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Abstract 

Background Today, artificial intelligence-based computational approach is facilitating multitasking and interdis-
ciplinary analytical research. For example, the data gathered during an analytical research project such as spectral 
and chromatographic data can be used in predictive experimental research. The spectral and chromatographic 
information plays crucial role in pharmaceutical research, especially use of instrumental analytical approaches and it 
consume time, man power, and money. Hence, predictive analysis would be beneficial especially in resource-limited 
settings.

Main body Computational approaches verify data at an early phase of study in research process. Several in silico 
techniques for predicting analyte’s spectral and chromatographic characteristics have recently been developed. 
Understanding of these tools may help researchers to accelerate their research with boosted confidence and prevent 
researchers from being misled by incorrect analytical data. In this communication, the properties of chemical com-
pounds and its relation to chromatographic retention will be discussed, as well as the prediction technique for UV/IR/
Raman/NMR spectrograms. This review looked at the reference data of chemical compounds to compare the predic-
tive ability in silico tools along with the percentage error, limitations, and advantages.

Conclusion The computational prediction of analytical characteristics offers a wide range of applications in aca-
demic research, bioanalytical method development, computational chemistry, analytical method development, data 
analysis approaches, material characterization, and validation process.
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Background
The use of computational chemistry in research has been 
well-acknowledged in recent years and afforded signifi-
cant research outcomes [1, 2]. There are literature reports 
on computer code for analysing models, replicating 
processes, predicting models, and interpreting chemi-
cal compounds [3]. Unlike the drug discovery area, the 
validity of computational techniques in analytical chem-
istry yet to be explored as a comprehensive tool [4–6]. 
The computational approach in analytical research is 
important because simulations of chemical behaviour of 
an analyte are needed for modelling of analyte response 
relationship in instrumental methods. Of course, it can 
be viewed as a visual representation of the connection 
between the analytical experiment and theoretical pre-
diction [4, 7].

In this era, new chemical entity research is needed in 
new drug discovery process for treatment, diagnostic, 
and biomarker research. At this juncture, spectroscopy 
and chromatography techniques are playing a vital role 
in the purification, identification, and characterization 
of the targeted chemical compound [8, 9]. In general, 
understanding and interpreting the spectrograms and 
chromatographic retention times of the new compounds 
is quite difficult for beginners if the researcher is a non-
chemist [10]. But, knowledge of spectrogram and chro-
matography is very essential for researchers and plays 
a crucial role in the process of developing new drugs. 
Indeed, the level of expertise and awareness on the accu-
racy of computation tools could assist the researchers in 
speeding up the experiments with partial validity of the 
analytical data [11]. In the current scenario, still there 
are predatory journals publish data sets that are not reli-
able if they are not verified [12]. Here, researchers may 
utilize computational tools to verify the data before cit-
ing in their research [4, 7]. The prediction tools of vari-
ous spectrograms like UV–visible, infrared (IR), Raman, 
nuclear magnetic resonance (NMR), and mass spectra 
are now widely accessible to researchers. Similarly, in sil-
ico approaches to predict the chromatographic behaviour 
of an analyte in various chromatographic techniques like 
HPLC and GC are in existence [13, 14]. The prediction 
of retention time (tR) in chromatography is gaining much 
importance in analytical method development research. 
Several computational prediction approaches have been 
reported. Some of them are artificial neural networks 
(ANNs), response surface methodology (RSM), analyti-
cal quality by design (AQbD) [15], design of experiments 
(DoE), chemometrics, and quantitative structure reten-
tion relationship (QSRR) methods [16]. Although the 
knowledge about artificial intelligence software is lim-
ited, several artificial neural network-based programmes 
are widely available these days. Many researchers spend 

a significant amount of time on their experimental work, 
even though they are shortcomings in computational 
chemistry. The AQbD and QSRR approaches explore 
the scientific understanding of critical method vari-
ables and method response in chromatography [17, 18]. 
These methods are still recommended in pharmaceutical 
method development because it allows regulatory flex-
ibility [19]. In the AQbD approach [20], the tool used 
in the model development is DoE. In chromatographic 
research, the quantitative structure retention relation-
ship (QSRR) is a reliable in silico method for predicting 
molecular systems [21, 22], and it can be used to evaluate 
complex physicochemical features of analytes in chroma-
tographic analyses and for predicting chromatographic 
retention parameters [23, 24].

Considering the above discussion, the present assess-
ment review focused on various prediction tools avail-
able, and accessible to resource-limited research setups. 
We have also explored the predictive ability of the dif-
ferent in silico tools with examples pertaining to the 
reference spectral library. Thus, this review can assist 
researchers in assessing the tool’s reliability from case to 
case.

Main text
Problems involving the analytical methods
Today, the difficulties in analytical laboratories are the 
same as they had experienced in the past, although 
there has been advancement in analytical technology. 
Analytical laboratories experience difficulties related to 
the growth and preservation of expertise, maintaining 
the equipment sensitivities, and introduction of novel 
methodologies [25]. There are many reports on previous 
analytical issues with analytes, including method perfor-
mance [26], a lack of regulatory flexibility [27], complex 
chemical processes [28], OOT-out of trend [29], and 
OOS-out of specification [30, 31]. This problem could 
be mainly raised by three stages such as pre-analytical, 
post-analytical, and development phase. These can be 
overcome by utilizing the most modern and advanced 
computational methods.

Pre‑analytical phase
One of the crucial stages in the analysis of the sample is 
the pre-analytical phase it includes, gathering of litera-
ture, sampling, preparation of the sample, transport, and 
storage. This entire process is the most time-consuming 
and might occasionally lead to errors [32]. It is widely 
acknowledged that a degraded sample cannot produce 
good results. Always, it is important to conduct a litera-
ture review before beginning any research on an analyte. 
There are many databases, books, journals, and websites, 
but in some instances, information on new analyte may 
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not be available due to a lack of studies on the analytes, 
or newly synthesized materials, or a lack of source availa-
bility [33]. Next, for new analytical method development, 
the preparation of a sample is a critical step. A sample 
processing method is unique for each type of sample, 
including biological matrix, food products, active com-
pounds, excipients, and pesticides. A given procedure 
cannot be applied to a different type of analyte without a 
complete revalidation of the method [34]. Unfortunately, 
this rule is regularly ignored. Finally, there are several 
issues with analyte that affect storage and transporta-
tion; they are temperature, humidity control, data storage 
maintenance, and a lack of advancement [35].

Development phase
The selection of the method, procedure, principle, tech-
nology, and appropriate recommendations are the main 
problems that arise throughout the development phase. 
Unfortunately, it must be acknowledged that no method 
has yet been developed that satisfies all of these criteria 
and appropriate for all classes of analytes. This always 
place restrictions on analytical chemists. It is also cru-
cial to understand whether the analysis’s objective is 
merely screening or accurate quantification.  In devel-
oping chromatography methods, optimization includes 
temperature, flow rate, the choice of mobile and sta-
tionary phases, separation efficiency, internal stand-
ard selection, and validation. Thus, re-optimization are 
difficult task, if the method fails during method trans-
fer [36]. In the last decade, new chromatographic tech-
niques for the detection of bio-analytes have emerged. 
One of these techniques is tandem mass spectrometry 
(LC–MS/MS), which has advantages such as high selec-
tivity and sensitivity but possess disadvantages such as 
expensive equipment, experienced operators, and more 
challenging method development [37, 38]. In the devel-
opment of electrochemistry supported instrument, the 
general settings for resolution, path of the composite 

electrochemical response examination, and optimal path 
of analysis of the multidimensional data are complicated 
[39].

Post‑analytical phase
In this phase, the key challenge is the collection and 
interpretation of data with analytical techniques, particu-
larly when it comes to clinical research, proteomics, and 
metabolomics. Additionally, certain sophisticated com-
putations raised problems from the data analysis as well. 
In general, manual calculations can produce inaccurate 
findings. From pre- and post-data analyses in chroma-
tography methods, the common troubles are unwanted 
background signals, baseline drift, unresolved peaks 
shifting and retention durations, data comparison errors, 
and improper retention time alignments which are to be 
addressed [40]. In spectroscopic analyses, specific math-
ematical transformations that are frequently created for a 
certain experimental approach are typically used to rec-
tify systematic undesirable signal changes. Baseline shifts 
(offsets), horizontal shifts, drifts (slope changes), and 
global intensity effects are some of the systematic signal 
fluctuations. The significant alteration of signal profiles 
produced by the derivation transform can mislead the 
interpretation of final results [41]. Overall, the scheme of 
application of computational method is shown in Fig. 1.

Prediction of spectrograms
Prediction of  C13‑NMR and  H1‑NMR
NMR is a significant tool for detecting carbon and hydro-
gen atoms in organic compounds. In the pharmaceuti-
cal industry,  C13-NMR and  H1-NMR are used to assess 
drug purity, composition, and chemical shifts of diverse 
organic molecules. NMR parameters are now calculated 
by utilizing computational methods in association with 
chemical structures. AI has created several software tools 
(e.g. ChemDraw, Chemaxon, etc.) that are now used to 
predict chemical shifts in  H1-NMR and  C13-NMR and 
offer net intensity, quality, and spectrograms.

Fig. 1 Scheme of application of computational methods in analytical process
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Machine learning approach in NMR prediction
Machine learning (ML) approaches are more beneficial 
and, in most cases, faster than prediction-based data-
bases like HOSE codes. The database works by finding 
structural similarities and averaging the experimental 
data for chemical structures. The similarity between 
the new and known HOSE codes has little bearing on 
the accuracy of the prediction. The well-established 
structure determination approach formerly relied on 
quantum chemical calculation-based methods such as 
topical-based DFT calculation. This method is accurate 
for H1 and  C13 chemical shift predictions, but consid-
erably more time-consuming and expensive. Today, 
software tools have been designed to speed up the pro-
cedure. The NMR signal characteristics can be visual-
ized more accurately using a machine learning method 
called “Automatic structure verification (ASV)” based 
on variables such as temperature, solvent, pH, salt con-
tent, concentration, and so on which will affect chemi-
cal shifts in laboratory studies. All of these parameters 
have considered, such a way that NMR can predict the 
chemical shift for an unknown structure. But, certain 
other prediction algorithms take some of them into 
account, still the prediction systems produce variable 
values. But, the ASV system is capable of properly deal-
ing with overlapping peaks. This is especially important 
when sections of the compound’s relevant peaks, such 
as significant solvent peaks, are quite close to other sig-
nals [42–45]. Few researchers have used this approach, 
including Jia et al. [46], who have developed a method 

for extracting data from previously examined 13C and 
1H NMR spectra in order to recognize the NMR spec-
trum. Min Lin and colleagues predicted the  chemical 
shifts based on cutting-edge machine learning [47].

Software handling for NMR Signal prediction
The user can either use a software application to draw the 
chemical structure of the test molecule or download and 
paste it into the software. The user will be able to locate 
the predicted  C13-NMR and  H1-NMR spectra in 1–5 min 
after clicking the calculation button. The user can option-
ally alter the frequency range from 60.0 to 1000 Hz after 
the prediction. Finally, a pdf document will be generated 
including the substance’s chemical shift, peak intensity, 
peak quality, molecular location, and coupling constant 
values [48]. A typical  H1-NMR signal for Zidovudine is 
shown in Fig. 2.

Prediction of UV–Visible Spectra
The UV–Vis absorption spectrum of an organic sub-
stance is a key component of its physical makeup. Using 
predictions of UV–Vis spectra from molecular structural 
formulas, it is generally quite interesting to design new 
materials, find potential phototoxic chemicals, and esti-
mate missing spectroscopic data for known molecules 
[49]. In a recent study, Chan et al. [50] utilized TD-DFT 
computation approach for rapid ultraviolet–visible spec-
trum prediction. The method was developed by Urbina 
et  al. [51] using neural network-based computation to 
predict UV–visible spectrograms.

Fig. 2 Typical predicted  H1-NMR signals for Zidovudine
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Time‑dependent density functional theory (TD‑DFT)
For TD-DFT calculation, the software should be able 
to analyse the energy of the chemical structure in the 
excited states, and the probability of transition between 
energy levels for the chemical molecule. For example, the 
ORCA programme contains several methods for accu-
rately determining excited state properties. The TD-DFT 
technique is the most effective of all the approaches. For 
precise results in this method, an optimized geometry 
file of the chemical structure is required. To optimize the 
structure, the user might utilize the “IQmol” software 
package or another. After that, the user can use Note-
pad +  + to create the input file, with the function code 
“! B3LYP def2-TZVP”, “RIJCOSX” code to speed up the 
process, “% TDDFT” code to automatically generate the 
excited state calculation, “NROOTS” flag to determine 
how many excited states to be added, and “MEXDIM” 
to determine the maximum dimension of the expan-
sion space. To simulate the analyte employed in the 
experiment, CPCM may be a solvation model for both 
the ground and excited states. The number “0” denotes 
charge, whereas the second number denotes multiplicity. 
Finally, from the same folder, save this file in “inp” format 
(tddft.inp). The user may then go to the folder and input a 
comment “orca tddft.inp > tddft.out” followed by “Enter” 
to execute the computation on the CMD line (comment 
prompt). Depending on the molecules involved, it might 
take some time (10  min–2  h). After the computation is 
completed, the programme creates an output file in the 
same folder that contains all of the data [52, 53].

Visualization of UV–visible spectra
The UV–Visible spectrum can be obtained for an 
unknown analyte instantly using a graphical interface. It 
does indeed show thin line spectral waves, but some line 
broadening is required to make the predicted spectra 

match the experimental one. This is easily accomplished 
by selecting “Advanced >  > ” and then, on the “Infra-
red Spectra Settings” tab, adjusting the “Peak Width” to 
10-30  cm−1 [54–58]. Figure 3 shows the generated spec-
trogram of Zidovudine compound.

IR/Raman predictions
For chemical characterization and identification, both 
infrared (IR) and Raman spectroscopy continued to be 
essential tools. Recently, McGill et al. [59] developed the 
IR spectrum prediction procedure using a neural net-
work-based approach. IR and Raman spectra may also be 
predicted using the ORCA software. It uses “Avogadro” 
or “IQmol” to compute the frequencies of the molecules. 
The 3D structure of the analyte is to be analysed and opti-
mized. The ORCA programme can create output on its 
own. The user must create a new folder and set the opti-
mized geometry structure and input file, similar to the 
UV–visible computations. The “! B3LYP DEF2-SVP” is 
the function code, while “OPT FREQ” specifies multiplic-
ity. Finally, save the file in “inp” format in the same loca-
tion so that the user may navigate the folder and execute 
“orca foscarnet.inp > foscarnet.out” followed by “Enter” 
to perform the computation. The output file can be cre-
ated in the same folder when the operation is finished [7, 
54–58]. Figure 4 shows the predicted IR spectrum of fos-
carnet generated by Avogadro. 

Plotting a spectrum
Using Avogadro as a graphical user interface, the IR spec-
trum may be generated rapidly. To view the visual spec-
tra in a new window, the user can open the saved output 
file and click “Show Spectra”. Although it displays nar-
row spectral lines, some line widening is necessary to 
bring the predicted spectra as close to the observed one 
as possible. This can be readily performed by selecting 

Fig. 3 Predicted CD and UV spectrum of zidovudine generated by Avogadro
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“Advanced >  > ” and then changing the “Peak Width” 
to 30–130   cm−1 on the “Infrared Spectra Settings” tab 
[54–56].

Mass spectroscopy predictions
The molecular weight of an analytes in pharmaceuti-
cal studies is determined by mass spectrometry (MS). In 
an electron ionization mass spectrometry (EI-MS), an 
electron beam positively ionizes and fragments the mol-
ecules [60]. According to the mass-to-charge (m/z) ratio, 
the mass spectrum is a distribution of the frequency or 
intensity of each type of ion [61]. The prediction models 
calculate the chance of each bond breaking under ioni-
zation and the frequency of each ion fragment by using 
quantum mechanics calculations [62] or machine learn-
ing [63]. For large molecules, model’s prediction can 
consume few minutes, depending on the molecule’s size. 
This due to the fact that these techniques must either 
utilize sophisticated computations to determine molec-
ular orbital energies with high accuracy or stochasti-
cally mimic the fragmentation of the molecule. A neural 
network termed neural electron ionization mass spec-
trometry (NEIMS) predicts the electron ionization mass 
spectrum for a particular small molecule and is studied 
by Jennifer N. Wei and colleagues. Additionally, they 
found that the forward-only model fails to adequately 
capture the fragmentation events, but the bidirectional 
prediction mode does [64] because it directly predicts 
spectra rather than bond breaking probabilities. As a 

result, this  model is significantly faster than previously 
reported methods.

Wang et  al. utilized the recently developed  quantum 
chemical programme QCEIMS (Quantum Chemical 
Electron Ionization Mass Spectrometry). QCEIMS can 
theoretically calculate the spectra for any given chemical 
structure. However, in order to make quick predictions, 
approximations and parameter estimations are required, 
which are important for the precision of QCEIMS predic-
tions. For the MD trajectories, fragment ions are calcu-
lated by QCEIMS using Born–Oppenheimer molecular 
dynamics (MD) within picosecond reaction durations 
with femtosecond intervals. With this approach, they dis-
covered that tweaking QCEIMS’s parameters were not a 
practical way to enhance simulation outcomes [65, 66]. 
One of the best tools for in silico mass-spectrum-to-
compound identification is CFM-ID, which Wang et  al. 
used to predict more accurate ESI–MS/MS spectra. They 
added a new method for modelling ring cleavage that 
models the process as a series of straightforward chemi-
cal bond dissociations, and they expanded their hand-
written rule-based predictor to cover more chemical 
classes of analytes [67]. They also listed parameters from 
molecular topological parameters.

Fluorescence spectroscopy predictions
Fluorescence spectroscopy measures a target analyte flu-
orescence upon being excited by a laser beam (often UV 
absorption) [68]. The prediction of analyte’s fluorescence 

Fig. 4 Predicted IR spectrum of foscarnet generated by Avogadro
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features, including the type of fluorescence, emission, and 
excitation wavelengths [69], can be employed to examine 
included solvent effects. It has been used to predict the 
spectra for a variety of fluorescent compounds [70]. The 
majority of the predicted spectra have molecular masses 
of 228 or below. In such case, DFT technique can be used 
for larger molecular weight and chemical emission spec-
tra calculation with solvent effects.

The characterization of electronic excited states 
depends on the accuracy of simulation spectrum of 
molecular absorption /or emission and precise tech-
niques like the equation of motion coupled cluster singles 
and doubles (EOM-CCSD) [71, 72]. In order to increase 
the emission spectrum qualities, Caricato et al. [73] com-
bined the EOM-CCSD and polarizable continuum 
(PCM) models and reported that the predicted values 
of vertical emission energies are in good accord with the 
available experimental data. Later, DFT was used by Pow-
ell et  al. [74] to demonstrate the capability of predicted 
spectra in generating libraries of fluorescence spectra in 
a digital format. Ye et  al. concluded that the statistical 
requirements for the numerically predicted wavelength 
were satisfied by the Lasso-RF (Random Forest descrip-
tor) model. Four conjugated bonding-related characteris-
tics were found by the model to contribute primarily to 
the predicted emission wavelength [75]. Furthermore, 
Shams-Nateri et  al. [76] investigated the link between 
absorption and emission spectra using the PCA chemo-
metric approach, and they found that the accuracy of 
emission spectra prediction was improved with the addi-
tion of more principal components.

Electrochemistry predictions
Because of the growing interest in electrochemistry 
as a potential drug core structure and for the develop-
ment of organic photovoltaic materials, it has recently 
experienced a huge comeback and provided valuable 
prediction, filtering, and active learning. This includes a 
promising optimization of the electrochemical proper-
ties of the analytes, investigation of intrinsic electron 
deficiency, and rendering of the connection between 
electronic characteristics and substituent effects [77]. 
Using electrochemistry predictions of compounds using 
quantum mechanical calculations provides a quick and 
accurate method for the research. For instance, DFT is 
regarded as the “workhorse” of recent theoretical investi-
gations in electrochemistry and physics [78].

Electrochemical systems are studied using the popu-
lar electrochemical impedance spectroscopy (EIS) char-
acterization approach. The significance of this method 
is still constrained by several issues. EIS is also exten-
sively employed in the development of sensors [79, 80], 
in health care [81], drug release [82], testing, and biology 

[83] because EIS makes it possible to characterize such 
systems and helps in identifying crucial variables like 
conductivities [84], resistances [85], and capacitances 
[86]. The computational Gaussian processes (GPs) used 
in this method faced significant challenges including 
noise, impeded spectrum regression, polarization resist-
ance, and probed frequencies that were not always ideal. 
An infinite or finite collection of random variables is 
referred to as a GP, if the joint distribution of any finite 
subset displays multivariate Gaussian behaviour. Then, 
GPs may regress and predict it using a prior distribu-
tion and a set of assumptions on the characteristics of the 
observed unknown function [87]. Regression and pre-
diction uncertainty can be measured using GPs and also 
have so far been used to filter data, predict parameters 
in diverse situations [88], and enhance experiments in 
the active learning domain. Liu and Ciucci et al. [89, 90] 
used GPs to de-convolve the distribution of relaxation 
duration, a novel approach for EIS analysis. Then, using 
a finite GP approximation, Maradesa et al. extended this 
framework to constrain the DFT to be non-negative. 
Additionally, Py et al. [91, 92] created and validated the 
method that Ciucci used to assess the quality of EIS spec-
tra using GPs that complied with the Hilbert transform.

Kiss et  al. [93] predicted the substituent effects in 
electrochemical properties of the analyte and compre-
hended the influence of substituents on the character of 
the electronic transition and transition density matrices 
(TDMs). This procedure makes it possible to access the 
distribution of electrons and holes in the excited state 
and determine their delocalization. This makes it possi-
ble to reveal electronic excitation processes like charge 
transfer [94]. The imbalance in the TDMs is caused by 
the presence of electron-donating and electron-with-
drawing groups interacting with the hole. The location 
of the hole is altered when an electron-donating moiety 
uses mesomeric effects to donate electron density to the 
hole. Instead of being just inductively impacted, at this 
instance, the TDM can be described as mesomerically 
effected. On the other hand, the inductively dominated 
TDM lacks any localization due to the absence of any 
major TDM elements on the analyte. The polarity differ-
ence has a significant impact on the mesmeric contribu-
tion to the TDM. This made it easier to spot the impacts 
of charge transfer and substitution.

The next field of research addressed the exciton bind-
ing energies, which show the Coulomb attraction 
between the exciton quasiparticles (electron and hole). 
It is a measurement of the exciton’s separability in free 
charges, and it has a direct impact on how an effective 
current is produced in optoelectronics [95]. More details 
on the impacts on the characteristics of the electronic 
structure are revealed by analysing the HOMO and 
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LUMO energies (EHOMO and ELUMO) [96]. In order 
to optimize the electrochemical characteristics of an 
analyte, Min et al. [97] developed and verified a machine 
learning (ML) approach for electrochemistry. Both out-
put (such as initial capacity and cycle life) and few input 
(synthesis parameters, ICP-MS data, and X-ray diffrac-
tion (XRD) results) variables were used to build several 
experimental datasets for analyte [98]. When distributing 
these variables across the entire dataset while building 
the ML model, a number of primary variables were cho-
sen to serve as suggestions for the optimal experimental 
parameters.

Prediction of chromatographic retention behaviour
Quantitative structure retention relationship (QSRR)
QSRR is a computational approach for linking chemi-
cal structural variables to chromatographic column 
retention behaviour. Here, Y-variables are frequently 
employed as dependent variables for predictive or 
explanatory purposes, whereas X-variables are utilized as 
independent variables. As a result, Y-variables in QSRR 

have connected to solute chromatographic retention, 
whereas X-variables encode solute molecular structure. 
QSRR was first used to characterize columns by quanti-
tatively comparing their separation qualities or to supply 
knowledge for predicting retention mechanisms in vari-
ous chromatographic settings [22]. A typical QSRR study 
includes building a retention database of compounds 
with known chemical structures, computing molecular 
descriptors for each structure, choosing descriptors, cre-
ating a QSRR model, and validation. Figure 5 illustrates a 
QSRR methodology and work flow.

The most popular methods for expressing chemical 
structures are molecule 1D descriptors, 2D descriptors, 
and 3D descriptors. While representing a connection 
table or a molecular graph, the chemical structure of the 
solutes of interest is used to compute 2D descriptors, 
whereas 1D descriptors provide simple chemical infor-
mation about a solute, such as molecular weight or the 
number of oxygen atoms in the structure. A molecular 
descriptor that describes both the general surfaces/or 

Fig. 5 Scheme of QSRR methodology in chromatography
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volumes of molecules and 3D arrangement of structural 
attributes is known as a 3D molecular descriptor [23].

Depicting the molecular structure of QSRR is one of 
the key concerns in QSRR modelling. Molecular descrip-
tors that describe chemical structures are typically cat-
egorized as physicochemical descriptors and descriptors 
of the quantum chemical, topological, etc. [99]. The fact is 
that physicochemical descriptors have a positive correla-
tion with solute retention on chromatographic columns. 
On a molecular level, quantum chemical descriptors 
shed light on the process of chromatographic retention, 
although the link to solute retention is frequently poor, 
and the calculation is laborious. With today’s computa-
tional technologies, topological descriptors are easily 
constructed, but they are unrelated to retention phenom-
ena [24]. There are two methods of the QSRR approach, 
viz., the direct mapping method and the direct compari-
son method.

Prediction of retention time by the direct mapping method
It is a simple method for predicting compound retention 
time on a chromatographic column. It is a web-based 
solution that allows users to predict retention by submit-
ting their data and receiving expected retention values. 
Predict is a database available, and this experiment has 
four steps as follows.

The user can create a CVS file that includes the com-
pound name, real retention time from the PubChem 
CID or InChIs databases, and stereo-chemical param-
eters. The user must be able to upload retention data 
and get new retention predictions easily using a web 
interface. On the website, the user is initially asked to 
create a new chromatographic system. Each system will 
contain two types of columns: (1) a name and (2) a col-
umn type (for example: RP, HILIC). (3) column descrip-
tion (for example, Waters and Symmetry C18 columns), 
(4) eluent system (for instance, 95:5 methanol/water), 
(5) The eluent’s pH (for example, acidic or alkaline), 
and (6) Eluent additives (for example, 0.1 per cent tri-
fluoroacetic acid). The user will next submit a CSV file 
containing retention times for chemicals derived from 
their studies or google scholar in the following phase. 
Finally, the user may obtain the estimated retention 
time by clicking “get a prediction” [58].

Prediction of retention time by direct comparison method
QSRR Automator, a python-based software, can be 
used to predict retention using the direct compari-
son method. Mordred, a software package that uses 
the rdkit package, can be used to determine molecu-
lar descriptors. Machine learning operations may be 

performed with the sci-kit learn package. The following 
is a description of the QSRR Automator Workflow. The 
training data, which contains the name of each chemi-
cal, the structure in the form of a simplified molecular 
input line entry system (SMILES) text string, and the 
retention duration, may be created by the user. The pro-
gramme creates a template and simplifies the input file 
on its own. After that, the user may submit their train-
ing data (chemical descriptions, SMILES, compound 
name, and actual retention time). The structural and 
electrical descriptions to be utilized should be used. 
Functional groups, hybridizations, the number of car-
bon atoms, and the ring system are all structural prop-
erties. Aromaticity and numerous electronegativity 
calculations are two electrical properties. All of these 
calculations are simple; unlike more complex finger-
print feature combinations, they can all be done using 
the Mordred software package, which calculates over 
1500 features [100]. The recent data on the QSRR based 
method were listed in the Table 1.

Chemometrics in chromatography
The chemometric approach is widely used in separa-
tion science to predict the analysed peak asymmetry, 
peak overlapping, and peak optimizations. Co-elution of 
multiple analytes in chromatography significantly com-
plicates quantification of the target analyte due to inter-
ference caused by incorrect method optimization. At this 
juncture, chemometric methods such as principal com-
ponent analysis (PCA) are widely used in separation sci-
ence and have now been extended to LC-HRMS analysis 
for proteomics and metabolomics. In addition, artificial 
neural networks (ANN), factorial design (FD), partial 
least squares (PLS), and cluster analysis (CA) are also in 
place [113, 114]

Chemometrics in one‑ and two‑dimensional 
chromatography
In the development of two-dimensional (2D) chromatog-
raphy, the entire first-dimension (1D) effluent is divided 
into many fractions, each of which is subjected to 2D 
separation. Two-dimensional chromatography is created 
by combining the results of 1D liquid chromatography 
separations (LC × LC). The placements of the spots pro-
vide qualitative information, while the intensities of the 
spots provide quantitative information. However, extract-
ing information from extremely complex molecules like 
protein digests, metabolic extracts, and oil mixes can be 
problematic. Even with modern high-resolution chroma-
tography, extracting the entire information of a complex 
matrix remains a challenging task. Many researchers are 
constantly working to improve the efficiency of chemo-
metric data processing strategies.
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In chromatography, chemometric is an appreciable 
tool for pre- and post-data analysis to resolve unde-
sired background signals, baseline drift, unresolved 
peaks, and shifting retention times. Chemometric-based 
data interpretation, information extraction, and pre-
data processing can significantly increase the analyti-
cal performance of an existing technique. The various 
chemometric approaches used in chromatography are 
penalized partial least squares (PPLS) approaches, mul-
tivariate curve resolution and orthogonal subspace pro-
jection for background correction, local minimum value 
approach, baseline estimation, and denoising using scar-
city, retention-time-alignment strategies, peak clustering, 
and principal component analysis (PCA). These methods 
highlighted the chemometric techniques as the most pro-
gressing in silico approach in 1D and 2D chromatography 
and spectroscopy [115].

Chemometrics in unsupervised and supervised techniques
For understanding the dissimilarity or variance in the 
data matrix, PCA, independent compound analysis 
(ICA), and cluster analysis (CA) are used. As a result, 
the “calibration sets” may be defined as loading vectors 
and utilized to project unknown data. If data does not 
cluster against any objective criterion, then supervised 
procedures such as multivariate calibration methods are 
applied. Although a regression model may be built uti-
lizing a large number of PCA variables, this approach 
is referred to as principal component regression (PCR). 
The data matrix’s PCR analysis is mainly based on vari-
ance. The partial least squares (PLS) method, also known 
as a projection to latent structures, is commonly used in 
the linear supervised method. It finds the route through 
the data matrix that maximizes the covariance between 
the matrix and the predicted variable and then creates a 
regression model [116].

Software tools in chemometrics and their workflow
Chemometric software (for example, BWIQ) is available 
for on- and off-line quantitative and qualitative spectral 
measurements to identify principal components. The 
software classifies the sample as corresponding to the 
group with the shortest calculated “Mahalanobis distance 
(a measure of the distance between point-P and distribu-
tion D)”. The workflow is described in following section.

The complete spectrum will be presented on the screen 
once you start the software, click “file”, open the data, and 
import it into the software. We may designate spectral 
files in BWIQ in a variety of ways, including calibration, 
validation, and ignored files. The “usage” column’s drop-
down button was used to manually designate the spec-
trum. The algorithm parameters have been chosen and 
are accessible in the algorithm properties tab. We may 

use the sampling method and adjust the calibration file to 
the o validation file ratio in the property panel, for exam-
ple, 60:40 (calibration: validation). After that, eliminate 
any change in the unrelated to chemical variations data 
sets but rather to scattering, instrumental fluctuations, 
spectral noise, or background differences in the pre-
processing processes. Because the model can analyse the 
full spectrum, it will be more sensitive to contaminants 
or changes in the samples that add signals in other spec-
tral areas. However, excluding non-informative or noisy 
data areas from analysis is an advantage. Then, we have 
the option of using a chemometric method such as PCA-
Mahalanobis distance (MD). In principle component 
space, the scores plot illustrates the sample clusters. The 
result shows clusters matching the different classes of 
principal components. Additional graphs, such as load-
ing and variance, are also available [117].

Different types of chemometrics approaches
Penalized partial least squares approach (PPLS)
This method was initially developed by Whittaker in 
1922 to address signal smoothing issues [118]. The goal 
of PLS is to approximate observed data by resolving 
conflicts between original data fidelity and the impreci-
sion of fitting data more easily by resolving the model’s 
fit to the data [119]. Assume that Eq. (1) is used to cal-
culate the fidelity and roughness combined in a bal-
anced way:

 where z is the fitting vector and v is a vector representing 
the analyte spectrum, both of which have a length of “n” 
elements. Fitted z should maintain both the roughness of 
the fitted vector and fidelity to v. The sum of squares of 
differences between the vector and element of z and its 
neighbours can be used to describe F, which stands for 
fidelity to the analyte spectrum “v”, and R, which stands 
for the roughness of the fitting vector z. A user-adjusta-
ble parameter called “λ” finds a balance between fidelity 
and roughness. Greater λ favours a fitted vector that is 
smoother.

A weight vector w was added for fidelity in order to use 
the PLS to estimate the background. Its element wi may 
be thought of as a weight that represents the depend-
ability of point I as a component of background. The par-
tial derivatives of Q are equalled to zero 

(

∂Q
/

∂z = 0
)

 , 
in order to solve the minimization issue of Eq. (1). The 
matrix form of the resulting linear system is then used to 
determine the fit (Eq. 2).

(1)
Q = F + �R =

n

i=1

(vi − zi)
2
+

n

i=2

(zi − zi−1)
2

= v − z2 + � Dz2
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To use this PLS approach for baseline correction, which 
is used by Zhang et  al. and Cobas, one must first iden-
tify the locations of the chromatogram’s peaks. In order 
to determine whether a data point in the chromatogram 
relates to background or a peak, respectively, a binary 
mask or weighted matrix can be generated once these 
peak points are known [120, 121].

Additionally, Eilers et al. [122] created the asymmetri-
cal least squares (asLS), which introduces an asymme-
try parameter in an effort to address this problem. The 
weights assigned to positive and negative deviations from 
the baseline can now be less and bigger, respectively. 
However, this also takes into account of issues with the 
baseline that were raised for the introduction of adaptive 
iteratively reweighted penalized least squares (airPLS) 
[123], which enables some baseline regions to be fined 
more than others. By iteratively resolving a weighted 
penalized least squares problem, airPLS develops a 
weight vector.

Once the difference between the signal and the fitted 
vector 

∣

∣d
t
∣

∣ is less than one thousand of the original sig-
nal, it is assumed that an accurate weight vector has been 
established. The PLS approach satisfies the following ter-
mination criteria.

In some situations, both approaches overestimate the 
baseline when a matrix is present. Baek et  al. created 
the asymmetrically reweighted penalizes least squares 
(arPLS) method as a solution [124]. MairPLS is another 
technique built on the similar concepts. While compar-
ing to the prior technique, Long Chen et  al. [125] col-
laborative PLS for Raman spectra background correction 
result was better.

Multivariate curve resolution‑alternating least squares 
(MCR‑ALS)
From MCR-ALS, estimations of the chemically signifi-
cant profiles of the relevant chemical species may be 
created from mixed experimental data using a bilinear 
decomposition [126]. Building many MCR-ALS models 
while investigating suitable quality-of-fit and interpret-
ability of resolved chemical information is commonly 
required by strategies to determine the optimal number 
of components in the MCR-ALS model [127]. The data 
set include complex, heterogeneous samples of unknown 
composition, spatially resolved chemical images and 

(2)
(

w + �D′D
)

z = v

(3)
(

w + �D′D
)

z = wv

(4)
∣

∣d
t
∣

∣ < 0.001× |v|

associated resolved analyte spectra of the individual, pure 
chemical components. MCR-ALS specifically breaks 
down an experimental data matrix (DM) [128]

 where in Eq. (5), the resolved spectrum matrix is ST, the 
residual error matrix is E, and the concentration profile 
matrix is C. Three-dimensional experimental data pro-
duced by spectroscopic techniques contain spectral (λ or 
v) and spatial (x and y) information. The 2D experimental 
data matrix, DM, which contains integrated spatial (both 
x and y together) and spectral (λ or v) information, is 
generated from the three-dimensional experimental data 
before MCR-ALS. This approach applied for the baseline 
correction and quantitative purpose also for correction 
of local minimum of the least square errors obtained by 
various other methods such as singular value decomposi-
tion (SVD) or PCA [129].

Principal component analysis (PCA)
The principal component analysis is a popular unsuper-
vised learning technique for reducing the dimensionality 
of data. The PCA was invented in 1901 by Pearson [130]. 
In chromatography, PCA is frequently used to examine 
the outcomes of complicated samples [131] where uncor-
related variables are linearly fit across the data set. The 
major variation of data is represented by the first com-
ponent, which also describes the second-most frequent 
variance in the data, and so on. This chemometrics tool 
can be particularly helpful when it comes to interpreting 
highly dimensional data.

The PCA method may be used for interference factor 
removal, interference factor extraction, and data com-
pression. The following equation illustrates the outcomes 
of using the singular value decomposition (SVD) method 
to carry out PCA analysis and get orthogonal principal 
components (PCs) [132].

 where in Eq. (6), the three matrices U , � , and VT denote 
scores, singular values, and loadings with sizes of m×m , 
m× n , and n× n , respectively. D stands for the raw data 
with a size of m× n for decomposition [133].

In chromatography, Soares et al. [134] applied the PCA 
in combination with COW; its interesting use is to com-
pare columns. Prior performing PCA, the chromato-
grams are first aligned with a COW technique to increase 
the probability (p-) values. It is possible to determine if 
there are significant differences between chromatograms 
by computing the Mahalanobis distances and convert-
ing them to p-values. Although this method decreases 
noise and raises the signal-to-noise ratio (S/N), there is a 

(5)DM = CST + E

(6)D = U�VT
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possibility that numerous components may become con-
voluted  and that chemical information is  lost. Accord-
ing to a report, the ideal bin size depends on the sample 
[135]. This method may be used to classify samples in 
complicated or multidimensional data set.

Parallel factor analysis (PARAFAC)
PARAFAC reduces the dimensionality of the data col-
lection, but factor analysis is as similar to PCA. Factor 
analysis present the data as trilinear and contains three 
modes, namely spectra,  chromatograms, and  concen-
trations [136], whereas PCA is essentially a dimension 
reduction approach. As a result, it discovers not only a 
subspace, but also the vector orientations [137]. PARA-
FAC2, which was developed by Khakimov et  al. [138], 
can similarly handle slight changes in retention time. 
The three-way array X of dimensions I, J, and K can be 
described by the PARAFAC decomposition.

In Eq. (7), F stands for the number of factors, while Xijk , 
aif  , bjf  , ckf  , and eijk are, respectively, elements of X, A, B, 
C, and E. The loading matrices A, B, and C have dimen-
sions of I × F ,J × F  , and K × F  , respectively. The three-
way array of dimensions I × J × K  is denoted E [139].

The uniqueness of PARAFAC model is that it estab-
lishes not only the subspace, but also the location of the 
axes defining it. Additionally, the PARAFAC model offers 
a second-order benefit of allowing for the analysis of 
chemical components even in the presence of unidenti-
fied interferences [140]. Tatjana et al. and Na Peng et al. 
[141] both applied the PARAFAC to the fluorescence 
analysis, and they discovered that the model of fluores-
cence had the capacity to quantify and analyse fluoro-
phores quality in analytes and classify the various types 
of fluorophores. Another study recommended the com-
bination of PARAFAC with fluorescence regional integra-
tion for better characterizing analyte and understanding 
their functionality [142].

Partial least squares (PLS)‑based methods
PLS-DA, also known as discriminant partial least squares 
(D-PLS), is a method for analysing partial least squares. 
The technique was first developed by Barker and Ray-
ens [143]. Dimension reduction and the construction 
of a predictive model are the two major components of 
PLS-DA modelling. It gives a linear delimiter using par-
tial least squares (PLS) regression with the response vari-
ables being binary class membership indices (e.g. 0 and 
1) for each class. The PLS-2 algorithm, which enables 

(7)Xijk =

F
∑

f=1

aif bjf ckf + eijk

the prediction of a matrix of response variables in mul-
tiple components, is used when there are more than two 
classes involved.

PLS-DA—The components must be orthogonal to one 
another in the ordinary variant. The non-singular eigen-
vectors of the covariance matrix C can be used to formu-
late it [144].

 where in Eq. (8), y is the class label vector, Cn is the n× n 
centring matrix, and X is the loading matrix. The load-
ing vectors a1,… ad, which denote the relevance of each 
feature in that component, are computed iteratively. Its 
objective for iteration h is as follows:

where X1 = X, yh and Xh are the residual (error) matrices 
following transformation with the prior h-1 components, 
and bh is the loading for the label vector yh.

PLS-DA has been used mostly in biomarker and drug 
discovery research using LC–MS/MS and NMR study of 
advanced-stage melanoma in blood [145]. Using LC–MS 
data, Lambrecht et al. [146] employed PLS-DA to classify 
black rice according to its place of origin. PLS was used 
by Eleni et al. [147] to predict the diffusion of substances 
in artificial membranes.

Additionally, orthogonal partial least squares discri-
minant analysis (OPLS-DA) is designed to distinguish 
between the discriminating and non-discriminatory 
dimensions [148]. Using a set of metabolites identified by 
LC–MS/MS, Zhang et al. [149] applied OPLS-DA to con-
firm the legitimacy of fruit juices. Shurui et al. [150] used 
a similar strategy when they used OPLS-DA to HRMS 
study for non-target metabolomics.

Support vector machines (SVM)
A set of pattern-recognition techniques called support vec-
tor machines (SVM) was developed to effectively handle 
nonlinear data distributions. It is one of the chemometrics’ 
machine learning methods. The fundamental component 
of SVM is the projection of data points into a space with 
added dimensions, which serves as a means of identifying 
linear functions capable of modelling the data [151]. Such 
modelling functions can be projected back into the space 
of the original predictors, and producing functions are 
higher in complexity but lower in dimension (often non-
linear). The use of SVM in discriminant classification is 
conventional. Nevertheless, several authors offered class-
modelling-relevant adjustments. It is important to note 
the support vector domain description (SVDD) method 
by Songfeng Zheng [152] used hyperspheres to describe 

(8)C =
1

(n− 1)2
XTCnyy

TCnX

(9)max cov
(

Xhah, yhbh
)
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the class spaces, as one of the most popular strategies. 
Numerous researchers have used this strategy in a variety 
of analytical studies, including laser-induced breakdown 
spectroscopy [153], ATR-FT-IR spectroscopy [154], tan-
dem mass spectrometry (MS/MS) [155], and HPLC [156].

Artificial neural networks (ANNs)
ANNs are multilayer networks of linked mathematical 
operators (neurons). The feed-forward neural network is 
the most common ANN. Here, each neuron performs as 
a weighted sum of the input data or outputs of the pre-
ceding layer as modified by an activation function (typi-
cally linear or logistic function). The proposed algorithms 
learns from a dataset for predicting event outcomes [157].

In the last decade, artificial neural networks (ANNs) 
have been developed to determine retention index or 
time for 1D-GC, 1D-LC, 2D-LC and 2D-GC separations 
[158, 159]. ANNs are computer programs that “learn” to 
carry out tasks by taking into account multiple cases. As 
long as enough input is given, an ANN can detect traits 
and patterns in data. Then, predictions are made in 
novel conditions using these traits and patterns. ANNs 
have been employed in variety of analytical research 
studies like LC–MS/MS determination [160], GC–MS 
[161], and HPLC [162]. Moreover, the list of chemomet-
ric methods used in analytical techniques were listed 
in Table 2.

Table 2 List of chemometric methods used in analytical techniques

LC–NMR Liquid chromatography nuclear magnetic resonance, LC–MS Liquid chromatography–mass spectrometry, GC–MS Gas chromatography–mass spectrometry, 
FT-IR Fourier transform infrared, HPLC High-performance liquid chromatography, UPLC Ultra-performance liquid chromatography

Analytical technique Chemometrics method References

UV–visible spectroscopy PCR—principal component regression [163, 164]

TLRC—trilinear regression calibration [164]

MLRC—multi-linear regression calibration [164]

PLSR—partial least square regression [165]

ILS—inverse least square [166]

LC-NMR PCA—principal component analysis [167]

OPA—orthogonal projection analysis [168]

EFA—evolving factor analysis [168]

MCR-ALS—multivariate curve resolution by alternating the least squares approach [168]
[168]

SFA—sub-window factor analysis [168]

LC–MS MCR-ALS—multivariate curve resolution by alternating the least squares approach [169, 170]

PARAFAC—parallel factor analysis [171]

GC–MS PCA—principal component analysis [172]

GRAM—generalized rank annihilation [173]

FT-IR PLS-DA—partial least square discriminate analysis [174]

PCA—principal component analysis [175]

HPLC PCA—principal component analysis [176]

GRAM—generalized rank annihilation [177]

PARAFAC—parallel factor analysis [177]

HCA—hierarchical cluster analysis [178]

SIMCA—soft independent modelling of class analogy [179]

RAFA—rank annihilation factor analysis [180]

UPLC PCR—principal component regression [181]

HCA—hierarchical cluster analysis

Raman spectroscopy PCA—principal component analysis [182]

SIMCA—soft independent modelling of class analogy

NIR (near-infrared) PLS—partial least square [183]

PCA—principal component analysis [183]

SIMCA—soft independent modelling of class analogy [184]

Spectrofluorometry PLS—partial least square
PARAFAC—parallel factor analysis

[185]
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Analytical quality by design (AQbD)
Analytical quality by design (AQbD) is an approach for 
developing robust analytics that is appropriate for regula-
tory flexibility in pharmaceutical submissions to the FDA. 
AQbD is widely used in the development of various ana-
lytical methods such as UV–visible, FT-IR, Raman, NIR, 
fluorimetric, HPLC, UHPLC, LC–MS, GC–MS, HPTLC, 
and SFC. In the pharmaceutical industry, the AQbD tool 
is integrated with PAT as a real-time process analyser to 
monitor any given process or material, which generates 
massive and complex data sets. There is a growing inter-
est in the implementation of AQbD in new analytical 
method development procedures for wider applications 
including assays, stability studies, and bioanalytical stud-
ies, in analytical method development. While comparing 
to one-factor-at-a-time (OFAT) approach, AQbD-based 
analytical methods have demonstrated a high degree of 
robustness and method performance. Notably, using 
these techniques reduces the likelihood of human error, 
and the AQbD approach will not predict any chroma-
togram but instead explore scientific understanding in 
method implementation sequences, beginning with the 
quality of predictions that relate to risk assessment in 
method choice, then between method parameter and 

expected method results, and finally a region for a highly 
robust and cost-effective approach [186]. The design of 
experiment (DoE) is a part of AQbD methodology and 
represents the interaction among the input factors that 
ultimately affect the technique response and outcomes. 
Therefore, a typical AQbD methodology starts with an 
analytical target profile (ATP) and risk and critical evalu-
ation, then uses DoE to optimize the method variables, 
creates a method operable design region (MODR), and 
implements a control plan [187–189]. There are works 
available and comprised in Table  3 and the scheme of 
methodology illustrated in Fig. 6.

Assessments of prediction ability of prediction software
Assessment of the predictive ability of NMR prediction 
by Chemaxon
An attempt was made to verify the expected chemi-
cal shift values for the chosen test compounds shown 
in Fig.  7. The original experimental chemical shift val-
ues were compared to the predicted chemical shift val-
ues of ten chemically divergent structural compounds in 
this experiment. A per cent error (%) for each chemical 
shift value was obtained, as well as regression analysis. 
The per cent error ranged from − 26.52 to 35.98%. The 

Fig. 6 A typical AQbD approach in analytical method development
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Fig. 7 Chemical structures used for NMR signal prediction assessment
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correlation’s graphs in Figs.  8 and 9 show R2 value of 
0.959  (H1-NMR) and 0.974  (C13 NMR). This indicates the 
accuracy of NMR signal prediction. According to predic-
tion results, in  H1-NMR, aliphatic proton error ranged 
from − 26.52 to 35.98%, whereas aromatic proton error 
ranged from − 25.47 to 9.21%. The aliphatic carbon error 
ranged from − 14.41 to 27.54% in the  C13 NMR, whereas 
the aromatic carbon error ranged from − 14.95 to 6.49 
per cent. Finally, we conclude the aliphatic error was 
greater when compared with the aromatic error all those 
data was presented in the Table 4. 

Assessment of the predictive ability of ORCA 
For UV–Visible prediction
Here, originally obtained wavelength maximum (λmax) 
values were compared to the predicted wavelength values 
of fifteen structurally divergent structural compounds. 
A per cent error (%) for each wavelength value was 
obtained, as well as regression analysis. The error rate was 
found to be between − 2.27 and 18.69%. The correlation’s 
graph in Fig.  10 shows R2 value of 0.926. This demon-
strates the accuracy of UV–visible prediction. The results 
demonstrate that when methanol is used as a prediction 
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solvent, the error ranges from 0.0 to 18.69 per cent, 
whereas water has a range of − 2.27 to 11.73%. Finally, we 
conclude that more error is observed when using metha-
nol as a solvent for prediction compared with water. The 
resulting data were presented in the Table 5.

For Raman and infrared
The predicted Raman shift and infrared absorption fre-
quency for the selected test substances was verified with 
experimental values. Here, the predicted frequency val-
ues of ten chemically divergent structural compounds 
are verified with original experimental frequency val-
ues. The % error for each frequency value and regres-
sion analysis was calculated. The % error was observed 

between − 30.04 and 29.26%. The R2 value (Figs.  11 and 
12) for the correlation was 0.946 for both the Raman shift 
and the infrared absorption frequency. This indicates the 
reliability of Raman shift and infrared absorption fre-
quency prediction. The results reveals that aliphatic sin-
gle bond compound error ranged from − 20.02 to 29.26%, 
double and triple bonded compound error ranged 
from − 4.20 to 13.14%, and hydroxyl function group com-
pound error ranged from − 21.01 to 3.55%, and aromatic 
ring compound error ranged from − 11.43 to 18.07%. As 
a result, we find that the aliphatic single bond compound 
error was greater than other errors, moreover the com-
parative data was presented in the Table 6 clearly.

Table 4 Comparative data for  H1-NMR and  C13 NMR signals of predicted versus experimental signals

MHz: Megahertz, A.no Atom number, M.t Multiplet information, Std Standard, Pred Predicted, Dev Deviation, % Error: Percentage error

Compound 1H NMR signals 13C NMR signals References

MHz A.no. M.t Std. Pred. Dev. %
error

MHz A.no. M.t Std. Pred. Dev. %
error

Ivermectin 300.0 82 m 5.74 5.92 − 0.18 − 3.14 250.0 50 s 139.60 137.48 2.12 1.52 [202]

75 d 3.98 3.7 0.28 7.04 47 s 81.80 83.60 − 1.80 − 2.20

52 s 1.51 1.54 − 0.03 − 1.99 37 s 68.70 70.08 − 1.38 − 2.01

Azintamide 200.0 15 d 7.46 7.59 − 0.13 − 1.74 200.0 13 s 166.01 156.07 9.94 5.99 [203]

7 q 3.52 3.38 0.14 3.98 14 s 128.16 139.27 − 11.11 − 8.67

10 t 1.11 1.14 − 0.03 − 2.70 12 s 40.76 33.80 6.96 17.08

Caffeine 60.0 11 s 7.54 7.53 0.01 0.13 60.0 9 s 151.69 155.31 − 3.62 − 2.39 [204]

13 s 3.98 4.13 − 0.15 − 3.77 11 s 148.73 142.95 5.78 3.89

12 s 3.33 3.36 − 0.03 − 0.90 12 s 33.54 28.74 4.80 14.31

Aspirin 100.0 2 s 12.04 11.00 1.04 8.64 200.0 12 s 171.20 168.35 2.85 1.66 [205]

10 sx 7.61 7.19 0.42 5.52 10 s 134.70 125.96 8.74 6.49

13 s 2.34 2.33 0.01 0.43 7 s 126.90 123.27 3.63 2.86

Griseofulvin 100.0 20 s 5.59 6.14 − 0.55 − 9.84 60.0 11 s 195.45 192.10 3.35 1.71 [206]

22 s 4.04 3.70 0.34 8.42 19 s 104.04 108.02 − 3.98 − 3.83

26 m 2.30 2.91 − 0.61 − 26.52 10 s 35.52 40.00 − 4.48 − 12.61

Iodamide 100.0 9 s 7.93 9.95 − 2.02 − 25.47 60.0 15 s 149.00 145.03 3.97 2.66 [207]

11 s 4.67 4.47 0.2 4.28 10 s 107.50 123.57 − 16.07 − 14.95

20 s 2.01 1.94 0.07 3.48 11 s 56.10 40.65 15.45 27.54

Acetaminophen 500.0 6 s 9.63 9.40 0.23 2.39 60.0 6 s 153.15 168.66 − 15.51 − 10.13 [208, 209]

8 d 6.67 6.72 − 0.05 − 0.75 8 s 120.91 115.60 5.31 4.39

10 s 1.97 2.12 − 0.15 − 7.61 10 s 23.61 23.97 − 0.36 − 1.52

Clofibrate 60.0 14 d 6.96 7.24 − 0.28 − 4.02 100.0 9 s 154.18 151.59 2.59 1.68 [210]

7 s 1.56 1.65 − 0.09 − 5.77 10 s 79.62 62.29 17.33 21.77

15 t 1.20 1.21 − 0.01 − 0.83 6 s 25.34 24.90 0.44 1.74

Tripelennamine Hcl 100.0 1 s 11.55 10.07 1.48 12.81 60.0 14 s 113.10 122.42 − 9.32 − 8.24 [211]

17 sx 8.14 7.39 0.75 9.21 20 s 106.90 121.05 − 14.15 − 13.24

11 s 2.86 2.33 0.53 18.53 5 s 43.10 49.31 − 6.21 − 14.41

Iopanoic acid 100.0 4 s 12.60 12.30 0.3 2.38 100.0 15 s 146.70 147.88 − 1.18 − 0.80 [212]

6 s 5.28 3.38 1.9 35.98 14 s 83.95 88.58 − 4.63 − 5.52

20 o 1.95 1.38 0.57 29.23 8 s 46.30 47.23 − 0.93 − 2.01
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Furthermore, an attempt has been made to verify the 
predicted infrared absorption frequency for lamivudine 
and zidovudine with all functional frequencies. In this 
study, the predicted frequency values of lamivudine and 
zidovudine structural functional group frequencies were 
compared to the original experimental frequency val-
ues. The % error for each frequency value and regression 

analysis was calculated. The % error was observed 
between − 24.26 and 18.89%. The R2 value for the cor-
relation graph in Fig. 13 was shown to be 0.970 for both 
lamivudine and zidovudine absorption frequencies. This 
also demonstrates the reliability of frequency prediction 
using a single compound prediction with all functional 
groups was presented in the Table 7.
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Fig. 10 Regression plot for UV–visible of predicted versus experimental frequency

Table 5 Comparative data of UV–visible spectral data: predicted versus experimental

Compound UV–visible absorption (wavelength) References

Solvent Exp. (nm) Pred. (nm) Dev. %Error

Caffeine Methanol 272 258.72 13.28 4.88 [204]

Malic acid Water 210 213.51 − 3.51 − 1.67 [213, 214]

Primidone Methanol 258 249.18 8.82 3.42 [214]

Acetaminophen Water 254 249.85 4.15 1.63 [215]

Benzocaine Methanol 292 275.65 16.35 5.60 [216]

Pyrrole Water 210 185.36 24.64 11.73 [217]

Anthracene water 355 323.37 31.63 8.91 [218]

Metformin Water 236 241.35 − 5.35 − 2.27 [219]

Chlorobutanol Water 210 201.6 8.4 4.00 [220]

Acetic acid Methanol 208 169.12 38.88 18.69 [221]

Aniline Methanol 234.5 222.52 11.98 5.11 [221]

Coumarin Methanol 274.5 273.66 0.84 0.31 [221]

Allopurinol Methanol 252 243.91 8.09 3.21 [221]

Methyl paraben Methanol 258 255.06 2.94 1.14 [221]

Formaldehyde Methanol 155.5 152.49 3.01 1.94 [221]
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Assessment of predictive ability QSRR Automator 
with reference data
The QSSR retention predictions for antiviral drugs were 
conducted. For that reference information was gathered 
from various research publications, and different anti-
viral drugs with  C18 column elution were selected. The 
predicted retention time for the test set of drugs was 
compared to the published retention time data. The % 
error for each retention time and regression coefficient 
were calculated. The % error was observed in the range 

of − 20 to 20%. This can be observed clearly in the his-
togram plot in Fig.  14 and 15, and the R2 value for the 
correlation was 0.947. This indicates the reliability of 
retention time prediction. Topological and 2D descrip-
tors like MW, AATS, MATS, GATS, Axp, n6aHRing, 
NsNH2, and SLogP are the most often used contribut-
ing descriptors, and they depend on the analyte chemical 
structure. Table 8 was presented the results of QSRR pre-
dicted and experimental retention time of Antiviral class 
drugs.
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Short‑time Fourier transform (STFT) method for assessment
The short-time Fourier transform (STFT) study revealed 
sufficiency to recognize that all the assessment results 
of  C13,  H1-NMR, UV–visible, IR, Raman are accurate 
and have also been used for further evaluation purpose. 
Based on the density power of frequency spectrogram, it 
is most likely that the yellow or red colour denoted high 
power, and the blue colour is low power. If the spectro-
grams had the same frequency power or should have 
produced results close to the acceptable prediction, we 
would have concentrated on the greater frequency power 
of both the predicted and experimental data sets. While 
both will have different frequency powers, this indicates 
that the prediction was inaccurate.

The  H1-NMR power frequency of the predicted and 
experimental results are nearly identical and the high-
est power index should be in the range of 18.25–17.39, 
respectively (Fig. 16). This indicates that both outcomes 
are accurate. With regard to the  C13-NMR, the power fre-
quency of both the predicted and the experimental data 
are depicted in Fig.  17, both of which exhibit the iden-
tical power index value of 44.17 and 44.01, respectively. 
This demonstrated the validity of the data, and the spec-
trogram revealed very slight frequency differences in the 
lower power range, which are visible in the blue colour 
peaks. The highest frequency indexes in the UV–visible 
Fig. 18 are 44.89 and 44.82, for both predicted and exper-
imental results, respectively, in the same frequency index. 

Table 6 Comparative data on Raman shift and infrared absorption frequency: predicted versus experimental values

Compound Raman frq.  (cm−1) Infrared frq.  (cm−1) References

Std. Pred. Dev. %Error Std. Pred. Dev. %Error

Malic acid 1422 1575 − 153 − 10.76 1716 1788 − 72 − 4.20 [215]

963 984 − 21 − 2.18 1288 1336 − 48 − 3.73

532 436 96 18.05 1103 1222 − 119 − 10.79

Primidone 3012 3582 − 570 − 18.92 2990 2115 875 29.26 [209, 214]

1322 1367 − 45 − 3.40 1620 1653 − 33 − 2.04

963 838 125 12.98 765 799 − 34 − 4.44

Acetaminophen 2934 2106 828 28.22 3588 3710 − 122 − 3.40 [209, 215]

1449 1499 − 50 − 3.45 3435 3568 − 133 − 3.87

664 544 120 18.07 1690 1689 1 0.06

Chloral hydrate 1760 1699 61 3.47 3720 3588 132 3.55 [222]

223 290 − 67 − 30.04 1765 1725 40 2.27

172 190 − 18 − 10.47 169 171 − 2 − 1.18

Halothane 1313 1326 − 13 − 0.99 1600 1584 16 1.00 [223]

1179 1024 155 13.15 814 812 2 0.25

718 661 57 7.94 520 502 18 3.46

Hydralazine hydrochloride 3061 3704 − 643 − 21.01 3220 3704 − 484 − 15.03 [215, 224]

1238 1226 12 0.97 1590 1587 3 0.19

449 487 − 38 − 8.46 785 751 34 4.33

Lithium carbonate 1459 1582 − 123 − 8.43 2558 2137 421 16.46 [225]

1091 1053 38 3.48 1495 1350 145 9.70

866 713 153 17.67 1088 1053 35 3.22

Phenobarbital 1690 1653 37 2.19 1770 1739 31 1.75 [226]

1000 1104 − 104 − 10.40 1500 1523 − 23 − 1.53

630 702 − 72 − 11.43 830 824 6 0.72

Sorbitol 3240 3543 − 303 − 9.35 2952 3543 − 591 − 20.02 [227]

2952 3542 − 590 − 19.99 1422 1446 − 24 − 1.69

1132 1188 − 56 − 4.95 1105 1109 − 4 − 0.36

Trimethoprim 3500 3599 − 99 − 2.83 3516 3528 − 12 − 0.34 [228]

1000 1022 − 22 − 2.20 1616 1637 − 21 − 1.30

785 775 10 1.27 1452 1475 − 23 − 1.58
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Fig. 13 Regression plot for infrared absorption of predicted versus experimental frequency of lamivudine and zidovudine

Table 7 Comparative infrared data of single compound with functional group frequency: predicted vs experimental values

Drug Targeted functional assignments Frequency range Published 
freq 
 (Cm−1)

Predicted 
freq 
 (Cm−1)

Intensity Deviation %Error References

Lamivu-
dine

Heterocyclic amine, NH stretch 3490–3430 3328.4 3564.43 S − 236.03 − 7.09 [229, 230]

Primary alcohol, OH stretch 3645–3630 2999 3607.1 S − 608.1 − 20.28

C–NH2, Aromatic primary amine, NH 
stretch

3510–3460 3448 3556.55 S − 108.55 − 3.15

C=O amide 1725–1700 1767 1738.05 S 28.95 1.64

C=C stretch 1680–1620 1651 1653.5 S − 2.5 − 0.15

Tertiary amine, CN stretch Aromatic 
amino

1210–1150 1181.6 1183.21 S − 1.61 − 0.14

C–H stretch (aromatic) 3130–3070 3328.4 3556.55 W − 228.15 − 6.85

Aryl thioethers, C–S stretch 715–670 725.17 714.51 S 10.66 1.47

C–O–C, C–O stretch, cyclic ether 1140–1070 1088.8 1099.8 S − 11 − 1.01

C–OH Stretch 1200–1020 1223.1 1144.24 S 78.86 6.45

CH3 Stretch, C–H stretch (methyl 
asym./sym. Stretch)

2970–2950/2880–2860 2854 3546.32 S − 692.32 − 24.26

Zidovu-
dine

Heterocyclic amine, NH stretch 3490–3430 3462.9 3557.08 S − 94.18 − 2.72 [228, 231]

Primary alcohol, OH stretch 3645–3630 3462.9 3561.75 S − 98.85 − 2.85

C=O amide 1725–1700 1685.8 1695.08 S − 9.28 − 0.55

C–O–C, C–O stretch, cyclic ether 1140–1070 1090.3 1093.72 S − 3.42 − 0.31

Open-chain azo (–N=N–) 1630–1575 2083.3 2098.49 S − 15.19 − 0.73

C=C stretch 1680–1620 1685 1654.46 W 30.54 1.81

Tertiary amine, CN stretch
Aromatic amino

1210–1150 1280.7 1268.1 S 12.6 0.98

C–H stretch (aromatic) 3130–3070 3160.7 3557.08 W − 396.38 − 12.54

Aromatic secondary amine, NH stretch 3450 3462 3561.75 S − 99.75 − 2.88

CH3 Stretch, asym./sym. bend 1470–1430/1380–1370 1466.7 1461.2 M 5.5 0.37

CH3 Stretch, C–H stretch (methyl 
asym./sym. Stretch)

2970–2950/2880–2860 2814.4 2282.89 S 531.51 18.89

C–OH Stretch 1200–1020 1090.3 1069.58 S 20.72 1.90
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Table 8 Comparative data of predicted and experimental retention in HPLC using the QSRR approach [232–279]

S.no. Drug Predicted tR (mins) Published 
tR (mins)

% Error Column Contributing descriptors

1 Stavudine 3.29238 2.85 − 15.52 C18 MW, AATS, MATS, GATS, Axp, SLogP

2 Lamivudine 4.33172 4.33 − 0.04 C18 MW, AATS, MATS, GATS, Axp, PEOE_VSA5,

3 Nevirapine 7.6097 8.39 9.30 C18 MW, AATS, MATS, GATS, Axp, nFARing

4 Boceprevir 4.81008 3.6 − 33.61 C18 MW, AATS, MATS, GATS, Axp, Xch-3d, nFARing, SRW03

5 Penciclovir 5.80932 6.201 6.32 C18 MW, AATS, MATS, GATS, Axp, n6aHRing

6 Abacavir 5.38772 5.12 − 5.23 C18 MW, AATS, MATS, GATS, Axp, Xch-3d, SRW03

7 Acyclovir 7.69738 9.241 16.70 C18 MW, AATS, MATS, GATS, Axp, NsNH2, SLogP

8 Atazanavir 7.52508 8.32 9.55 C18 MW, AATS, MATS, GATS, Axp, Xc-4d, SLogP

9 Daclatasvir 5.68164 6.138 7.43 C18 MW, AATS, MATS, GATS, Axp, SLogP

10 Didanosine 3.47798 3.007 − 15.66 C18 MW, AATS, MATS, GATS, Axp, SLogP

11 Doravirine 6.95882 8.166 14.78 C18 MW, AATS, MATS, GATS, Axp, Xc-4d, SLogP

12 Efavirenz 8.5244 9.612 11.32 C18 MW, AATS, MATS, GATS, Axp, Xch-3d, n10FRing

13 Glecaprevir 3.66206 2.205 − 66.08 C18 MW, AATS, MATS, GATS, Axp, Xch-3d, nFARing

14 Ledipasvir 3.67926 2.751 − 33.74 C18 MW, AATS, MATS, GATS, Axp, Xch-3d, nFARing

15 Lopinavir 6.81954 6.698 − 1.81 C18 MW, AATS, MATS, GATS, Axp, JGI10, SLogP

16 Maraviroc 4.06444 2.29 − 77.49 C18 MW, AATS, MATS, GATS, Axp, Xc-4d, JGI10

17 Rilpivirine hydrochloride 3.5655 3.273 − 8.94 C18 MW, AATS, MATS, GATS, Axp, PEOE_VSA5

18 Ritonavir 5.62858 5.71 1.43 C18 MW, AATS, MATS, GATS, Axp, PEOE_VSA5

19 Saquinavir 5.96362 6.583 9.41 C18 MW, AATS, MATS, GATS, Axp, Xc-4d, n10FRing,

20 Sofosbuvir 5.56006 4.905 − 13.35 C18 MW, AATS, MATS, GATS, Axp, Xc-4d, NdsssP

21 Tenofovir 5.35406 4.916 − 8.91 C18 MW, AATS, MATS, GATS, Axp, NdsssP

22 Tenofovir alafenamide 6.42914 6.697 4.00 C18 MW, AATS, MATS, GATS, Axp, NdsssP, JGI10,

23 Tenofovir disoproxil dimer 4.92236 3.6 − 36.73 C18 MW, AATS, MATS, GATS, Axp, Xc-4d, NdsssP,

24 Velpatasvir 3.81528 3.133 − 21.78 C18 MW, AATS, MATS, GATS, Axp, nBonds, nFARing

25 Zidovudine 3.016 2.566 − 17.54 C18 MW, AATS, MATS, GATS, Axp, SLogP

26 Amantadine 7.22792 7.1 − 1.80 C18 MW, AATS, MATS, GATS, Axp, n10FRing

27 Cidofovir 4.77664 4.734 − 0.90 C18 MW, AATS, MATS, GATS, Axp, SdsssP

28 Foscarnet 4.9733 5.6 11.19 C18 MW, AATS, MATS, GATS, Axp, SdsssP

29 Ganciclovir 4.22576 3.196 − 32.22 C18 MW, AATS, MATS, GATS, Axp, SLogP

30 Indinavir 4.26906 4.1 − 4.12 C18 MW, AATS, MATS, GATS, Axp, nFARing

31 Fosamprenavir 6.86348 6.247 − 9.87 C18 MW, AATS, MATS, GATS, Axp, Xc-4d

32 Nelfinavir 9.03022 10.86 16.85 C18 MW, AATS, MATS, GATS, Axp, Xch-3d, PEOE_VSA5, nFARing

33 Entecavir 4.44892 4.18 − 6.43 C18 MW, AATS, MATS, GATS, Axp, SLogP

34 Nitazoxanide 5.31866 4.46 − 19.25 C18 MW, AATS, MATS, GATS, Axp, Ns, N5ring, SMR

35 Raltegravir 10.68226 13.31 19.74 C18 MW, AATS, MATS, GATS, Axp, Xc-6d, PEOE_VSA5

36 Remdesivir 4.6616 4.4 − 5.95 C18 MW, AATS, MATS, GATS, Axp, Xc-6d, NdsssP

37 Ribavirin 3.37434 2.606 − 29.48 C18 MW, AATS, MATS, GATS, Axp, NaaN, PEOE_VSA5

38 Rimantadine 10.23922 13.5 24.15 C18 MW, AATS, MATS, GATS, Axp, n10FRing,

39 Trifluridine 3.10676 2.77 − 12.16 C18 MW, AATS, MATS, GATS, Axp, Xc-6d,

40 Vidarabine 3.10048 2.779 − 11.57 C18 MW, AATS, MATS, GATS, Axp, SLogP

41 Zanamivir 4.39834 3.6 − 22.18 C18 MW, AATS, MATS, GATS, Axp, SLogP

42 Valganciclovir 8.1715 10.1 19.09 C18 MW, AATS, MATS, GATS, Axp, SLogP

43 Pibrentasvir 4.10828 4.996 17.77 C18 MW, AATS, MATS, GATS, Axp, SLogP

44 Bictegravir 5.64744 5.998 5.84 C18 MW, AATS, MATS, GATS, Axp, SLogP

45 Emtricitabine 3.12968 2.805 − 11.58 C18 MW, AATS, MATS, GATS, Axp, PEOE_VSA5,

46 Voxilaprevir 4.02044 3.768 − 6.70 C18 MW, AATS, MATS, GATS, Axp, nAtom, nP, nf, Xc-6d, NsF

47 Simeprevir 5.71292 6.398 10.71 C18 MW, AATS, MATS, GATS, Axp, Xch-3d, n10FRing

48 Valacyclovir 4.86238 3.952 − 23.04 C18 MW, AATS, MATS, GATS, Axp, NsNH2, n9Ring

49 Tipiracil 4.45506 5.118 12.95 C18 MW, AATS, MATS, GATS, Axp, SLogP

50 Favipiravir 6.94756 7.69 9.65 C18 MW, AATS, MATS, GATS, Axp, n6aHRing
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Fig. 16 STFT spectrogram plot of H1-NMR for predicted and published results

Fig. 17 STFT spectrogram plot of C13-NMR for predicted and published results

Fig. 18 STFT spectrogram plot of UV–visible for predicted and published results
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Finally, the Raman and infrared power frequency index 
can be observed in Figs.  19 and 20 that both the pre-
dicted and experimental data are shown using the same 
frequency index and Fig. 21 shows the STFT spectrogram 
3D plot for IR prediction results all these results provid-
ing us to confirm that the prediction was accurate. 

Discussion
Our assessment afforded the acceptable results, how-
ever few software-related constraints, particularly time 
consumption of 5–20  h for TD-DFT calculations. The 
prediction error will produce more erroneous find-
ings when the data set is small and a prediction tool 
required to be unique. Therefore, a large data set is nec-
essary for successful finding; but, in some cases, a large 
data set can also result in inaccurate prediction, e.g. a 
complicated structure with multiple classes of variables 

takes longer time to process, and the impact on the pre-
diction process ultimately leads to wrong results, which 
is disappointing for a research study. Therefore, careful 
planning in the dataset and systematic prediction are 
required to produce reliable research findings. Then, 
while collecting the reference data set, we stumbled 
into issues with some data not being present in the ref-
erence library. In that situation, leaving the compound 
and switching to another approach might be an option. 
For example, if two distinct spectrum results for the 
same chemicals are found in certain reference data, 
such case  data optimization need to be performed. 
There are several online reference data sources availa-
ble for mass spectroscopy; however, there are fewer for 
infrared Raman spectra. In Table 9, all these problems 
and challenges related to spectrogram prediction are 
listed. 

Fig. 19 STFT spectrogram plot of Raman for predicted and published results

Fig. 20 STFT spectrogram plot of IR for predicted and published results
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Fig. 21 STFT spectrogram 3D plot for IR prediction results

Table 9 Spectrogram behaviour predictions’ limitations and benefits

S. No. Prediction/method Limitations/disadvantages Advantage/applications

1 NMR spectra prediction Based on machine learning
Require huge data sets to be 
trained for effective findings
Defining data requirement is dif-
ficult
Probability of a poor model is high
Training set should be unique
Predictions are always accompa-
nied by uncertainties [42]
The predictor Chemaxon requires 
the uniqueness of chemical 
structures
Creation of large, complex chemical 
structures is challenging
Unable to predict higher frequency 
range compounds (60.0–1000 Hz)

Prediction is possible in one or two 
minutes even if the structure is huge 
and complicated
Estimates the NMR signals of new 
and exciting compounds (60.0–
1000 Hz)
User-friendly and suitable for natural 
product dereplication
More uniqueness for a new chemical 
in comparison to all others [273]
Well-known method for facilitating 
structural elucidation
Even for a molecule of polyatomic (H, 
O, C, S, N, B, F, I, Cl, Br, P, Si, As, Ge, Sn, 
and Se,), it can predict 13C and 1H 
NMR spectra [48]

2 UV–visible spectra prediction The solvation model methanol 
produced delayed findings as com-
pared to the solvation modal water
The prediction of very complicated 
compounds takes significantly 
longer, around 5–12 h
Some compounds provide 
the desired outcomes after 24 h
The spectrum visualiza-
tion gave positive findings, 
although the spectrogram saved 
was of poor quality

TD-DFT is one of the most common 
approaches to predicting UV–visible 
spectra
Simple and not computationally too 
expensive [50]
Alternative solvation models, inves-
tigators may compute the number 
of excited states of various substances
The error is frequently lower 
than using the experimental tech-
nique
The computation is completed con-
siderably faster
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In QSRR approach, more than 50 compounds are 
needed for prediction of retention time. During opera-
tion, we noticed that whenever a data set was given, it was 
based on predicting values nearby. This may be a problem 
with the QSRR Automator programme, but more sophis-
ticated software for retention time prediction is already 
available, so we can utilize it for alternative purposes. The 
chemometric theory is entirely mathematically based, 
understanding AQbD and chemometrics is more criti-
cal in nature. If a chemist is not familiar with mathemati-
cal, it will be harder to develop a prediction process. 
Each approach in chemometrics has a unique method-
ology, thus experts are required for both planning and 
result evaluation. Additionally, we noted in the literature 
study that there is less research on the electrochemistry 
spectroscopic prediction with chemometrics. Generally, 
the electrochemistry prediction will be employed in the 

technological field, but only when few drugs are discov-
ered and developed. Since there are so many variables 
that might influence the results, such as instrument set-
ting, calibration, process, and model selections, some 
AQbD method failure will certainly occur in the case 
of method replacements. However, this strategy is most 
effective at minimizing method transfer, OOS, and OOT 
failure rates. These are presented in Table 10.

The differences between the physical and chemi-
cal data predictions are also illustrated in Table 11. By 
comparison, the physical data prediction is simpler 
than the chemical data prediction because the latter 
requires a larger number of supporting techniques and 
programmes. In addition, it requires larger number of 
descriptors, and is more challenging for beginners and 
students. 

Table 9 (continued)

S. No. Prediction/method Limitations/disadvantages Advantage/applications

3 Infrared and Raman spectra predic-
tion

The optimization of the structure 
is extremely critical
Little variations in the optimized 
structure lead to incorrect absorp-
tion frequency predictions
Raman intensities are a more 
involved problem than IR intensities
They depend much more 
on the experimental setup
The prediction of very complicated 
compounds takes significantly 
longer, around 24–48 h
Even so, the compounds 
do not always provide the desired 
outcomes
Low quality of the spectrogram 
generated

The prediction was quite straightfor-
ward and user-friendly
The functional code was not very 
complex
Infrared/Raman predictors may be 
used to estimate the absorption 
frequencies of novel and exciting 
compounds
For example, using the functional 
code “! Opt numFreq” to predict the IR 
and Raman spectra of a single mol-
ecule at the same time [52]

4 Mass spectroscopy predictions The library matching strategy 
has a coverage issue
Expensive and time-consuming 
for capturing additional spectra
Prediction techniques are expen-
sive to compute
The performance of the forward 
prediction mode is weak

A variety of reference data sources, 
including the NIST, NIH, and EPA MS 
databases, are available for prediction
Bidirectional prediction mode cap-
tures the fragmentation events more 
accurately
Electron ionization can be accurately 
predicted using quantum chemistry 
calculations

5 Fluorescence spectroscopy predic-
tions

Smaller data sets produce 
less accuracy
Higher degree conjugated bonding 
patterns for emission spectra are 
required to be calculated
Supportive chemometric tech-
niques, such as PCA, are necessary

Lowering of the calculation’s compu-
tational cost
It offers an easy method to perform 
effective geometry optimizations
There is good agreement 
between the computed values of ver-
tical emission energy

6 Electrochemistry predictions First, as EIS data is inherently noisy, 
spectra regression and prediction 
at unknown frequencies are made 
more difficult
Typically, tested frequencies have 
a predetermined number of points 
per decade that are log-spaced

Few deviations and a short experi-
mentation time
Active learning acquisition with GPs
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Table 10 Chromatography behaviour predictions’ limitations and benefits

S. No Prediction/method Limitations/disadvantages Advantage/applications

1 QSRR and software Prediction must require more than 50 com-
pounds for study
Statistical models that extrapolate out-
side the training set’s retention times may 
produce erroneous findings
Even if the training set included a range 
of chemically varied molecules with structures 
that differ from the training sets are unlikely to be 
successfully predicted
To accommodate the changes in the more 
complicated compounds, the training set must 
be bigger
With an equal-sized training set, lipids provide 
better predictions than metabolites
It is insufficient to separate very near co-elute 
compounds
It is difficult to predict retention time when using 
several columns and conditions

The predictor places the majority of predictions 
within one or two minutes/
One minute of their real value equals about 5–8% 
of the retention time
Approximately, all predictions fall 
between 2–5 min about 10–25 per cent depend-
ing on the column
It will quickly and easily produce and save a large 
number of models
In-house data tests yielded comparable results
To estimate retention times for numerous columns 
and conditions
It is adequate to enhance confidence in exact 
identifications
Compound of the same interests that are clearly 
identified

2 AQbD When overcome, can result in method failures 
and, in certain cases method replacements
Chromatographic methods where the number 
of analytes is required for effective separation
Since there are so many factors that impact 
the method’s outcomes
Applying the AQbD paradigm to analytical meth-
ods is justifiable
Instrument settings, sample characteristics, 
procedure parameters, and calibration model 
selection are examples of these factors [193]

Enhanced method efficiency; fewer trials, result-
ing in lower method cost; time utilization; levels 
of compliance; and knowledge of the extremes
As the technique demonstrates a link 
between the method variables and performance
The analyst gains confidence in the method’s 
effectiveness
Analytical techniques are re-evaluated regularly 
to resolve any gaps in method performance
To avoid failures in method transfer, OOS and OOT, 
AQbD methodology might be used
AQbD allows for regulatory flexibility, but it neces-
sitates to high level of robustness

3 Chemometrics Some good laboratory-based analysers are not all 
mathematically minded, so they did not want 
to overburden their studies with maths
Teaching and learning, chemometrics is still hav-
ing problems integrating itself
Chemometrics is partial because the fundamen-
tal body of information is overburdened
Any new content must supplant previous 
subjects
Basic statistical knowledge, such as univariate 
calibration, precision, accuracy, and uncertainty, 
is necessary [275]

Chemometrics technique advancement is con-
tinual, rapid, and efficient
With the improvements in exploratory tools, they 
provide rich information about chemical systems 
[276]
Adaptability for analysis of complex chemical 
process data in the industry [277]
Quality control of herbal drugs, food analysis 
like vegetables [278–280], fruits [281] grains [282, 
283], proteins [284] etc.
Environmental chemistry studies [285] and assess-
ment of the results
The development of high-throughput chromato-
graphic and spectroscopic data calculations

3.1 ANN Retention time of new congener cannot be 
predicted
No information about the relationship 
between molecular property and retention 
behaviour can be obtained [286]

An accurate and reliable
Human brain way it is working
Optimize the separation without employing 
analyte properties

3.2 SVM Introducing bias in the results
Class-modelling technique should only consider 
sensitivity when deciding on the ideal circum-
stances for process parameters

Exhibit better overall performance
These models and the experimental result agree 
well
The distribution of non-target samples is pre-
vented from the target samples

3.3 MLR-ALS Fail to develop an appropriate QSPR model
Less prediction when compare with the SVM 
model [287]

Measuring the amount of variables
Improved selectivity through improved chemical 
information separation from interference effects 
and higher signal-to-noise ratios, which improve 
chemical distribution visualization
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Conclusions
Finally, with acceptable accuracy and the least fea-
sible variation, the present review of computational 
approaches in spectrum prediction was concluded. Over-
all, students and researchers are considerably utilizing the 
in silico tools in computational chemistry and indicate 
the reliability of such tools in research. The development 
and application of computational approaches in analyti-
cal research and development are our key objectives. As 

we observed, computational analytical behaviour pre-
diction offers a wide range of applications in academic 
research, bioanalytical method development, computa-
tional chemistry, analytical method development, data 
analysis approaches, material characterization, and vali-
dation. Still, the prediction error of these tools need to 
be minimized for better accuracy, thus it will be explored 
much more in exploratory research in future.

Table 10 (continued)

S. No Prediction/method Limitations/disadvantages Advantage/applications

3.4 PARAFAC In some cases, PARAFAC is too restrictive 
to model the data in a sensible way
Problems with scattering and missing values, 
for instance, have attracted specific focus

Quicker and more reliable computationally 
than SVD
Applications include five-way data analysis 
and analysis of variance
Relatively straightforward mathematically

3.5 PCR and PLSR Risk of overfitting due to bias-variance trade-off
Differences between bias and variance can have 
a significant impact on predictions [288]

Multi-resolution of multi-component mixtures
Accuracy ranging from 98 to 103% [166, 288–290]

3.6 PLS The method has more challenging
Minor inconvenience compared to the risk 
of change correlation [291]
Overstate the baseline when additive noise 
is present

A six-component combination was resolved using 
PLS [292]
It is used to build multivariate calibration models 
[293]

3.7 PCA Sample load at the small scale was insufficient 
to define the second principal compound
Without a mathematical model the analysis 
is inaccurate
Direct PCA is not suitable for the raw data

Predict chromatogram shapes at different scale 
of operation [294]
Single principal compound is sufficient to explain 
most

3.8 TLRC and MLRC Cannot be employed more than three com-
pound mixtures
Inaccurate calculations are caused by errors 
in wavelength set selection

Commonly employed in ternary mixture multi-
resolution [164]
A combination of strongly overlapping spectra, 
the accuracy is in the region of 99–101%
More reliable with simple mathematical calcula-
tion [295]

Table 11 Differences in physical and chemical data predictions

Physical data prediction Chemical data prediction

Falls under the predictions of mass, capacity, density, response time, 
and size

Falls under prediction of the electronegativity, ionic potential, bonding 
energy, electrochemical characteristics, fragmentation, and structural 
attributes

There is no more uncomplicated process The process is little complicated

Involvement of fewer descriptors in the prediction process Involvement of a large number of descriptors in the prediction process

1D, 2D, and topological descriptors are mostly utilized for the prediction 
[271]

All topological, electronic, 1D, 2D, and 3D descriptors were utilized 
for the prediction [272]

The database size is typically smaller The database is larger and more complex

Canonical SMILES are includes in the data set, mostly, 2D chemical struc-
ture is sufficient for the prediction

Data sets used for prediction includes canonical SIMILES, ChEMBL, and 2D 
and 3D chemical structures

Predictions scores typically produce immediate results Prediction outcomes should not be direct; instead, they correlate 
with other outcomes to produce final outcomes

There are fewer accessible methods and approaches; most are QSPR-based Numerous techniques and strategies are employed, such as QSAR 
and QSRR

Mathematical calculations only involved such as regression and correla-
tions

There are included quantum chemical calculations like TD-DFT and DFT

The final outcomes are unaffected by the less accurate physical data 
predictions in some cases

Less accurate chemical data prediction will have an impact on the out-
comes
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Abbreviations
UV  Ultraviolet
IR  Infrared
NMR  Nuclear magnetic resonance
GC  Gas chromatography
ANNs  Artificial neural networks
RSM  Response surface methodology
AQbD  Analytical quality by design
DoE  Design of experiments
QSRR  Quantitative structure retention relationship
OOT  Out of trend
OOS  Out of specification
AI  Artificial intelligence
ASV  Automatic structure verification
TD-DFT  Time-dependent density function theory
EI-MS  Electron ionization mass spectrometry
NEIMS  Neural electron ionization mass spectrometry
QCEIMS  Quantum chemical electron ionization mass spectrometry
MD  Molecular dynamics
ESI–MS/MS  Electrospray ionization mass spectroscopy
EOM-CCSD  Equation of motion coupled cluster singles and doubles
PCM  Polarizable continuum model
QSAR  Qualitative structural activity relationship
Lasso-RF  Random forest descriptor
EIS  Electrochemical impedance spectroscopy
GPs  Computational Gaussian processes
TDMs  Transition density matrices
ICP-MS  Inductively coupled plasma mass spectroscopy
XRD  X-ray diffraction
CSV  Comma-separated values
SMILES  Simplified molecular input line entry system
RMSE  Root-mean-squared error
FD  Factorial design
PLS  Partial least squares
CA  Cluster analysis
PCR  Principal component regression
TLRC  Trilinear regression calibration
MLRC  Multi-linear regression calibration
PLSR  Partial least square regression
ILS  Inverse least square
PCA  Principal component analysis
OPA  Orthogonal projection analysis
EFA  Evolving factor analysis
MCR-ALS  Multivariate curve resolution by alternating the least squares 

approach
SFA  Sub-window factor analysis
PARAFAC  Parallel factor analysis
GRAM  Generalized rank annihilation
PLS-DA  Partial least square discriminate analysis
HCA  Hierarchical cluster analysis
SIMCA  Soft independent modelling of class analogy
RAFA  Rank annihilation factor analysis
LC–NMR  Liquid chromatography nuclear magnetic resonance
LC–MS  Liquid chromatography–mass spectrometry
GC–MS  Gas chromatography–mass spectrometry
FT-IR  Fourier transform infrared
HPLC  High-performance liquid chromatography
UPLC  Ultra-performance liquid chromatography
HPTLC  High-performance thin-layer chromatography
SFC  Supercritical fluid chromatography
PAT  Process analytical technique
OFAT  One-factor-at-a-time
FR  Flow rate
CT  Column temperature
AQ  Aqueous
ACN  Acetonitrile
RSD  Relative standard deviation
TBAH  Tetrabutylammonium hydroxide
PDOP  Potassium dihydrogen orthophosphate

TEA  Triethylamine
STFT  Short-time Fourier transform
QSPR  Qualitative structural property relationship
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