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Abstract 

Background Emulsomes are a type of lipid-based nanoparticle that consists of a solid lipid core surrounded 
by a phospholipid bilayer and have shown promise as drug delivery systems for a variety of applications. The major 
advantageous aspect of employing lipid-based carriers is their ability to enhance the solubility and bioavailability 
of poorly water-soluble drugs, mandatorily in case of intranasal drug delivery. These structures have portrayed signifi-
cant ability to encapsulate drug with poor water solubility and low oral bioavailability, further leading to a completely 
enhanced drug delivery systems for achieving stability and controlled release of drug. The selection of lipid compo-
nents and their physiochemical properties can be tailored to optimize drug solubility, blood brain barrier permeabil-
ity, and enhanced targeting.

Main body of abstract Intranasal drug delivery systems offer several advantages over other routes of adminis-
tration. Intranasal delivery of drugs can provide rapid and efficient absorption into the bloodstream, bypassing 
first-pass metabolism in the liver and potentially reducing the risk of systemic side effects. Nasal mucosa comprises 
of dense network of blood vessels, that allow much enhanced rapid drug absorption and direct systemic delivery 
once the medication is being insufflated through the nasal route. Emulsomes can be used to encapsulate a wide 
range of drugs, including hydrophobic compounds that are difficult to formulate using traditional delivery methods. 
By incorporating targeting ligands or other components into the emulsome structure, it is possible to create formula-
tions that are highly selective for specific tissues or cells. The characterization parameters majorly particle size, zeta 
potential, and encapsulation efficiency play a significant role while demonstrating the effectiveness of emulsome 
formulation and further its nasal route of administration. Therefore, by assessing and evaluating the parameters, 
researchers could effectively gain insights into the quality, stability, and enhanced therapeutic effects of emulsome 
drug carrier, leading to impactful information which would help in future intranasal emulsome preparation prepara-
tions, optimization and ensuring the overall effectiveness of the drug delivery systems.

Short conclusion This review discusses the idea of emulsomes drug delivery systems, reviews the effectiveness 
of emulsomes for the delivery of small molecules, and pays particular attention to its structural and formulation 
design including benefits of intranasal emulsome delivery with recent advancements, stability aspects, and various 
considerations related to drug delivery and comprising of future prospects.
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Background
Lipid-based drug delivery systems are nanotechnology-
based systems that have gained popularity because of 
their size-dependent characteristics, high level of bio-
compatibility, and versatility when compared to other 
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nano-carriers [1]. Lipid-based carriers are a desirable 
candidate for the formulation of drugs, vaccines, diag-
nostics, and nutraceuticals due to their shown safety and 
efficacy [2, 3]. In the last few years, lipid-based carri-
ers have been used to transport a specific class of drugs 
(biopharmaceutical classification system, BCS Classes II 
and IV) that are lipophilic in nature and have low water 
solubility, which acts as a barrier to their solubility in bio-
logical fluids and affects their absorption, which in turn 
affects their bioavailability [3]. These systems are thought 
to be beneficial for oral administration of BCS Class-II 
pharmaceuticals, increasing the bioavailability of medica-
tions with low water solubility but high permeability [4].

A lipid-based drug delivery device called “emulsome” 
was primarily devised for parenteral administration of 
medications with poor water solubility. Nanoscale lipid 
assemblies with polar cores in emulsomes made up nano-
size lipid particles (bio adhesives nano-emulsion) [5, 6]. 
They are therefore regarded as nano-lipoidal carriers 
stabilized by high soy lecithin multilayer concentrations 
[5]. A high concentration of lecithin is added to stabilize 
the triglycerides and fats that make up the internal core 
as an o/w emulsion. Emulsomes combine the characteris-
tics of liposomes and emulsions. The ability to load lipo-
philic drugs in high concentration while simultaneously 
achieving a controlled release is made possible by the 
interior oily core that has solidified or partially solidified. 
The ability to encapsulate water-soluble drugs in aque-
ous compartments of surrounding phospholipid layers 
is another benefit of these materials [1, 7]. A lipid in a 
solid state rather than an oil in a fluid phase makes up the 
internal core of emulsomes, which is solid at 25  °C and 
has a transition temperature from a solid to a liquid state 
that is close to physiological temperature, is a key feature 
of emulsomes. They can include water-soluble drugs in 
the aqueous compartments of the outer phospholipid 
layers and hydrophobic drugs in the interior lipid core. 
The system’s stability was increased by the bilayer struc-
ture [8]. Additionally, due to their distinctively small 
size, emulsomes can offer site-specificity and thus, boost 
medication concentrations in the targeted tissues. Emul-
somes can be used to administer medications via par-
enteral, ophthalmic, oral, rectal, intranasal, vaginal, or 
topical routes in addition to others [6]. Emulsomal drug 
administration is a method of administering medication 
through liquids. Totally, water-soluble parenteral medica-
tion delivery can be employed for a variety of therapeu-
tic goals. Due to their limited water solubility, lipophilic 
medications require a lot of surfactants and co-solvents, 
which could be dangerous [7, 8]. Emulsomes are an oil 
kind used in water emulsions; it is distinct from regular 
oil. The phospholipid monolayer that covers the lipid core 
at the interface has a high phospholipid concentration, 

which aids in emulsion stabilization. Emulsomes are suit-
able for intravenous delivery due to their 10–250  nm 
particle size distribution. The drug release profile of the 
emulsomal formulation is 12–15% after 24 h, which is a 
good rate [3, 9].

Emulsomes can contain high concentrations of hydro-
phobic medications in their cores while encapsulating 
therapeutics that are water soluble that is found in the 
aqueous compartments of the outer phospholipid lay-
ers [8]. Emulsomes improve the bioavailability and solu-
bility of lipophilic medicines, and their structure allows 
for sustained or regulated drug release. To create micro-
scopic emulsomes, the medication is loaded and then 
sonicated [9, 10]. Emulsomes are anticipated to prevent 
lysosomal breakdown and ensure that the medicine is 
internally absorbed because of their positive charge [10–
12]. Emulsomes have been shown to transport some pro-
tein and peptide medications, including Amphotericin 
B (AmB), Azidothymidine (AZT), Methotrexate (MTX), 
Curcumin, and Dithranol, among others, effectively [10, 
13, 14].

Main text
Structure of emulsomes
Emulsomes, which are nanoparticles made of lipid, are 
frequently utilized as drug delivery mechanisms. Their 
structure can be compared to a cross between liposomes 
and solid lipid nanoparticles because they are made up of 
an oil phase enclosed by a phospholipid bilayer. A head-
to-tail arrangement of two layers of phospholipids, with 
their hydrophilic heads facing outward and their hydro-
phobic tails facing inside, forms the phospholipid bilayer 
in emulsomes. This bilayer gives the emulsomes a stable 
structure and works to keep the encapsulated oil phase 
from deteriorating [12, 15].

Depending on the required qualities of the final for-
mulation, the oil phase in emulsomes can be made up 
of a range of different oils. Triglycerides, fatty acids, and 
other lipid-based substances are examples of frequently 
used oils. The oil phase forms a core that can enclose 
hydrophobic medications or other active components as 
it is disseminated throughout the phospholipid bilayer 
[16]. The phospholipid bilayer and oil phase are not the 
only components that may be present in emulsomes; 
additional substances including surfactants, stabilizers, 
and targeting ligands may also be present [17, 18]. These 
extra ingredients may aid in enhancing the emulsomes’ 
efficacy and durability as well as their capacity to target 
particular tissues or cells [19]. Emulsomes overall struc-
ture is quite adaptable and can be customized to fit the 
unique requirements of various drug delivery applica-
tions. It is feasible to make emulsomes that are stable, 
efficient, and well-tolerated by the body by carefully 
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choosing the ingredients and perfecting the formulation 
[13, 20] (Fig. 1).

Comparative advantage over other lipidic drug 
delivery systems
Drugs that are poorly soluble in water are made more 
soluble and bioavailable by emulsomes. Triglycerides 
make up these micelles, which are arranged as lipid bilay-
ers with the hydrophilic head group facing the water 
on both sides and the hydrophobic tails aligned against 
one another [21]. Phospholipids are best suited to be 
employed as excipients for medications that are not very 
water soluble because of these special characteristics [22, 
23]. Emulsome-based technology demonstrated out-
standing targeting potential. By extending the duration 
of the drug’s activity at relatively low doses, the formu-
lations could greatly reduce toxicity issues caused by the 
drug’s complementary localization in target cells [24, 25].

Emulsomes offer a sustained and regulated release of 
the medication. Emulsomes offer a longer drug release 
than liposomes, up to 24 h, while liposomes exhibit only 
a release for up to 6 h. Emulsomes are nanoscale in size 
when compared to various vesicular delivery systems 
including noisome, pharmacosomes, and ethosomes 
[25, 26]. They drastically alter the pharmacokinetics of 
medications. Additionally, they prevent the emergence 
of multidrug resistance, which is frequently linked to an 
overexpressed cell membrane glycoprotein that causes 

drug efflux from the cytoplasm and inadequate drug con-
centrations inside cellular compartments [27, 28].

If selective absorption is possible, it is projected that 
drug encapsulation in vesicular structures will prolong 
the drug’s time in systemic circulation and possibly 
minimize toxicity [29]. Additionally, pre-clinical studies 
frequently demonstrate that excipients employed in the 
manufacture of emulsomes change epithelial permeabil-
ity in animal models [3, 29].

Emulsomes are less expensive than other tradi-
tional lipid formulations. Emulsomes are distinct from 
liposomes because of their inside lipid core, while an 
aqueous compartment makes up the liposome’s inte-
rior core. They also possess a high drug loading capacity 
in comparison with alternative vesicular drug delivery 
methods. Utilizing specialized emulsification and manu-
facturing methods, the internal core of the emulsome 
can be made of stable lipid particles by using particular 
lipid combinations. The diameter of 50–250 nm has been 
attained. Apart from that to spread and bind vaccination 
antigens to target mucosal tissue cells, a bio adhesive pol-
ymer has been added in the emulsome preparations in an 
amount adequate to give the lipoidal particles mucoadhe-
sive characteristics surfaces and making it more effective 
[14, 30]. The better understanding could about the emul-
somes as a stable and efficient drug delivery system for 
the intranasal drug administration could be impactfully 
interpreted from Table 1, given below.

Fig. 1 Structure of Emulsome
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Components of emulsomes
Lipid core
The interior lipid core or hydrophobic core made up of 
lipid is a crucial part of emulsomes. At ambient tem-
perature (25  °C), this core shows solid, lipid, mixed 
solid/liquid, or lipid crystal phases. Lipids and excipi-
ents that resemble lipids are widely available in com-
merce. In the pharmaceutical industry, all of these are 
referred to as lipids. We can employ a single lipid or a 
combination of lipids. They are chemicals that are bio-
logically and functionally connected to fatty acids and 
their derivatives. 23–25 Since lipids are often soluble 
in oil but not water, their melting point, fatty acid con-
tent, and hydrophilic–lipophilic balance are frequently 
used to identify them hydrophilic lipophilic balance 
(HLB). Lipids with a high melting point and a low HLB 
are appropriate for prolonged release [17]. While the 
excipients that are semisolid and have a high HLB act 
as excipients for immediate release and bioavailability 
augmentation. Triglycerides such as tristearin, tripal-
mitin, tricaprin and trilaurin that solidify at 25  °C are 
thought to be good core materials since they reduce the 
amount of time that o/w emulsion may be stored in an 
acceptable manner. The triglycerides are utilized to pre-
pare an emulsome with unbranched fatty acid chains 
that range in length from c-10 to c-18 [29]. Addition-
ally, lipid core makes it simple to alter their surface 
characteristics, enabling the attachment of ligands or 
targeting molecules for precise tissue or cell targeting 
and boosting their therapeutic potential.

Surfactant
One of the phospholipid molecules in the layer that 
envelops the lipid core. The surface tension is reduced 
by the stabilizing or surface-active role of the phospho-
lipid layer. It is thought that a monolayer of surface-
active phospholipids forms around the lipid core of the 
particles, with a polar head group at the interface. Using 
extra phospholipids, lipid cores can be encased by one 
or more roughly concentric bilayers, with the number 
of bilayers that surround the core varying. This bilayer 
envelope contains one or more watery components that 
could include a medication that is water soluble. A water-
soluble medication may be present in this bilayer enve-
lope’s one or more aqueous components. The ability of 
the particle to carry a high load of medications that are 
both lipid and water soluble is explained by the usage of 
several concentric bilayer models in emulsome structure. 
Drug entrapment in vesicles is influenced by the transi-
tion temperature of surfactants as well. The drug is most 
effectively trapped in starts with the lowest temperature 
at the phase transition, and vice versa [30].

Negatively charged particle
To increase the composition’s zeta potential and stabi-
lize the particles, phospholipids with negative charges 
such as phosphatidic acid, phosphatidylinositol, and 
phosphatidylserine, or lipid compounds comprising 
of negative charge such as oleic acid can be added to 
emulsomes. Furthermore, the inclusion of these nega-
tively charged lipid molecules in emulsomes causes 
the creation of phospholipid bilayers with an opposite 
charge [12]. As a result, the phospholipid bilayers that 
surround the lipid core increase the loading capacity 
of the aqueous compartment. The electrical repulsion 
between the bilayers in the aqueous space between 
them is what causes this action. Positive charge 
increases particle dispersion, which lessens coales-
cence, flocculation, or fusion [19, 30].

Phosphatidylcholine
Lecithin contains a lot of phosphatidyl choline. Water 
does not readily dissolve phosphatidylcholine. Depend-
ing on temperature and hydration levels, the phos-
pholipids in this solution can form lamellar, micelle, 
or bilayer sheets. A surfactant that is typically catego-
rized as amphipathic is produced as a result of this. 
They are readily available from a range of conveniently 
accessible sources, like egg yolk or soy beans, and they 
are an important part of biological membranes. They 
are known as soya lecithin and egg lecithin, respec-
tively, depending on the source from which they are 
made. Lecithin incorporation increased the percent-
age of drug entrapment to 96.1% and caused the size of 
the vesicles to be reduced as a result of an increase in 
hydrophobicity [20, 26].

Cholesterol
Emulsomes function as vesicles and require choles-
terol as a major component. The stability of the vesicles 
is largely affected by cholesterol insertion. It was also 
reported that it enhances the buffering action in fluid-
ity of the overall components of the combined formu-
lation [10]. Cholesterol was added to all formulations 
as a stabilizing agent since it can cause the creation 
of the liquid crystal phase by changing the fundamen-
tal packing structure. Additionally, it has the ability to 
stabilize the outer phospholipid layers, which increases 
drug entrapment effectiveness and decreases drug leak-
age. Cholesterol also plays a crucial role in increasing 
the entrapment efficiency of the emulsomes. According 
to certain findings, the effectiveness of trapping rises 
as cholesterol concentration does. A very high choles-
terol content was found to have a negative impact on 
drug entrapment in the vesicles. This may be because 
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cholesterol levels above a certain point begin to disrupt 
the normal bilayer structure, which results in a loss of 
drug entrapment [31, 32].

Absorption mechanism of emulsome after intranasal 
administration
There are only two pathways connecting the brain to 
the  external  world: olfactory and trigeminal [33]. The 
human olfactory region, which contains the olfactory 
and trigeminal nerve terminations, is around 60 m thick 
and covers an area of 2–12.5  cm2, or 1.25–10% of the 
nasal cavity’s total surface area [34]. Drug targeting can 
be accomplished by applying formulations to the nasal 
mucosa [35, 36]. Further the drug entity reaches to the 
endoneurial micro-vessels within the nerve fascicle and 
the investing perineurium which make up the blood-
nerve barrier (BNB) [37]. These micro-vessels actively 
participate in the mechanisms that control the permea-
bility of the perineurium and endoneurial capillaries, and 
they undoubtedly depict a significant role in accomplish-
ing transportation of chemicals from the trigeminal and 
olfactory pathways into the central nervous system [38].

The increased drug concentration in the brain after 
emulsome administration may be due to the nano-ves-
icle size, which enables drug particles to be transported 
deeper into the olfactory epithelium cellular layers and 
easily translocate from one cerebral compartment to 
another [35]. The nasal membrane’s capacity to per-
mit molecules to pass through it via olfactory neurons 
in the olfactory bulb is increased by chitosan’s permea-
tion-enhancing qualities and the lipid structure of emul-
somes [36]. Emulsomes have site selectivity due to their 
small size, which results in higher medication levels at 
target tissues [16]. The intranasal emulsomes delivery 
mechanism further shows that the olfactory pathway is 
a primary pathway for drug transport to the brain [34]. 
Emulsomes are highly effective at delivering pharmaceu-
ticals to the brain directly through the nose, as evidenced 
by their high drug targeting efficiency (DTE%) and nose-
to-brain direct transport (DTP%) rates [39]. Three mech-
anisms—two extracellular transport-mediated channels 
that allow medications to enter the brain quickly, within 
minutes of intranasal administration, and one intracel-
lular transport-mediated route that accounts for slowly 
absorbing pharmaceuticals—are based on direct nose-to-
brain drug delivery [33].

Although the precise mechanism of drug delivery by 
nanoparticles across the BBB is still unknown, some the-
ories include increased nanoparticle retention in brain 
capillaries, transcytosis and endocytosis of these parti-
cles by brain endothelial cells, and the fluidizing effect of 
surfactants and phospholipids on endothelial cell mem-
branes, which increases drug permeability [40]. Drug 

transport to the brain following nasal administration has 
been investigated using nanosized lipid-based vesicles as 
a viable platform. Several methods, such as surface cati-
onization, surface tailoring by targeting ligands, and acti-
vating the release of the medication by a magnetic field, 
temperature, ultrasound, or any other external compo-
nent, have been suggested to support brain targeting of 
such systems [39, 41].

Emulsomes could be administered through  intrana-
sal route  to increase drug molecule concentration in 
the brain and plasma, assists much more in getting the 
desired therapeutic result as depicted in Fig.  2 [42]. As 
a result, the availability of drug  at the brain level has 
improved after intranasal delivery methods [43]. For 
instance, contrary to the oral route, the nasal one allows 
for direct vinpocetine (VNP) absorption into the sys-
temic circulation while avoiding the pre-systemic metab-
olism, increasing the quantity of drug that may reach the 
targeted sites of brain. Additionally, olfactory route ena-
bles direct medication absorption into cerebrospinal fluid 
and brain tissues from the nasal cavity. Another aspect 
that needs to be taken into account is the high lipophi-
licity of the lipid-rich emulsomes, which may increase 
VNP’s systemic absorption and blood brain barrier (BBB) 
uptake [41].

Intranasal emulsome drug delivery process is a 
upcoming approach for administering medication to 
the brain through the nasal route [44]. Emulsomes are 
lipid-based nanocarriers that can encapsulate both 
hydrophobic and hydrophilic drugs, providing sta-
bility and protection from degradation in the body. 
When delivered intranasally, emulsomes can bypass 
the blood–brain barrier, allowing for direct trans-
portation of drug into the brain [45]. This method of 
administration has shown potential in the treatment 
of neurodegenerative disorders such as Alzheimer’s 
and Parkinson’s disease, as well as in the management 
of pain and inflammation [46]. Intranasal emulsome 

Fig. 2 Chemical structure of Tristearin
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administration also offers several advantages over tra-
ditional drug delivery methods, including improved 
bioavailability, reduced systemic toxicity, and increased 
patient compliance due to its non-invasive nature. Fur-
ther research is needed to optimize the formulation 
and dosing of emulsomes for intranasal delivery, but 

the potential benefits make it a promising avenue for 
drug development (Figs. 3, 4, 5, 6, 7, 8 and 9).

Preparation techniques of emulsomes
Emulsomes are combination of solid lipid core, choles-
terol, and phosphatidylcholine in a ratio of 1:0.5:1, thus 
leading to a formulation aspect of a highly optimized and 
stable preparation [37]. Emulsomes could be efficiently 
prepared from a wide range of nanoparticle formula-
tion techniques. Obtaining particle size within a range 
of 10–1000 nm and maintaining formulation’s stability is 
the fundamental objectives of the emulsome preparation 
[47]. The transition temperature employed in the prepa-
ration is in range of (25–45) °C. Organic solvent such as 
n-hexane, dicloro-methane, toluene and diethyl ether is 
primarily constituently dissolved along with the basic 
formulation in vacuum conditions for lipid film incor-
poration. Thus, it also plays a significant role in poorly 
water-soluble drug successful encapsulation in the drug 
delivery system along with other excipients of formula-
tion [48, 49].

Lipid film formation (hand shaking method)
This process involves utilizing a flask rotary evaporator 
with reduced pressure to cast layers of film made of sur-
factants and lipids from their organic solution. The cast 
films are subsequently distributed in aqueous medium. 
The lipids expand and peel off from the wall of a round 
bottom flask when surfactants are used for a predeter-
mined period of time (the time of hydration) at a temper-
ature just slightly over their phase transition temperature. 
Hand shaking or 15 min of exposure to a steam of water 
saturated nitrogen before allowing the films to swell in 
an aqueous solution without shaking both supply the 
mechanical energy required for the swelling of lipids and 
the dispersion of cast lipid films [19]. It is also inferred 
while in hand shaking method that the suspension like 
appearance occurs and further after hydration large uni-
lamellar vesicles (LUV) are formed that could further be 
made to go under probe sonication and centrifugation as 
per the formulation design and requirements. The non-
shaking method resulted in large unilamellar vesicles, 
whereas the hand shaking method led to multi lamellar 
vesicles (MLV) [50].

Reverse phase evaporation
In this process, there are two steps: making an o/w emul-
sion and adding buffers to an excess organic phase. It is 
possible to emulsify lipid and aqueous phases mechani-
cally or by sonication. With the second step, an organic 
solvent was evaporated under vacuum, causing water 
droplets that were covered in phospholipids to condense 
and create a matrix that resembled gel. Under lower 

Fig. 3 Chemical structure of Span 80 (Sorbitan monooleate)

Fig. 4 Chemical structure of Phosphatidic acid

Fig. 5 Chemical structure of phosphatidylcholine

Fig. 6 Chemical structure of Cholesterol
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pressure, additional organic solvent removal enables the 
gel-like matrix to transform into a smooth paste formu-
lation. This technique can successfully encapsulate small 
and big compounds, with an encapsulation effectiveness 
of 60–65% [15]. The main drawback of this approach is 
that the components and medication are subjected to 
mechanical agitation and organic solvents. Bioactive 
compounds like enzymes, protein medicines, and organic 
solvent exposure and mechanical agitation can cause 
conformational changes in RNA-type molecules, protein 
denaturation, or DNA strand breakage [51].

High pressure extrusion technique
When MLV are repeatedly passed through very small 
pore polycarbonate membranes (0.8–1.0 pm) under high 
pressure, the average diameter of the vesicles shrinks 
over time, reaching a minimum of 60–80 nm after 5–10 
passes, according to research done by large number of 
scientists. The vesicles tend to become unilamellar when 
the average size decreases. Other researchers who used 
MLV with a microfluidizer reported getting similar out-
comes. A microfluidizer is a device that applies intense 

pressure to the feed material and forces it through a small 
opening [52, 53]. As MLV are forced through the narrow 
orifice, layers of bilayers appear to be peeled off of the 
vesicular structure, much like the layers of an onion skin. 
It was further asserted that the layer separation process 
only functions in vesicles with positively charged phos-
pholipids and vesicles larger than 70  pm [17, 54]. The 
detailed flowchart representation is further illustrated in 
Fig.  10, where we could properly observe the complete 
process of homogenization using the microfluidizer.

Sonication method
With a few minor tweaks, this technique is similar to 
the lipid film hydration technique. In a round-bottomed 
flask, solid lipids such as cholesterol and phosphatidyl-
choline were added in various molar ratios, and they are 
then dissolved in a minimum amount of chloroform that 
contained three or four drops of methanol. An amount 
of drug that was precisely weighed was dissolved in this 
solution [55]. A thin lipid layer is formed on the walls 
of the round bottom flask by rotary evaporating the 
organic solvent until it was completely dry under reduced 

Fig. 7 Emulsomes intranasal absorption mechanism for targeted therapy
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pressure. When phosphate buffered saline with a pH of 
7.4 is used to hydrate dry film, the phospholipid expands 
to create a milky emulsion that contains enormous multi-
lamellar vesicles. To create equally distributed nanosized 
emulsomes vesicles, this emulsion is further sonicated 
using a sonicator (Probe/Bath) for a set amount of time 
[56]. The complete process finally results in formation of 
aggregates of lipids which is also being shown in Fig. 11.

Cast film method
Using this technique, phospholipids and triglycerides 
with a solid to liquid phase transition temperature of 
greater than 25  °C can be mixed to form emulsomes at 

a weight ratio of 0.5:1.0. In order to create more emul-
somes, the suspension is either reduced, or the mixture is 
suspended in an aqueous solution at a temperature below 
the point at which solids turn into liquids. The liquid par-
ticles that make up these emulsomes have mean particle 
diameters that range from 10 to 250 nm, are frequently 
in the range of 20–180  nm, and are frequently in the 
range of 50–150  nm. When establishing the size range, 
a weight percentage basis is favored over a particle num-
ber basis [1, 57]. Traditionally, the lipid component could 
be a volatile organic solvent that is chemically unreactive 
and volatile, like dichloromethane or diethyl ether. In a 
rotating evaporator or beneath a stream of inert gas, the 

Fig. 8 Lipid film hydration method

Fig. 9 Reverse phase evaporation technique
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solvent is normally evaporated under reduced pressure. 
By wrapping in an aqueous solution and shaking it, the 
resultant lipid layer is hydrated and dispersed. Aqueous 
hydration solution may be supplemented with medica-
tion components if they were absent from the organic 
solution. The lipid solution or dispersion is then fre-
quently size-reduced using a high-shear homogenizer 
working at a pressure of up to 800 bars [58] (Figs. 12, 13 
and 14].

Ethanol injection method
Injection of ethanol was originally suggested in 1973. The 
benefit of this approach is that it eliminates the require-
ment for extrusion or ultrasound and allows for the 

one-step injection of an ethanol lipid solution into water 
to produce small unilamellar vesicles with a limited par-
ticle size distribution. This method’s drawbacks include 
a heterogeneous population, dilute emulsions, the dif-
ficulty of completely eliminating all ethanol, and a high 
likelihood of inactivating bioactive macromolecules. In 
this method, the lipid or lipid mixture  first dissolved in 
the appropriate alcoholic solvent before an aliquot of 200, 
500 or 600  mL then  swiftly injected into the dispersant 
solution (water or saline solution) of 9.8  mL (dilution 
1:50), 9.5  mL (dilution 1:20), or 9.8  mL (dilution 1:17), 
respectively, at room temperature using a one-way, 1-mL 
syringe. The mixture is then strongly shaken for 20–30 s. 
Without extrusion or sonication, narrowly distributed 

Fig. 10 High pressure extrusion technique

Fig. 11 Sonication technique
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Fig. 12 Cast film technique

Fig. 13 Ethanol injection technique
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vesicles in the nano-size range are produced [59]. 
Another significant benefit of this technique is its appro-
priateness for the entrapment of numerous different 
therapeutic compounds, such as membrane attachment 
of vaccination antigens or large hydrophilic proteins via 
passive encapsulation or one-step distant loading which 
would also be very beneficial in preparation of intranasal 
vaccine comprising of drug loaded emulsomes [60].

Detergent removal technique
In order to remove detergents, phospholipids are dis-
solved in an aqueous solution that has detergents present 
at a particular critical micelle concentration (CMC). The 
reaction medium releases individual phospholipid mole-
cules once the detergent is taken out, and these molecules 
then spontaneously self-assemble into bilayer structures. 
A dialysis bag, polystyrene-based absorber beads, or 
Sephadex columns are the most common methods for 
removing detergent (gel permeation chromatography). 
When the resulting combination is diluted with an ade-
quate aqueous medium, the produced micelles undergo 
reorganization and develop into emulsomes [61]. In 
order to ensure the stability, biocompatibility, and appro-
priateness of emulsomes for drug delivery applications, 
the elimination of residual detergent is a crucial step in 
the manufacturing process. To accomplish this, a number 
of detergent removal approaches have been used. In one 
often used technique, emulsomes are exposed to ultra-
centrifugation, whereby high-speed centrifugation causes 
the heavier emulsomes to sediment and the detergent to 
stay in the supernatant. The remaining traces of deter-
gent are subsequently removed by gathering and washing 
the detergent-free emulsomes. Alternately, emulsomes 
may be used in a semipermeable membrane bag during 
dialysis, which keeps the emulsomes inside while allow-
ing the detergent to seep into the surrounding buffer. To 
guarantee effective detergent elimination, this procedure 

is performed numerous times. These two methods are 
essential for creating detergent-free emulsomes with the 
best drug loading properties and increased stability.

Characterization techniques of emulsomes
Characterizing the prepared emulsomes is crucial from 
the perspective of application. Monitoring physical and 
chemical variables are necessary to ensure that emul-
some preparation is repeatable and serves the intended 
purpose. Emulsomes’ primary properties include average 
size, size distribution, shape, and polydispersity index, 
along with surface charge and encapsulation efficiency. 
Emulsomes are confirmed by transmission electron 
microscopy (TEM) micrographs to be spherical in shape, 
making them identical in size and morphology to empty 
emulsomes [62]. Emulsomes are biocompatible vesicular 
structures made up of a solid fat core encased in many 
layers of phospholipids. Emulsomes, which have a solid 
core, can entrap more lipophilic medicinal molecules 
with a longer half-life than emulsion formulations that 
have a liquid core. Emulsomes, which are made of fat and 
lipids, are biocompatible. Emulsomes are attractive pos-
sibilities for poorly water-soluble medicinal substances 
like curcumin, silybin  due to these distinctive features. 
As was recently shown, a dehydration-rehydration tech-
nique followed by temperature-controlled extrusion can 
be used to assemble phospholipids and triglycerides to 
create stable dispersed emulsomes [63].

Composition and size assessment of emulsomes
Emulsomes are divided structurally into two parts: the 
innermost core and the outside shell. The innermost 
core is made up of lipid such that, at normal tempera-
ture, either has mixed solid and liquid crystal phases 
or displays a solid or liquid crystal physical condition. 
The interior core is supported by a multilamellar shell 
that can be made of pure, synthetic, hydrogenated, or 

Fig. 14 Detergent removal technique
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partially hydrogenated phospholipids, natural or (par-
tially) hydrogenated lecithin, or both [64]. Because repul-
sive interactions between the emulsomes essentially 
hinder aggregation, charged PLs can also be utilized to 
increase the formulation’s stability. The phospholipid 
shell controls the in vivo behavior of the nano-formula-
tion, including circulation half-life, toxicity, and cellular 
targeting. The outermost layer controls the emulsome’s 
interface with the environment [65]. Light scattering 
and electrophoretic techniques were employed to assess 
the average vesicle size (z-average) and zeta potential, 
respectively, using Nano-ZSP (Malvern Panalytical, Mal-
vern, UK) at 25 1  °C. Zeta potential mean and distribu-
tion were determined along with electrophoretic mobility 
using mixed mode measurement with phase analysis 
light scattering (M3-PALS). Emulsomes were typically 
suitably diluted Prior to measurement, 100 times with 
phosphate buffer pH 7.4 [44]. It is possible to measure the 
size of individual emulsomes using electron microscopy 
techniques with a micron range. The structure of the 
liposome could be obtained in detail using a technique 
called freeze-fracture transmission electron microscopy 
[46]. The particle size and stability of emulsomes are 
both critically dependent on the PL:TL ratio. The homog-
enization procedure enables mechanical tuning of emul-
some size. As previously mentioned, smaller particles can 
form to some extent when the preparation is extruded 
through filters with smaller pores or given a longer soni-
cation duration. The path of clearance in the body may 
depend on the formulation’s diameter. For instance, it 
has been noted that macrophages are capable of clearing 
particles larger than 200 nm from the circulation quickly. 
As a result, larger nanoparticles are more suited for sys-
tems that target inflammatory areas like tumors, whereas 
smaller nanoparticles are better suited for systems that 
target macrophages [66, 67].

Drug encapsulation
During the emulsome synthesis process, when the 
lipid components assemble, drugs are loaded into the 
emulsomes. The lipophilic medicines disintegrate 
due to their nature, become trapped in the innermost 
core, and intercalate inside the phospholipid bilayers. 
The high level of multilamellarity increases the rate of 
drug encapsulation, as was previously shown. Only the 
watery area between the phospholipid bilayers can trap 
hydrophilic molecules. Moreover, amphiphilic com-
pounds are incorporated into the phospholipid layers 
preferentially [68]. Curcumin emulsion formulation 
study recently demonstrated the high lipophilic chemi-
cal loading capacity of emulsomes [69]. The compound’s 
solubility in water, which was 11 ng/ml, was increased 
up to 10,000 times, or to 0.11  mg/ml, a concentration 

that substantially improved the lipophilic compound’s 
usage in biomedicine [70]. Emulsomes are unique in 
that they have a high loading capacity for lipophilic 
chemicals. Yet, because multilamellar phospholipids 
can hold a sizable amount of water between the bilay-
ers, they can also be utilized to distribute water-soluble 
components. Assuming that emulsomes are made up of 
an average of 1–3 bilayers, their trapped aqueous vol-
ume is thought to be between 1.1 and 0.6 L per mol of 
phospholipid; it is a lot more than just one small uni-
lamellar vesicle’s aqueous volume, which is between 
0.3 and 0.2 L per mol of phospholipid. Thus, the find-
ings  indicate that emulsomes should be regarded as a 
nanocarrier rather than a drug delivery system (DDS) 
for exclusively hydrophobic molecules when it comes 
to delivery of both hydrophilic and hydrophobic mol-
ecules simultaneously [63, 69].

Stability of emulsomes
In terms of nanoparticle-mediated DDSs, stability 
refers to the nanocarrier’s capacity to sustain through-
out time its biophysical properties, such as size, zeta 
potential, and drug retention. Due to their large abso-
lute zeta potential values, emulsomes are consequently 
anticipated to be physically stable, decreasing the likeli-
hood of coalescence [71]. Emulsomes are more stable 
in suspensions than other lipid-based formulations 
like liposomes, which is a discovery that may be very 
helpful in clinical practice [72]. Emulsomes are created 
by combining two essential elements: phospholipid 
is walled around the lipidic core to provide vesicular 
steric stability. It is possible to create an emulsomal 
formulation that is pharmaceutically stable without the 
need of an extra solubilizer or surfactant. PEGylation of 
the surface of emulsomes will therefore help to increase 
steric stabilization and extend circulation duration [73, 
74].

The physicochemical properties of the lipids used, as 
well as the storage temperature, are significant factors 
affecting the stability of the nanocarrier [75]. Zeta poten-
tial is a crucial component of stability; measuring zeta 
potential in electrostatically stabilized vesicles is essential 
for comprehending how dispersion and aggregation pro-
cesses work and is unquestionably a crucial requirement 
for research on the storage stability of these vesicles.  A 
change in the lipid type enhanced the absolute value of 
zeta potential, whereas the fats used in emulsomes—
trilaurin, tristearin, and compritol ATO 888—offer a sub-
stantial negative value of zeta potential. Increased input 
energy during sonication results in a decrease in parti-
cle size and zeta potential to produce stable and tightly 
packed emulsomes [73, 76].
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Advanced modifications in drug delivery 
through emulsomes
Emulsomes are a promising method of medication 
administration that combines the advantages of emul-
sions with liposomes. They are more durable and stable 
than conventional emulsions because they consist of an 
oil droplet core and a lipid bilayer membrane that sta-
bilizes the emulsion. Emulsomes have drawn attention 
because of their capacity to directly target the central 
nervous system while bypassing the blood–brain barrier 
[70, 77].

There has been a lot of interest lately in improving the 
emulsome formulation modification for intranasal deliv-
ery. Researchers have demonstrated their findings based 
on multiple number of methods to improve emulsome 
stability, drug loading capacity, and bioavailability. These 
improvements include the addition of targeted moieties, 
the insertion of novel lipid components, and composi-
tional optimization of the formulation [75]. The utiliza-
tion of hybrid lipid components, such as solid lipids and 
surfactants, to increase the structural stability and drug 
loading capability of emulsomes is one of the most prom-
ising changes. These substances can lengthen the dura-
tion that emulsomes stay in the nasal cavity and enhance 
the rate at which medicines pass through the nasal 
mucosa. Using targeting ligands to boost the specificity, 
drug delivery, such as antibodies, peptides, or aptamers, 
is another key change. Targeted emulsomes have the abil-
ity to bind specifically to cell surface receptors, increasing 
drug accumulation at the target region and lowering sys-
temic adverse effects. The addition of mucoadhesive pol-
ymers or viscosity-enhancing substances has also been 
investigated as a modification to improve the adherence 
of emulsomes to the nasal mucosa and boost the bioavail-
ability of the medicine being administered [73, 78].

For intranasal drug administration, innovative 
improvements to emulsome formulation hold great 
promise for increasing drug delivery effectiveness and 
lowering systemic adverse effects. We may anticipate 
additional developments in this area in the future since 
these alterations will continue to be a focus of research 
in the field of drug delivery. Intranasal emulsome for-
mulations have been gaining attention in recent years 
due to their potential as a drug administering system 
for the treatment of various diseases [79]. Emulsomes 
are lipid-based vesicular structures that can encapsulate 
both hydrophilic and hydrophobic drugs, resulting in 
improved drug solubility, bioavailability, and sustained 
release. Recent advancements in intranasal emulsome 
formulations include the use of novel lipid materials such 
as ethosomes, transferosomes, and lipid nanoparticles. 
These materials can enhance the stability and effective-
ness of the emulsomes and also offer advantages such as 

biocompatibility, biodegradability, and targeted delivery. 
Moreover, the development of emulsomes with mucoad-
hesive properties has enabled improved nasal retention 
and prolonged drug release. These advancements have 
opened up new possibilities for the use of intranasal 
emulsomes in the treatment of various diseases, in addi-
tion to neurological disorders, respiratory diseases, and 
cancer [68, 79].

A nasal insert is a small, solid, or semisolid dosage form 
that is designed to be inserted into the nasal cavity. Emul-
somes are a type of lipid-based nanoparticle that can be 
used to encapsulate drugs and improve their bioavailabil-
ity. When incorporated into a nasal insert, emulsomes 
can improve the absorption of the drug through the nasal 
mucosa, increasing its therapeutic effectiveness [80]. The 
emulsome structure provides a protective environment 
for the drug and allows for sustained release, reduc-
ing the frequency of administration [81]. Additionally, 
emulsomes can be engineered to target specific cells or 
tissues, allowing for surface modifications and targeted 
drug delivery. Overall, the use of emulsome-containing 
nasal inserts is a promising approach for improving drug 
delivery and efficacy through the nasal route [80, 82].

Conclusion
Emulsomes are lipid-based medication delivery systems 
that have benefits over other nanotechnology-based 
carriers. Hydrophobic and hydrophilic medicines can 
both be encapsulated by emulsomes, offering stability, 
and controlled release. They can increase drug solubil-
ity and bioavailability and have great biocompatibility. 
Emulsomes administered intranasally could successfully 
increase drug absorption, lessen systemic toxicity, and 
boost patient compliance. Emulsomes can avoid mul-
tidrug resistance, have a longer drug release time (up to 
24 h), and have better targeting capability. The disadvan-
tages associated with the typical vesicular system, such as 
a higher incidence of drug leakage and a propensity for 
agglomeration, could be effectively overcome by emul-
somes, which can accommodate the lipophilic medicines 
well and have consistently shown effective therapeutics 
results at the targeted site of action. They show prom-
ise in the treatment of cancer, respiratory illnesses, and 
neurological conditions. Emulsomes present a promising 
route for drug development in a number of therapeu-
tic areas, but further study is required to optimize their 
composition and dose.
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