Table 14 Zone of Inhibition (mm)

Bacteria strains Antibacterial activity zone 
of Inhibition (mm)

24 25

B. subtilis ATCC 6633 17 ± 2 29 ± 3

P. aeruginosa ATCC 35032 15 ± 5 21 ± 3

S. sonnei ATCC 25931 16 ± 2 30 ± 1

S. typhimurium ATCC 14028 15 ± 4 23 ± 3

Y. enterocolitica ATCC 9610 17 ± 3 28 ± 1

Table 15 Anti-swarming activity

Bacteria strains Anti‑swarming activity swarming 
zone (mm)

24 25 Control

B. subtilis ATCC 6633 52 ± 6 Inhibited 9 ± 4

P. aeruginosa ATCC 35032 69 ± 5 Inhibited 11 ± 1

S. sonnei ATCC 25931 75 ± 6 Inhibited 11 ± 4

S. typhimurium ATCC 14028 50 ± 4 Inhibited 14 ± 2

Y. enterocolitica ATCC 9610 60 ± 7 Inhibited 12 ± 3

Table 16 Individual and combined MIC and FICI values of UDA and auxins

Conc. of UDA 
in combination 
(μL/mL)

MIC of UDA (μL/
mL)

Conc. of IAA in 
combination 
(μL/mL)

MIC of IAA (μL/
mL)

FICI for 
UDA + IAA

Conc. of IBA in 
combination 
(μL/mL)

MIC of IBA (μL/
mL)

FICI for 
UDA + IBA

10 20 30 200 0.65 30 200 0.65
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and showed a decrease in the expression of P. aeruginosa 
genes by Allopurinol at sub-MIC [82–84].

Natural compounds
Zhu et  al., explored the effect of exudates taken from 
the root of Sedum alfredii regulated by quorum sens-
ing on the bacteria P. aeruginosa. The quorum sensing 
ability of S. alfredii root extracts were evaluated against 
P. aeruginosa PAO1(WT), green fluorescence reporter 
(gfp-lasI), and the rhl QS mutant strain (ΔrhlI). When 
the root extracts were evaluated for its quorum quench-
ing activity, it was observed that the protease synthesis 
of WT and ΔrhlI were inhibited by 51.4% and 30.4%, 
respectively, and the protease concentration of WT 
was reduced to 0.36  mg/L and of ΔrhlI was reduced to 
0.32  mg/L. The screening of quorum sensing inhibition 
was analyzed, and several substances were found like leu-
cine, serine, threonine, aspartic acid, glycerol, sorbitol,2-
piperidine carboxylic acid, squalene, tropone, methyl 
oleate, monolinolein and thymol. Out of these substances 
obtained thymol showed the best inhibition among other 
substances. At a concentration of 50  μmol/L of thymol 
there was a reduction of protease activation by 44.7% 
and 33.7% in WT and ΔrhlI, respectively, in compari-
son with the control and rate of inhibition approximately 
24.3% when evaluated on P. aeruginosa. The fluorescence 
expression of gfp-lasI represents the gene expression of 
3-oxo-C12. The resulting gene avg. gfp-las expressions 
obtained were 1.64 ×  106, 1.71 ×  106, and 1.72 ×  106/OD600 
for untreated, 1 × root exudates, and for thymol at a con-
centration of 50 μmol/L. It was also observed that there is 
an inhibition of expression of lasR gene and transcription 
of elastase by treating it with thymol on P. aeruginosa. 
In order to understand the transcriptional expression of 
lasR and lasB genes a qRT-PCR test was done and lasB 
gene showed significant reduction in the gene expres-
sion rate by 36.0% for 1 × root exudates and 73.0% for 
50 μmol/L thymol, but no result was found by lasB gene 
[85–87].

Ya Fei Geng et  al., describes luteolin the ability to 
inhibit quorum sensing when evaluated against P. aer-
uginosa. The Minimum Inhibitory Concentration (MIC) 
values obtained was 1 mM for luteolin whereas the value 
obtained for positive control (quercetin) was greater than 
1 mM. At sub-MICs 50, 100 and 200 μM, 100 μM luteo-
lin had the maximum inhibition of biofilm formation 
(p < 0.01). At the sub-MICs 50 μM, 100 μM and 200 μM, 
200 μM luteolin showed a remarkable reduction in pyo-
cyanin production (p < 0.01). The elastase activity was sig-
nificantly reduced by luteolin. Likewise, it was observed 
that there was a great decrease in the rhamnolipid of 
100  μM luteolin that showed a similar reduction effect 
as that of quercetin 100  μM. The swimming ability was 

significantly suppressed with 200  μM luteolin showing 
the maximum inhibition (p < 0.01) and swarming motility 
showed intermediate inhibition at 200  μM, in compari-
son with the positive control (p < 0.05) [88–90].

Shukla et  al., describes gingerol as an effective quo-
rum sensing inhibitor when evaluated against P. aerugi-
nosa. At 30  μg/mL of gingerol, there was a decrease by 
30%, 40%, 40%, and 20% for biofilm formation, Extracel-
lular polymeric substance (EPS) production, pyocyanin 
production and rhamnolipid production, respectively. 
The reduction in LasR led to the suppression of biofilm 
formation and EPS. PhzR and RhlR is controlled by LasR 
and the suppression of PhzR has an effect on pyocyanin 
and RhlR on rhamnolipid. The potency of ciprofloxacin, 
an antibiotic, was increased with gingerol by 20% with a 
minimal conc. of 0.5  μg/mL and at 1.0  μg/mL of cipro-
floxacin the effect was doubled [91–93].

Abdulrahman et  al., used curcumin-mediated anti-
microbial photodynamic therapy (APDT) for quorum 
quenching in P. aeruginosa. APDT is a type of treat-
ment that involves a combination of visible light and 
photosensitizer(PS) in presence of oxygen. Cell death 
occurs when this photosensitizer absorbs light of a par-
ticular wavelength that leads to the formation of reactive 
oxygen species. Curcumin was evaluated after the APDT 
and there was an inhibition in the biofilm formation by 
23% without light, 40% and 70% inhibition by 5  J/cm2 
and 10 J/cm2 light, respectively. With laser light 10 J/cm2 
showed more effectiveness than 5  J/cm2 and curcumin 
alone. It was observed that there was a major downregu-
lation of genes with 10 J/cm2 light doses [94–96].

Prateeksha et  al., presented isolated ELF from lichen 
and Usnea longissima Ach to determine its effect on 
quorum sensing inhibition. The fungal extract known as 
metabolites extract (MELF) was evaluated for its quo-
rum quenching activity. The decrease in the violacein 
production in C. violaceum ATCC 12472 was evaluated 
and it showed a concentration dependent inhibition. 
At 6  mg/ml of MELF violacein inhibition was by ~ 81% 
whereas naringenin which was taken as a positive con-
trol was inhibited by ~ 72% at 0.5  mg/ml concentration 
of violacein production. There was an inhibition of pyo-
cyanin production by ~ 75% at 6  mg  ml concentration 
whereas naringenin showed 70% at 0.5  mg  ml concen-
tration. At 6  mg/ml of MELF showed 77% proteolytic 
inhibition wherein the positive control showed 79% at 
0.5  mg/ml. There was 16%, 42% and 69% reduction of 
elastolytic activity at 2, 4 and 6 mg/ml of MELF and the 
positive control showed inhibition of ~ 61% in elastase 
activity. MELF at 6 mg/ml showed 79% and 72% decrease 
in rhamnolipid and extracellular polysaccharides, respec-
tively [97–99].
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Chang et  al., describes the quorum quenching ability 
of chrysin which was isolated from Penicillium chrysoge-
num DXY-1. Tyrosol is also an active molecule obtained 
from the extract which was evaluated along with chrysin. 
The inhibition of violacein production in C. violaceum 
was found to be concentration dependent. At a concen-
tration of 20  μg/mL chrysin inhibited violacein produc-
tion by 31.6% in comparison with the negative control 
i.e., DMSO, whereas the inhibition of violacein produc-
tion of DXY-1 metabolite at 20  μg/mL was found to be 
21.5% and 17% violacein inhibition by tyrosol at a very 
high concentration of 100  μg/mL. 41.4% of pyocyanin 
inhibition of 40 μg/mL of chrysin was obtained, 13.8% of 
suppression in the elastase activity and 8.3% of proteo-
lytic activity when compared to the negative control. At 
100 μg/mL of tyrosol only 8.5% of inhibition of pyocya-
nin production was observed. The positive control AZM 
with a concentration of 50 μg/mL dose, 77.0%, 79.1% and 
75.9% inhibition of pyocyanin production, elastase activ-
ity and proteolytic activity, respectively, was observed. At 
40 μg/mL concentration of chrysin there was a suppres-
sion of 42.4% of biofilm formation whereas AZM which 
is taken as a positive control inhibited by 76.7%. The 
resulting value shows that there is concentration depend-
ent decrease overall [100–102].

Ghoreishi et  al., have investigated the effectiveness of 
the extracts from Halobacillus karajensis of their pyo-
cyanin and biofilm formation inhibition against S. aureus 
and P. aeruginosa. From the results obtained the crude 
supernatant extract, the middle phase of Methanol/
Chloroform Supernatant extract (MMS) from H. kara-
jensis showed the best reduction in biofilm formation in 
S. aureus by 74%, and P. aeruginosa by 27%. The protein 
profile of MMS was evaluated for its pyocyanin inhibi-
tion and the most effective protein detected was the frag-
ment with the lightest molecular weight of 25 kD with 
60% of pyocyanin reduction [103–105].

Molina et  al., have evaluated different Laurus nobi-
lis extracts based on their polarity such as n-hexane 
(HE), Chloroform (CE), ethyl acetate (EAE), methanol 
(ME) and total methanol extract (TME). At a concentra-
tion of 100  μg/mL the Escherichia coli strains showed 
an inhibition of biofilm formation below 40%. S. aureus 
strains inhibited biofilm formation up to 76% and 55% by 
the strains ATCC 6538 and ATCC 25904, respectively. 
The only extract capable of inhibiting biofilm forma-
tion against all the strains was HE at a concentration of 
100 μg/mL. A significant inhibition was also observed in 
CE and EAE extracts against E. coli, P. aeruginosa and 
S. aureus. HE and CE were evaluated if it could protect 
the surface against biofilm formation hence it was cov-
ered with 10 μg/mL and 100 μg/mL of polystyrene frag-
ments. There was a decrease detected in biofilm biomass 

and activity between 40 and 60%. The swimming motility 
was determined against P. aeruginosa PAO1 against the 
extracts EAE, HE, CE and TME all were above 30%. At 
100  μg/mL, there was a decrease in pyocyanin by 23%, 
35%, 50% and 54% for HE, TME, CE and EAE, respec-
tively, and 43% and 45% reduction in the elastase activity 
by 29%, 43% and 45% for TME, HE and CE, respectively 
[106–108].

Ahmed et  al., investigated the inhibition of virulence 
factor of P. aeruginosa by isolated plant compounds such 
as trans-cinnamaldehyde (CA) and salicylic acid (SA). 
The decrease in biofilm formation was better detected 
in SA than CA. The reduction in biofilm formation was 
54% and 26% of SA and CA, respectively, but when CA 
and SA were combined, they showed an efficient reduc-
tion of 62%. The lasA protease activities of SA and CA 
were evaluated, the OD440 dropped from 0.3 to 0.1 for 
31% reduction (p < 0.05) in absorbance reading in the 
presence of SA whereas in the presence of CA a bet-
ter reduction of 65% (p < 0.01) was observed. The com-
bined effect of CA and SA showed the best reduction of 
up to 80% (p < 0.001) in comparison with the untreated 
PAO1. LasB elastase activity in presence of CA showed 
a decrease of OD495 from 0.08 to 0.06 with reduction of 
22% (p < 0.01) whereas SA showed OD495 reduction with 
28% and when combined exhibited better reduction of 
up to 46%. The pyocyanin production in presence of CA 
and SA were decreased from 3.1 μg/ml to 2.1 μg/ml and 
0.922  μg/ml, respectively, and in combination reduced 
up to 1.1 μg/ml with an yield of 64%. The decrease in the 
yield of rhamnolipid in the presence of CA and SA was 
approx. from 1.72 g/l and 0.7 g/l [109–111].

Mu et  al., investigated the quorum sensing inhibitory 
activity on violacein production of Coreopsis tincto-
ria Nutt. When the concentration of the crude extract 
of Coreopsis tinctoria Nutt is ≥ 0.25  mg/mL there 
was a reduction of violet production in C. violaceum 
ATCC12472 by ≥ 50% and at 4  mg/mL it decreases up 
to ≥ 90%. The violacein production was also detected by 
using different fractions and hence 50% and 95% MeOH 
fractions of the crude extract possessing the highest inhi-
bition on violacein production. These were separated and 
identified and out of which the Okanin separated from 
95% MeOH played an important role in inhibiting the 
violacein production. There was an inverse correlation 
between okanin concentration and the intensity of purple 
pigment, at a concentration of 7.81 μg/mL of okanin was 
found to decrease significantly (p < 0.05) in comparison 
with untreated control whereas with at least 15.63  μg/
mL of okanin developed turbid yellowish suspensions 
with no hint of purple depicting the bacterial growth in 
absence if violacein production. The effect of violacein 
production by Okanin via influencing the expression of 
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vioABCDE operon, founded that at a concentration of 
62.5 μg/mL of C. violaceum ATCC12472 showed a down-
regulation of vioD and vioE by two-fold and vioB by four-
fold in comparison with the untreated control. The best 
result was obtained by vioA by at least 15-fold of Okanin 
treatment [112–114].

Wei et al., investigated the effect of Phloretin an anti-
bacterial on Listeria monocytogenes biofilm. At a con-
centration of 20  μg/mL of Phloretin, L. monocytogenes 
showed an inhibition of biofilm production up to 60% 
at the maturation stage and there was a decrease in the 
biofilm thickness by 2  μm approximately. At the same 
concentration, there was a decrease by 50% in the tran-
scription level of the agrosystem [115–117].

Guzman et  al., explored the effect of Piper betle L. 
leaf extract such as rude ethanolic extract (CE) and 
crude alkaloids (CA) were investigated for the ability to 
inhibit the quorum sensing activity of Shrimp pathogen 
V. harveyi. The inhibition of biofilm formation without 
inhibiting their growth was found to be in a concentra-
tion dependent manner, at 100 μg/mL concentration CE 
(p < 0.05) inhibited biofilm formation on V. harveyi VH0, 
V. harveyi VH1 and V. harveyi BAA-1116 by 58.88%, 
56.42% and 57.89%, respectively. At 50 μg/mL concentra-
tion of CA (p < 0.05), the inhibition of biofilm formation 
on. harveyi VH0, V. harveyi VH1 and V. harveyi were 
by 6.77%, 54.41% and 55.05%, respectively. At 100  μg/
mL concentration of CE (p < 0.05) the bioluminescence 
of in V. harveyi BAA-1116 strain was reduced up to 64% 
and significant reduction in lower concentrations. Con-
sidering the CA at 50  μg/mL, 25  μg/mL, and 12  μg/mL 
the bioluminescence inhibition (p < 0.05) was found to be 
50%, 30%, and 10%, respectively. Piper betle CE and CA 
also inhibited the QS via AI pathways in a concentration 
dependent manner. At 100  μg/mL concentration of CE 
AI-2 affected by 97% whereas AI-1 by 83%, similarly 88% 
by AI-1 and 87% by AI-2 was observed with 50  μg/mL 
concentration of CA [118–120].

Wang et al., investigated the inhibition of quorum sens-
ing activity of Pseudomonas fluorescens and Shewanella 
baltica in seafood products and the main QS regula-
tors such as LuxR/I family were evaluated. The MIC of 
5′-CMP and 5′-AMP inhibiting P. fluorescens PF08 were 
0.155  mmol/L and 0.3  mmol/L, respectively, and those 
inhibiting S. baltica OS155 were 0.139  mmol/L and 
0.130  mmol/L. 5’-CMP and 5-AMP could inhibit AHL 
and DKP production in P. fluorescens PF08 and inhibition 
of DKP production in S. baltica OS155. C4-HSL is an QS 
signalling molecule that was reduced by 58.4% and 55% 
when P. fluorescens PF08 was treated with 5′-CMP and 
5′-AMP [121–123].

Danaraj et al., have reported the QS inhibitory activity 
of the active constituents present in the seagrass Halodule 

pinifolia against P. aeruginosa PAO1. The leaves were 
extracted using chloroform and methanol and the biofilm 
formation was obtained maximum by the methanolic 
extract at 35 μg/mL in comparison with Cephalosporin at 
25 μg/mL taken as the positive control. Eight compounds 
were extracted from the H. pinifolia leaves out of which 
4-methoxybenzoic acid (4-MBA) at 100  μg/mL showed 
the maximum inhibition of cell density. 62.5 μg/mL was 
found to be the maximum biofilm inhibitory concentra-
tion of 4-MBA in contrast to which the positive con-
trol showed inhibition at 31.2 μg/mL concentration and 
hence 4-MBA was taken for further evaluation. 4-MBA 
at 62.5 μg/mL has showed an inhibition of various viru-
lence factors such as inhibition of lasB, protease, pyo-
cyanin formation, rhamnolipid, alginate and chitinase by 
87.5%, 83.29%, 91.46%, 79.38%, 86% and 72.09%, respec-
tively. The expression of virulence genes was downregu-
lated the transcript levels by 1.9, 1.63, 2.38 and 1.06 for 
lasI, lasR, rhlI and rhlR, respectively [124–126].

Liu et  al., investigated the quorum sensing inhibi-
tion and virulence effect of Tea polyphenols (TPs) of 
Klebsiella pneumoniae. The sub-MICs TPs (p < 0.05) at 
100  μg/mL showed 26.28% of violacein inhibition and 
at 200 μg/mL 56.73% inhibition in comparison with the 
positive control. The proteolytic activity in untreated 
bacteria reduced till 100% whereas in TPs treated K4 cul-
ture were 31.24% in 200 μg/mL and 16.73% in 400 μg/mL. 
The EPS production was reduced by 29.24% in 200  μg/
mL and 36.79% in 400 μg/mL. The biofilm formation was 
reduced by 23.7% in 200 μg/mL and 44.4% in 400 μg/mL. 
This shows that TPs activity is based on its concentration 
[127–130].

Chang et al., reported the Anti-quorum sensing activ-
ity of marine fungal strain P. chrysogenum DXY-1. There 
was a reduction in violacein production of C. violaceum 
CV026 by 53.5% when treated with 0.5 mg/mL of tyrosol. 
The other virulence factors also showed an inhibition of 
pyocyanin by 63.3%, elastase activity by 57.8% and pro-
teolytic activity by 9.9% and also showed a significant 
decrease in the biofilm formation when evaluated against 
P. aeruginosa PAO1 [101, 131–133].

Conclusion
Quorum sensing is a fundamental mechanism in order 
to regulate various functions, this has also become one of 
the causes leading to antimicrobial resistance. Quorum 
Sensing Inhibitors interfere by reducing or suppressing 
this bacterial communication by various mechanisms 
hence hinder the bacterial infections. This review sum-
marized different synthetic and natural quorum sens-
ing inhibiting compounds against both Gram-positive 
and gram-negative bacteria and thus inhibiting different 
virulence factor of the organism. The different technique 
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depicts broad spectrum of strategies to inhibit the quo-
rum sensing between bacterial cells. The compounds also 
exhibited their concentration dependent activity against 
the quorum sensing system of bacteria. Hence discover-
ing newer quorum quenching compounds can be con-
sidered as one of the future approaches to tackle the 
antimicrobial resistance.
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