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Abstract 

Background The second leading cause of mortality in the world, behind cardiovascular disorders, is cancer. The 
currently employed treatment options including radiotherapy, chemotherapy are reported with many adverse 
reactions. These limitations in combination with high cost of therapy have restricted the management of malignancy. 
In this review, several nanocarriers-based approaches were described as effective treatment option of malignancy.

The main body of the abstract The development of innovative and effective targeted therapies for malignancy 
relies on alterations in the molecular biology of cancerous cells. Given the nonselective destruction of healthy cells, 
the harmful effects of existing chemotherapy drugs, and the development of multidrug resistance, has thrived 
the development of novel carriers for improved targeting efficacy of anticancer drugs. The present study offers 
a comprehensive account of diverse cytotoxic drug carriers, such as carbon nanotubes, liposomes, polymeric micelles, 
dendrimers, polymeric nanoparticles, and polymeric conjugates, in the context of passive and active targeted cancer 
therapy. The carriers are known to enhance the permeability and retention or functionalize the surface, thereby 
improving the efficacy of drug delivery.

Short conclusion The present literature delineates the progressions made in the nanoengineered approach 
for administering therapeutic agents to the tumour micro-environment.
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Graphical Abstract

Background
Cancer is a group of disorders that exhibit uncontrolled 
cellular proliferation, immortality by replication, and 
refusal to undergo cellular death. Cancer apart from 
hematologic malignancies, in which melanoma cells pro-
liferate and circulate widely throughout the blood, lym-
phatic, and bone systems, cells develop into an abnormal 
cell mass known as a tumour [1, 2]. Proto-oncogenes and 
tumour suppressor genes are the main targets of damage 
or mutation in the pathogenesis of cancer. Proto-onco-
genes encode proteins that play a crucial role in the regu-
lation of cellular proliferation and differentiations, while 
tumour suppressor genes encode proteins which gener-
ate signalling that is inhibitory for cellular development 
and/or promote apoptosis. The development of a tumour 
necessitates alterations in both oncogenes and tumour 
suppressor genes. Therefore, mutations are more prone 
to occur in the genes responsible for a group of proteins 
that regulate DNA damage, referred to as tumour sus-
ceptibility genes. The development of cancer is attributed 
to mutations that are selected clonally, as they promote 
abnormal and unregulated cell division, lack of mecha-
nisms to hinder excessive cell growth, impeded cellu-
lar death and transmissions, accumulation of genetic 
anomalies, and suppression of cell division  [3–9]. Sur-
gery and radiation are considered the most efficacious 
interventions for treating localized and non-metastatic 
cancers. However, their effectiveness is limited in cases 
where the cancer has disseminated to other regions of the 

body. Currently, chemotherapy, hormone therapy, and 
biological treatments (living organisms that can modify 
the immune response) are used to treat metastatic can-
cers because they can circulate throughout the body and 
reach all organs [10].

Targeted therapies aim to inhibit biological signalling 
pathways or cancerous proteins that contribute to the 
development and advancement of tumours. The thera-
peutic interventions under consideration are directed 
towards molecular targets, such as growth factors, recep-
tors, kinase cascades, or molecules associated with angi-
ogenesis and apoptosis. These targets are typically existed 
in normal tissues, but in the context of cancer, they are 
either overexpressed or mutated. The forefront therapies 
strive to obstruct the signals that trigger the uncontrolled 
proliferation and division of cancerous cells, trigger 
the programmed cell death of cancer cells, activate the 
immune system, or administer chemotherapy agents 
exclusively to cancerous cells, thereby limiting the mor-
tality of healthy cells and circumventing adverse effects 
[5–10].

By examining the oncological therapies sanctioned by 
the Food and Drug Administration (FDA) within the last 
14  years, it is possible to determine the significance of 
these new anticancer medications 14 of the 19 anticancer 
medications such as Vandetanib, Pertuzumab, Lapatinib, 
Ceritinib, Regorafenib, etc., were authorised between 
2000 and 2006 used for targeted treatments [11]. Dur-
ing the period from 2007 to 2012, a notable increase 
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in the statistical figures. Specifically, a total of 40 drugs 
were granted licenses for the management of diverse 
types of cancers, with 30 of these drugs being specifi-
cally designed to target cancer cells. It’s noteworthy to 
emphasize that 18 of the 19 cancer medications were 
authorised by the FDA between 2012 and 2014 focused 
on inhibiting or blocking certain cancer proteins and/or 
biological transduction pathways [12–14]. To modify cel-
lular signalling events, it is possible to employ cytotoxic 
molecules that can be linked chemically to monoclonal 
antibody or peptide ligands. These molecules can then be 
directed towards molecular targets that are either over-
expressed or solely expressed upon the tumour cell sur-
face. The aforementioned-molecules encompass toxins, 
cytotoxic agents, radionuclides, and  cytokines  [15–18]. 
Small molecule inhibitors are selected based on their 
ability to hinder the signalling pathways implicated in 
the anomalous generation of proliferative, anti-apoptotic, 
and angiogenic actions [11]. To feed the tumour bulk, 
tumours require additional blood vessels. They are cre-
ated by the angiogenesis process from pre-existing ves-
sels. Anti-angiogenic treatment is used to reduce tumour 
blood supply by blocking angiogenesis using drugs like 
the VEGF inhibitor SU-11246 or bevacizumab, a mono-
clonal antibody against VEGF, was the first anti-angio-
genic drug approved by the FDA [19].

The utilization of chemotherapeutics as drug delivery 
systems (DDS) to tumour regions has improved signifi-
cantly owing to the development of flexible materials and 
a more comprehensive understanding of tumour biology. 
Specifically, over the last two decades, advancements in 
nanotechnology have played a significant role in enhanc-
ing clinical cancer therapies [20–25]. NP-based DDS  or 
nanocarriers (NCs) have the potential to improve the 
effectiveness of therapy and selectivity through their 
impact on the enhanced permeability and retention 
effect (EPR) in tumour tissues  [26–33]. Furthermore, 
the cellular uptake of NCs surpasses that of traditional 
chemotherapeutic agents. Liposomes, polymeric nano-
particles, and micelles are among the most utilized types 
of nanocarriers, as reported in the literature [34a]. Sev-
eral nanoparticle-based chemotherapeutics have been 
granted clinical approval such as Adynovate, Zilretta, 
Rebinyn, Onivyde, Vyxeos, Avinza [34b], while others are 
currently undergoing preliminary clinical trials. Despite 
their potential benefits, the industrial scale up of NCs 
are difficult due to reduced yield, involvement of expen-
sive tools and machineries. The polymeric NCs exhibit 
many advantages including biodegradability, increased 
bioavailability and reduced toxicity of the incorporated 
therapeutic agents. The imperfections pose security risks, 
particularly in the context of continuous cancer therapy. 
We have discussed drug delivery NCs for treating cancer 

in this section. The topic of nanoparticle-based cancer 
chemotherapy has been explored more thoroughly, with 
particular emphasis on its application in the treatment 
of colon, lung, and female malignancies.

Main text
Nanocarriers in cancer therapy
The physical and chemical characteristics of NPs 
have a significant impact on their efficacy. Nanoscale 
molecules have been synthesized using a variety of 
materials, including synthetic lipids, proteins, polymers, 
and inorganic particles [34–42]. They provide drug 
protection, solubility, and stability, which improves 
pharmaceutical distribution. NPs are functionalized 
with target-specific ligands, including aptamers, folic 
acid, antibodies, and peptides, to facilitate the delivery 
of drugs to specific sites. The aforementioned benefits 
result in an extensive variety of drug administration 
techniques that exhibit enhanced pharmacokinetics and 
reduced adverse effects, contingent upon the surface 
physicochemical characteristics and dimensions [43–
48]. Liposomes are a type of organic NC  characterized 
by a spherical shape, which consists of a self-assembled 
phospholipid bi-layer enclosing an aqueous chamber 
in the interior [38, 49]. The lipids for liposome NPs that 
are commercially accessible include phosphatidylserine, 
phosphatidylethanolamine, and phosphatidylcholine. 
Liposomes are intriguing because they allow for drug 
transfer across cellular membranes and are less-toxic, 
making them simple for cancer cells to internalise. The 
main downsides of this approach are their exorbitant 
preparing  procedures, reduced loading of drugs and 
stability, and rapid physiological breakdown before any 
therapeutic effect. The first nano-based pharmaceutical 
sanctioned by the United States FDA was Doxil®, a 
liposomal nanoparticle formulation of doxorubicin. This 
chemotherapeutic agent is predominantly employed in 
the treatment of breast cancer (BCa), acute lymphocytic 
leukemia, and bladder cancer. The formation of liposome 
(polyethylene glycol) provides long circulating properties 
[63–67]. ThermoDox® is the only thermosensitive 
liposomal (TSL) under development; it is a doxorubicin-
containing TSL formulation. This formulation responds 
to temperature over 40  °C and selectively releases its 
payload in the tumour microenvironment, enhancing 
the anticancer activity of its loaded drug [50]. Lipid-
based NCs are more effective in reducing drug release 
than liquid oils, allowing for controlled drug release [51]. 
Solid lipid nanoparticles (SLNs) are commonly utilized 
as intravascular distribution NCs for drugs due to their 
ability to encapsulate drugs within a hydrophobic lipid 
core. Polymeric micelles are another naturally occurring 
lipid-based NP with a size of less than 100 nm [52, 53]. 
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The amphiphilic nature of polymeric nanoparticles, 
characterized by a lipophillic core and a lipophobic 
shell, renders them highly suitable for drug delivery 
applications involving compounds with restricted 
water solubility. Reverse micelles (RMs) are commonly 
employed owing to their high dissolving capability  in 
oil phase [54–56]. However, RMs have inability to 
coordinate the delivery of targeted drugs and their lack 
of tissue selectivity [55]. Epigallocatechin-3-O-gallate 
(EGCG), a polyphenol with anti-inflammatory effects, 
is the primary component of the micellar nanocomplex 
(MNC) NPs [57]. Protein medicines can be protected 
by MNCs from proteolytic enzyme action while being 
transported to the cancerous tissues (Fig. 1).

Genexol-PM®, a paclitaxel (PTX)-loaded micellar for-
mulation based on amphiphilic polymers, is used to treat 
metastatic breast and small-cell cancer. The formulation 
boosts the anticancer efficacy of drugs, since it has pro-
longed circulation time as for the polymer coat prevented 
the rapid elimination of the drug [58]. An organic linker 
and a metal ion or spacer make up the class of porous 
NPs known as metal–organic frameworks (MOFs), 
which have different hybrid topologies [59]. MOFs 
exhibit favourable characteristics such as higher  sur-
face area and controllable pore size, rendering them as 
potential contenders for the purpose of regulated drug 
delivery. However, in order to utilize MOFs as carriers 
of anticancer drugs in  vivo, it is imperative to decrease 
their size to the nanoscale. Nano-MOFs are particularly 
valuable in the pharmaceutical industry because they 
enable controlled drug release [60, 61]. The nano-MOFs 

can encapsulate higher drug content in comparison with 
conventional porous materials for treatment of cancer. 
Stimuli-responsive systems based on MOFs have been 
developed in response to various stimuli such as  redox-
based  reactions,  pH, magnetic fields, ATP, temperature, 
irradiation, pressure, and humidity [62]. Despite the fact 
that most of the NCs approved by the FDA utilize passive 
targeting via EPR, some of the latest generation NCs cur-
rently undergoing clinical trials employ active targeting 
strategies due to recent progress in protein engineering 
and polymer chemistry.

Targeted delivery of anticancer drugs via NPs
In order to provide better chemotherapy, the medications 
must first pass through biological barriers before being 
localised just in the tissues of the target tumours. 
This results in increased anticancer effectiveness with 
a minimum amount of off-target adverse effects. A 
common strategy is drug targeting using passive and 
active NPs [68, 69]. With passive targeting, NCs use 
the physio-pathologic characteristics of the tumour, 
such as the tumour vasculature, to passively locate their 
loaded anticancer medications in tumour tissues. Poor 
lymphatic drainage and severely flawed tumour vascular 
architecture result in an increased permeability and 
EPR impact [70, 71]. Furthermore, the use of defective 
tumour vasculature and tiny NCs  is employed for 
passive targeting of anticancer medications [72]. In the 
microenvironment of cancer tissue, the endothelium of 
the blood arteries exhibits greater gaps (100 nm–2 µm), 
which makes them different from normal blood vessels. 

Fig. 1 NC-based drug delivery systems for cancer therapy (adopted with permission from Hossen et al., 2019) [168]
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As a result, tumours may be easily reached by NCs in 
this size range, allowing for the specific localization of 
medications within tumours [73, 74]. Moreover, tumour 
tissues have a compromised lymphatic system, which 
causes their centres to have higher interstitial pressure 
than their peripheries. This subsequently enables NCs 
to access the interstitial zone, where they stay for a 
longer duration and eventually enhance the anticancer 
effect in tumours [75]. By developing long-lasting NCs, 
anticancer medications can also be passively targeted. 
NCs have an extended interaction with biological 
systems and are often able to traverse the tumour 
microenvironment, resulting in increased therapeutic 
effectiveness of the drugs they transport against cancer 
due to their prolonged retention in the human system. 
Cationic NCs are also used to localise their loaded drugs 
in tumours in a manner similar to that, whereby they 
engage electrostatically with angiogenic endothelial cells 
in tumour blood vessels [69, 70].

NCs surfaces modified with a targeting moiety are 
used for active drug targeting. The surface of NCs can be 
functionalized with a targeting moiety, which enables the 
identification of a malignancy-specific antigen or recep-
tor. Pharmaceutical agents are designed to exhibit selec-
tive targeting towards the intended site of action, thereby 
limiting their absorption into non-targeted healthy cells 
and tissues. Moreover, certain targeting ligands have 
the ability to initiate the mechanism of receptor-medi-
ated endocytosis, thereby facilitating the liberation of 
drugs from NCs within the confines of specific cells 
[76]. Receptor targeting is a successful strategy for more 
effective chemotherapy that involves drug tumour inter-
nalisation [77]. Cancer cells exhibit an over-expression of 
multiple receptor types, which facilitates the binding of 
targeting moieties to these receptors. This, in turn, ena-
bles the localization of drugs with a high degree of speci-
ficity to malignant cells [78, 79].

The responsiveness of drugs to various stimuli such as 
hyperthermia, pH, redox potential, and specific enzymes 
present in the cancer microenvironment results in their 
liberation from NCs in proximity to tumours. Similarly, 
NCs are designed to respond to changes in the cancer 
microenvironment [69, 70]. With better chemotherapy, 
higher concentration of drug is thereby obtained in the 
tumour microenvironment. A major global cause of 
cancer-related mortality is lung cancer (LCa) [80]. The 
treatment of cancer, specifically squamous cell carcinoma 
or  adenocarcinoma, typically involves a chemotherapy 
regimen consisting of a combination of two or three 
chemotherapy agents. These agents may include doc-
etaxel (DOX), cisplatin, Abraxane®, PTX, gemcitabine, 
vinorelbine, and pemetrexed [81]. Metallic NPs possess 
the potential to penetrate the vasculature and tissues of 

malignant cells, making them a viable option for drug 
delivery systems that can mitigate the harmful effects of 
cytotoxicity on healthy cells. Ramalingam and colleagues 
used polyvinylpyrrolidone to conjugate Dox onto gold 
NPs using non-organic methods [82]. The NPs exhibited 
anti-proliferative effects on the A549 human lung cancer 
cell line, while also stimulating the production of reactive 
oxygen species (ROS) within the cells and promoting cell 
death. Similar to this, Kalaiarasi and colleagues created 
copper oxide NPs that might induce apoptosis in A549 
cells by downregulating certain oncogenes, such as his-
tone deacetylase [83a]. Even though platinum (Pt)-based 
anticancer drugs have been utilised extensively for LCa, 
their clinical effectiveness has been severely hindered by 
unpleasant side effects such as lack of selectivity, high 
systemic toxicity, and drug resistance, seriously limit 
their clinical application and drug resistance [83b]. To get 
around these issues, Pt(II)-loaded drug NCs have been 
created. For instance, Tsai and colleagues developed self-
assembling NPs  containing diaminocyclohexane-Pt(II) 
(DACHPt) that exhibit high absorption rates in LCa cell 
lines that are insensitive to platinum (Pt). The result-
ing tumour toxicity is significant [84]. In order to tackle 
multidrug resistant LCa, DACHPt-loaded NPs provide a 
unique, powerful system for NCs. Drugs or NCs can be 
combined through targeting cells, specifically molecules 
including peptides, ligands, aptamers, and antibod-
ies, that can differentiate across cancerous and healthy 
cells, to accomplish active targeting. Song and colleagues 
developed core–shell lipid-polymer hybrid nanoparticles 
(LPNs) with epidermal growth factor (EGF) conjugation 
to actively transport DOX and resveratrol to cancer cells 
[49]. The synergistic tumour suppression and low off 
target effects of the biodegradable EGF-DTX/RSV-NPs 
highlighted their potential for LCa therapy.

Vitamin E succinate-based NCs exhibit 
biocompatibility, hydrophobicity, simplicity in 
manufacturing, and anticancer efficacy. Nevertheless, 
hyaluronic acid (HA), an anionic polysaccharide that 
is bio-degradable and bio-compatible, allows the active 
targeting of cell surface adhesion receptors (CD44) 
on cancer cells. Song et  al. developed redox-sensitive 
NPs loaded with PTX using conjugates of HA-disulfide-
vitamin E succinate. The aim was to enhance the 
specificity of tumour cell targeting and facilitate targeted 
drug release [85]. Compared to non-redox-sensitive 
NPs and paclitaxel monotherapy, the redox-sensitive 
nanoparticles loaded with paclitaxel demonstrated 
enhanced cytotoxicity in both A549 cell lines and A549 
animal xenograft models. The MTT assay showed a 
maximum of 70.5% apoptosis for PTX incorporated 
HSV NCs. The study reflected 75.4% in vivo antitumour 
efficacy of PTX incorporated HSV NCs in respect to 
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Taxol (39.2%) and PTX-HV NCs (55.2%). These findings 
suggest the potential of redox-sensitive nanoparticles as a 
targeted delivery system for PTX in the treatment of lung 
cancer.

The medicinal usage of the flavonoid naringenin (NAR) 
is constrained by its lower water solubility, stability, and 
bio-availability. By creating polymeric NPs from bio-
compatible and biodegradable polymers, these problems 
might be avoided. Naringenin polycaprolactonenano-
particles (NAR-HA@CS-PCL-NPs), synthesized by Par-
ashar et  al., exhibited toxicity to A549 cells but inert to 
non-cancer cell lines [86]. In  vivo, the chemopreventive 
capabilities of NAR-HA@CH-PCL-NPs were exhibited 
through the use of urethane-induced LCa rat models. The 
26-base G-rich DNA oligonucleotide known as AS1411 
has been observed to be over-expressed in various can-
cer cells. Its primary function is to act as a nucleolin-
binding aptamer [87]. A multipurpose NC was made by 
combining AS1411 aptamers with chitosan conjugated 
to fluorescent gold nanoclusters loaded with methotrex-
ate, called MTX@AuNCs-CS-AS1411, which Guo et  al. 
found to have considerable anticancer efficacy in A549 
cells and to reduce tumour development in BALB/c mice 
[88]. To combat drug resistance during LCa therapy, it 
is effective to co-deliver functionally separate antican-
cer medicines. Amreddy et  al., created polyamidoamine 
(PAMAM) dendrimers attached to folic acid to deliver 
cis-diamine Pt and human antigen R (HuR) siRNA to 
LCa cells that exhibit overexpression the folate receptor-
alpha [89]. The enhanced HuR in LCa cells was the rea-
son why the dendrimers were nontoxic to normal lung 
fibroblasts while having stronger therapeutic benefits 
than the individual treatments alone. By targeting DNA 
methyltransferases, miRNA-29b prevents DNA meth-
ylation in LCa cells, which further prevents cell growth 
and death. A nanocarrier system could be able to lessen 
its drawbacks, such as off-target effects, degradation, and 
inadequate cellular absorption. A transmembrane pro-
tein called MUC1 that is overexpressed in LCa makes it 
easier to actively target medications to the tumours.

A nanocarrier system might reduce issues including 
off-target effects, degradation, and inadequate cellular 
absorption. A transmembrane protein called MUC1 
that is overexpressed in LCa makes it easier to actively 
target medications to the tumours. In order to deliver 
miRNA-29b to LCa tissue in  vivo, Perepelyuk et  al., 
developed mucin1-ap loaded NPs which showed 
improved stability and prevented tumour development 
[90]. The distribution of NPs by inhalation to enhance 
tumour targeting is a newly developed field in the 
treatment of lung cancer. After intratracheal delivery, 
Mice have been shown to tolerate PTX-polyglutamic 
acid conjugates well, and Dox NPs inhaled demonstrated 

less cardiac adverse effects than the same traditional 
dose of Dox [91]. As per research conducted in this 
domain, inhalation of lipid-based NPs leads to an 
increased incidence of tumourigenesis and prolonged 
retention of the same in the lungs. It is potential that 
these and other inhalation-based NCs will be used to 
deliver anticancer medications in the future, particularly 
to lung malignancies. The field of pharmaceutical 
nanotechnology has witnessed significant progress in 
recent times, facilitating the development of surface-
engineered intelligent NP  systems. These systems are 
designed to deliver chemotherapy drugs with high 
precision to malignant cells. In a current investigation, 
homoharringtonine was administered to lung cancer 
cells utilizing a PLGA-based dual-functionalized 
nanoparticle surface that was designed with an EGFR 
aptamer. The NPs  exhibited targeted drug delivery to 
LCa cells by virtue of their ability to recognize receptor/s 
and response towards the existing glutathione in the 
surrounding microenvironment [92].

Drug‑carrying dendrimers
Dendrimers are molecular entities characterised by 
their nanoscale dimensions, with a radially symmetric 
structure that exhibits a high degree of uniformity 
and homogeneity. These molecules generally consist 
of a centrally located core, surrounded by inner and 
outer shells, which contribute to their well-defined and 
monodisperse nature. Various categories of dendrimers 
exist, which are contingent upon the pliability of the 
ligand and central core. The anti-neoplastic efficacy of the 
most widely employed dendrimers for pharmaceutical 
conveyance is also noteworthy (Fig. 2).

Fig. 2 Dendrimers as agents for drug delivery in the context 
of cancer treatment
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PAMAM dendrimers loaded with doxorubicin and PTX
Lai et  al. introduced a polyamidoamine dendrimer 
chemical for the treatment of cancer that contained DOX 
and was coupled with amide and hydrazone [93]. In a 
study on drug release, PAMAM-hyd-DOX NCs released 
the drug more quickly at 4.5 pH (47% in 24 h) than they 
did at 7.4 pH (8% in 24  h), but PAMAM-amide-DOX 
released drugs more slowly at 4.5 pH. PAMAMhyd-
DOX NCs is also more dangerous to cancerous cells than 
PAMAM-amide-DOX NCs, according to cytotoxicity. 
Wen et  al. looked at how well a PAMAM dendrimer 
with pH-sensitive multi-walled carbon nano-tubes 
released DOX under controlled conditions [95a]. Wang 
et al. investigated dendrimers coupled with folic acid to 
target cancer cells [95b]. According to a drug releasing 
experiment, the as-prepared NCs released DOX more 
slowly at 7.4 pH (19% in 4  h) than they did at 5.0 pH 
(22% in 4 h). KB cells are more resistant to DOX-loaded 
dendrimers (22%) than to blank dendrimers (90%) 
in terms of cell viability. Lee et  al. studied dendrimer 
and duplex oligodeoxynucleotide bioconjugates and 
evaluated the efficacy of DOX administration to fight 
breast cancer [95].

Rompicharla et al., created a PEGylated PAMAM den-
drimer that is loaded with PTX and functionalized with 
biotin to treat lung cancer. The results of the investiga-
tion into cell viability suggest that the PAMAM-PEG-
PTX-biotin platform has enhanced efficacy against 
cancer cells in comparison to free PTX. Specifically, the 
recorded viability rate of the PAMAM-PEG-PTX-biotin 
platform after 48  h was 50%, while the viability rate for 
free PTX was 74%. This difference was especially pro-
nounced at lower drug doses of 3.125  µg/ml. Greater 
drug concentration (50 µg/mL) the findings were further 
boosted using free PTX and the PAMAM-PEG-PTX-
Biotin platform, which increased the results by 50% and 
15% in 48 h, respectively [96]. For the purpose of cancer 
therapy, Majoros et al., created PAMAM NCs with folic 
acid, fluorescein isothiocyanate, and PTX (a chemo-
therapeutic medication). At a dose of 200 nM, free PTX, 
and FI-FA-PAMAM-Pac NCs demonstrate compara-
ble resistance to cancerous cells, according to an optical 
density analysis. Gel permeation chromatography (GPC) 
indicates that the original average molecular weight of 
PAMAM is 26,892 g/mol, and after conjugation, it rises 
to 43,110 g/mol [97].

pH dependent drug targeting
Targeting the solid tumours’ intracellular organelles and 
acidic extracellular milieu, pH-triggered administration 
is thought to be numerous stimuli-based targeting 
methodologies. Review concentrates on the chemistry 
of pH-dependant biomaterials used to create NCs for 

intracellular and/or extracellular medication release 
tailored to specific cancer sites. Through different 
methods, such as protonation, charge reversal, or 
breaking of a chemical bond, the biomaterials which 
are pH-responsive caused conformational changes in 
these NCs, allowing tumour-specific cell uptake or drug 
release. In order to overcome the difficulties associated 
with traditional chemotherapy, it would be helpful to 
better understand these mechanisms in order to build 
drug delivery methods that are more effective. In order 
to precisely target the chemokine receptor (CXCR4) 
based on pH variability between normal and cancerous 
tissue, Chittasupho et  al. produced a DOX embedded 
LFC131 peptide linked dendrimer, and the release of 
DOX has an anticancer impact. Drug release research 
demonstrates the carrier’s as-prepared pH-dependant 
drug releasing profile, for instance at 5.0 pH (13% in 
72 h). In comparison to pH7.4, DOX release was quicker 
(5% in 72 h) [98].

Ligand‑based targeting
Utilising homing mechanisms known as ligands, 
medications that can target tumours specifically while 
preventing drug access to non-target locations. This 
encompasses any molecule capable of identifying and 
adhering to a specific antigen or receptor/s that has been 
excessively expressed or solely expressed in particular 
cells or tissue constituents (Fig. 3).

Targeting based on transferrin
A globulin (glycoprotein) called transferrin (Tf) helps 
the ferric ion  (Fe3+) move via transferrin receptors on 
the plasma membrane. Through receptor-mediated 

Fig. 3 Ligand-based NCs for targeted drug delivery into tumour cells
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endocytosis,  Fe3+ is delivered intracellularly. In a 
nutshell, ferrotransferrin is created when two  Fe3+ ions 
are securely bound by the iron-free version of the protein, 
apotransferrin. At neutral pH, the ferrotransferrin 
surface receptors of the cells bind strongly, and then 
the ferrotransferrin-bound receptor is exposed to 
endocytosis [99]. Treatment of several malignancies, 
particularly breast cancer, is greatly aided by transferrin 
functioning as ligand. Only the molecular basis for the 
increased efficacy of PTX-loaded, Tf-conjugated NPs in 
breast cancer cell lines was investigated by Sahoo et  al. 
The antiproliferative activity of Tf-conjugated NPs was 
found to be greater and sustained in the MCF-7 human 
breast cancer cell line at the lowest drug dose (1 ng/mL) 
compared to free drug or unconjugated NPs (Fig. 4). The 
enhanced anti-proliferative efficacy of the medication 
when combined with conjugated NPs can be attributed to 
their heightened cellular uptake and reduced exocytosis, 
as compared to unconjugated NPs [100].

The theory is that Tf-conjugated NCs are more effec-
tive than unconjugated ones. A considerable proportion 
of unconjugated NCs that are adopted by the cell undergo 
rapid exocytosis due to their inefficient release capacity 
to the cytoplasmic compartment from the endosomal 
compartment during transit. Following their absorption 
by TfR, Tf-conjugated NCs could follow a different intra-
cellular sorting pathway than unconjugated NCs via non-
specific endocytosis. Conjugated and unconjugated NCs 
have different absorption and sorting mechanisms, which 
in turn affects both the intracellular retention of NCs and 
the therapeutic effectiveness of the encapsulated drug 
[101].

Targets based on vitamins
The value of employing vitamins as a targeted ligand for 
medication delivery was emphasised by several research 
groups. The vitamins folate, vitamin  B12 (VB12), biotin, 

and thiamine may be employed as targeting molecules. A 
variety of tumour cells requires a vitamin folic acid (FA) 
(M.W.: 441 Da) that is necessary to produce purines and 
pyrimidines [102].

A subject of current attention is the function of VB12 
in treating cancer. For the purpose of producing proteins, 
cancer cells require the enzyme VB12, which changes 
homocysteine into methionine. Tumour cells overpro-
duce the VB12 receptor in order to fulfil their biologi-
cal need for VB12. In order to use VB12 and its receptor 
interaction for targeted treatment, VB12 is taken in orally 
by a process called receptor-mediated endocytosis. In 
this method, the small intestine’s intrinsic factor (IF), a 
protein that binds VB12, initially binds VB12. VB12 is 
then transported throughout the cell when the VB12-IF 
complex attaches to an IF receptor present onto the sur-
faces of intestinal epithelial cells. In an IF-independent 
manner, it can also be delivered via transcobalamin II 
(TcII), another VB12-binding protein. It has recently been 
demonstrated that the oral absorption of several peptides 
and proteins may be improved by taking advantage of the 
VB12 uptake mechanism. According to Chalasani et  al., 
VB12 serves as a model molecule for peptide- or protein-
encapsulated NP targeting in caco-2 cells. In their inves-
tigation, they demonstrated that VB12-modified NPs had 
a higher amount of uptake, whereas caco-2 cells bind, 
take up, and transport uncoated NPs to a lesser extent 
[103]. The cellular absorption of VB12-modified NPs was 
improved by the addition of IF, but not for uncoated par-
ticles. The outcome demonstrates that increased cellular 
absorption occurs in VB12-modified NPs via IF-depend-
ent or IF-independent processes, with the addition of IF 
increasing uptake to a lesser amount. Further research 
has been done on the potential effectiveness of a peptide- 
and protein-tagged VB12 carrier system for oral adminis-
tration [104].

Fig. 4 NPs-based transferrin receptor targeted cancer therapy
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Lectin‑based targeting
Lectins are a class of proteins that has the ability to selec-
tively recognize and attach to the carbohydrate com-
ponents found on glycoproteins located on the outer 
surface of the plasma membrane. The glycoproteins pro-
duced on cancer cells have distinct characteristics com-
pared to those found on normal cells. Hence, lectins have 
the potential to serve as targeting agents for the precise 
delivery of pharmaceutical compounds to specified sites 
[105].

Yin et  al. explored lectin-conjugated PLGA NPs in 
2006, loading them with thymopentin (TP5) for oral 
administration [106]. They did this by encapsulating 
the TP5 in a wheat germ agglutinin (WGA)-conjugated 
PLGA NP that was soluble in water. According to the 
TP5 in  vitro release profiles, WGA-conjugated NPs 
release TP5 at a greater rate than non-conjugated NPs, 
which may be a result of WGA’s hydrophilic properties. 
WGA-TP5-NPs exhibit improved oral absorption than 
conventional TP5-NPs and TP5 solution, according to 
in vivo pharmacodynamic tests employing FAC Scan flow 
cytometry on immune-suppressed rats. The higher WGA 
content on NPs was the cause of the improved absorp-
tion. The WGA’s material in NPs has a significant impact 
on both the oral absorption of TP5 and the dissolution of 
TP5 from NPs [106]. In a different work, Mo et al. created 
a new isopropyl myristate (IPM) with PLGA NPs that was 
lectin-conjugated to enhance the anticancer activity of 
PTX [105]. These NPs outperformed Tx-loaded NPs with 
only IPM or WGA or Tx-loaded NPs with both IPM and 
WGA in terms of in vitro cytotoxicity against adenocar-
cinomic human alveolar basal epithelial cells (AS-49) and 
human non-small cell lung carcinoma cell line (H1299). 
The enhanced efficacy of these NPs in inducing cell death 
can be attributed to their superior cellular absorption via 
WGA receptor-driven endocytosis and the facilitated 
release of TX by IPM from the nanoparticles [105]. Tar-
geted systems based on lectins provide several benefits. 
For instance, conjugating lectin to the surface of NCs can 
combine the cytoadhesive qualities of the lectin with the 
protective effects of the nanocarrier, perhaps improving 
the formulation’s bioavailability [107].

Drug delivery using liposomes
Liposomes offer a potentially effective way to reduce 
the toxicity problems associated with chemotherapeutic 
medications since they are flexible delivery platforms 
for different drug encapsulation. Franco et  al. 
conducted a study on mice with 4T1 breast tumour to 
investigate the impact of eliminating pharmacokinetic 
interaction  among PTX and both DXR and its 
metabolite, doxorubicinol [108]. The researchers found 
that co-encapsulating PTX and DOX in liposomes at a 

ratio of 1:10 was effective in reducing the cardiac toxicity 
profile. An additional investigation demonstrated a 
technique to enhance the stability of ratiometric drug 
administration through the encapsulation of drug-
loaded liposomes within a thermogel matrix [109]. 
Additionally, a persistent local release was seen in the 
nanohybrid carriers. The phenomenon could potentially 
be elucidated by the utilization of the diffusion-
controlled mechanism, wherein the initial release of 
the embedded anthracycline from the liposomes is 
followed by its subsequent diffusion across the hydrogel 
matrix. According to in vivo experiments, the liposome-
hydrogel hybrid delivery technology demonstrated lower 
cardiotoxicity levels than liposomal anthracycline that 
was not encapsulated in gel [110]. The slowly increasing 
data suggests that liposomal drug delivery methods can 
aid in the defeat of multidrug resistance (MDR). Through 
surface modification with dequalinium (DQ), a cationic 
compound that facilitates the utilization of negative 
mitochondrial membrane potential, Liu et  al. created 
mitochondrial targeting liposomes. EPR and quinine 
(QN), two different medications, were co-loaded in the 
liposomes [111]. Liposomes that remained intact were 
taken up by mitochondria through the assistance of DQ. 
Subsequently, QN and EPR augmented the expression 
of the pro-apoptotic protein Bax and reduced the 
expression of Mcl-1 (antiapoptotic protein). This caused 
the cytochrome complex to be released and caspases 
-3 and -9 to be activated, which in turn caused a series 
of apoptotic responses in cancer cells. Using tailored 
liposome formulations, this work reduced the cellular 
impact of both extrinsic and intrinsic drug resistance. 
Prior to clinical rollover, stricter and more thorough 
review methods are needed due to the utilisation of 
numerous medicines in a single liposome delivery 
system. In particular, P-glycoprotein (P-gp) that forms 
efflux pumps is accountable for MDR [112]. Using a 
liposome platform and an intriguing nuclear-targeting 
approach that included the aptamer AS1411 (single 
stranded DNA) and DOX, it was possible to reduce 
MDR in breast cancer. Upon internalization by the cell, 
the aptamer-doxorubicin  complex dissociated from 
the liposomes and translocated to the nucleus through 
an interaction between the aptamer and nucleolin. 
This nuclear targeting interaction made it possible for 
P-gp pumps to avoid the effects of DOX efflux and the 
treatment effectiveness was improved (Fig. 5) [113, 114].

Carbon dots‑based‑cancer targeting
In addition to having great optical qualities, low 
toxicity, strong chemical stability, a wealth of 
surface groups, and favourable biocompatibility 
[113–115], carbon dots (CDs) had been described 
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as fluorescent indicators that exhibit to be suitable 
contenders for medicine administration. As per the 
recent publications, several technologies were used 
to synthesise CDs using different methodologies, 
including electrochemistry [116], teflon hydrothermal 
reactors [117], and microwave methods [118–120]. 

Several functional reagents must be coupled in order 
to reach the CDs’ surface, including targeted ligands 
and anticancer medicines, in order to perform various 
activities. Recently, it was revealed that CDs were 
chemically conjugated with nuclear localization signal 
peptide (NLS) as a target ligand. The A549 tumour in 

Fig. 5 Liposome-based targeted drug delivery to cancer cells (reused with permission from Hossen et al., 2019) [168]

Fig. 6 Carbon dots-based cancer targeting therapy (adopted with permission from Dubey et al., 2023) [169]
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mice may be successfully stopped in its tracks by the 
complex NLS-CDs that were produced by delivering 
DOX to the cancer cell nucleus [121]. Compared 
to free DOX, demonstrated a better rate of cancer 
cell eradication and lower toxicity to normal cells. 
FA  has been utilized as a navigational agent owing to 
the proclivity of numerous cancerous cells to exhibit 
elevated expression of folate receptors (FR). Current 
studies have shown that certain CDs have inherent 
tumour-targeting properties and may be employed 
directly as anticancer medication carriers (Fig. 6) [122, 
123]. It motivated us to come up with a straightforward 
plan for creating new nano-drugs that can target 
tumours.

High‑efficiency dendrimer‑based NCs 
for anticancer medicines against cancer cells
Various dendrimers-based NCs have been used to carry 
a variety of drugs for high therapeutic efficacy in cancer 
treatment. With a predefined molecular weight, com-
pactness, spherical 3D structures with surfaces that could 
be improved by attaching various drugs, hydrophobic or 
hydrophillic groups and size, dendrimers are a novel fam-
ily of hyper-branched polymers which shows a signifi-
cant interest in nano-biomedicine, such as drug delivery, 
gene therapy, disease diagnostics, etc. [125]. Tran et  al., 
have discussed the preparation of generation 3.0 and 
2.5 carboxylatedpolyamidoamine (PAMAM) dendrim-
ers for loading anticancer therapy. The loading capacity 
of carboxylated dendrimer for cisplatin is 26.64 w/w% 
and dimension of the nanocomplexes ranges from 10 to 
30  nm. The  IC50 value was found to be 23.11–2.08  µg/
mL with NCI-H460 lung cancer cell line. Low-diameter 
pegylated PAMAM dendrimers have been synthesized 
to deliver the 5-fluorouracil (5-Fu). The drug-loading 
efficiency of pegylated dendrimer was found to be satis-
factory and it exhibited a delayed release profile for 5-Fu 
encapsulation. The nano-carrier system shows excel-
lent potency and selectivity towards MCF-7 cell lines 
with  IC50 value 9.92 to 0.19 µg/mL. The aforementioned 
findings demonstrate the efficacy of utilizing dendrimer 
nanocarriers for the purpose of delivering medications in 
the treatment of cancer [125].

Colon cancer prevention
The most prevalent cancers include colon cancer. Surgery 
is frequently used as the initial treatment for patients 
with localised colon cancer, and chemotherapy regimens 
are frequently given for around 6  months after surgery, 
albeit their efficacy is still restricted [125]. CD98, a 
transmembrane glycoprotein, has been identified as 
a distinguishing feature of colon cancer cell apical 

membranes. Its expression has been found to be elevated 
and it is considered a potential pharmacological target 
for the transportation of drugs to colon malignancies. 
Xiao et  al. have developed a treatment strategy for 
colon cancer that involves the use of CD98-siRNA and 
camptothecin-loaded PEGylated Fab-NPs, which are 
embedded in a hydrogel [26]. The aim of this approach 
was to target a specific receptor. Due to increased 
drug internalisation into the tumour cells than in NPs 
containing a single drug, the dual system therapeutics 
efficacy has been established by using mouse models of 
orthotropic colon tumours [126]. Numerous miRNAs 
exhibit in-vitro anti-colon cancer activity, but there 
in-vivo uses are limited due to biofluid breakdown and 
insufficient cellular absorption. MiR204-5p is markedly 
down-regulated in colorectal cancer cells as compared to 
healthy cells. Zheng and colleagues employed a surface 
functionalization method to fabricate poly(D,L-lactide-
co-glycolide)/poly(L-lactide). Block-poly(ethyleneglycol)-
folate polymer nanoparticles with miR-204-5p added 
on them which show anticancer efficacy that effects on 
in-vivo colon tumour xenograft models and colon cancer 
cells [32]. In this study, the NP system was shown to 
be a cutting-edge technique for delivering miRNA to 
in-vivo colon cancer cells. Galectins, which are proteins 
that exhibit binding affinity towards galactosides, have 
been found to be upregulated in cases of colorectal 
cancer. These proteins are recognized to have a pivotal 
function in modulating the progression, metastasis, and 
dissemination of the disease.

Liu et  al., have developed galectin-recognition 
materials using galactosylated chitosans based on 
mesoporous silica NP for colon cancer. The inorganic–
organic nanocomposite exhibited higher efficacy in 
terms of loading capability, discharge duration, and 
cytotoxic effects towards human colon cancer cells 
in comparison to unbound 5-Fu  [43]. Jiang et  al. have 
synthesized 5-Fu loaded mesoporous silica nanoparticles 
and examined their impact on colon cancer cells [127]. 
The CD44 receptors, which are over-expressed in 
cancerous cells, were identified as the target of HA  on 
the surface of nanoparticles. The process involves the 
selective attachment of biotin-to-biotin receptors that 
are over-expressed upon the surfaces of colon cancer 
cells. Lin and colleagues synthesized silica nanoparticles 
loaded with doxorubicin and modified with polyethylene 
glycol and biotin. Their findings demonstrate effective 
anticancer activity against HCT116 cells and tumour-
bearing mice [128]. In other way, silymarin (SLM), 
which had previously been restricted as an anticancer 
medication due to its poor bioavailability. Recently, SLM 
can be nanostructured and encapsulated in micelles 
which prevented the growth of colon cancer cells and 
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raised their apoptotic and necrotic indices while having 
no effect on healthy colon cells [129]. As we know, 
curcumin (CUR)has well anticancer properties but 
their utility is limited due to poor absorption, rapid 
metabolism, and subsequent oxidation. Alkhader et  al., 
reported encapsulating CUR in a chitosan (CS)-pectinate 
(PEC)-NP system (CUR-CS-PEC-NPs) to increase its 
capability to target the colon cancer [130]. Pectin is 
one of the most common carriers for CUR. The results 
indicate that CUR-CS-PEC-NPs possess promising 
attributes for oral delivery in the context of colon cancer 
therapy, and offer a foundation for the design of carriers 
with analogous structural characteristics to enhance the 
tumour-specific delivery of natural anticancer agents. 
To improve the anticancer efficacy of CUR against 
colon cancer, pH-responsive xylan-CUR prodrugs were 
developed in a distinct experiment. The synthesized 
NPs exhibit pH-responsive behaviour, allowing for the 
release of their drug payload under acidic conditions. The 
enhanced potency of these NPs towards human colon 
cancer cells, in comparison to the pure drug, can be 
attributed to this pH responsiveness [131]. New redox-
sensitive prodrug NPs  containing xylan-SS-CUR have 
been described in recent research for the administration 
of curcumin and 5-Fu against human colorectal cancer 
cells. The utilization of novel NPs  has demonstrated 
potential as a drug delivery system for enhanced cancer 
treatment by augmenting the anticancer activity of the 
loaded drugs [132]. In a separate study, conjugates of 
xylan-5-Fu-1-acetic acid were reported for the target 
specific treatment of colon cancer. Results demonstrated 
that the drug’s capacity to cure human colon cancer 
was enhanced by polymeric conjugates [133]. The study 
revealed that the administration of amphiphilic xylan-
stearic acid-based NPs resulted in enhanced anticancer 
efficacy of 5-Fu against human colon cancer cells [134]. 
Olchicine is an alkaloid prodrug that occurs naturally and 
functions as an anti-mitotic agent for the treatment of 
cancer. Nonetheless, its efficacy against cancer is limited 
due to its significant cytotoxicity. A recent study has 
documented the utilization of mesoporous silica NPs that 
have undergone functionalization with phosphonate 
groups and embellishment with a chitosan-glycine 
complex that contains FA. The purpose of this approach 
is to facilitate the distribution of colchicine [135]. It 
was suggested that the colchicine-laden NPs increased 
anticancer and antimitotic activity. Another experiment 
stated that EGF functionalized PLGA NPs were used 
to deliver 5-Fu and perfluorocarbon for the efficient 
treatment of colon cancer.By targeting certain receptor, 
the functionalized NPs were able to prevent tumour 
development [136].

Cervical cancer prevention
The fourth most common malignancy in women and rep-
resenting 3% of new cancer cases is cervical cancer [137]. 
In several studies show that NPs have good potency and 
selectivity towards various cervical cancer therapy. As 
per literature, the silver NPs can exhibit antibacterial, 
anticancer, and anti-inflammatory properties. Al-Sheddi 
et al. have prepared silver NP by using aqueous Nepeta-
deflersiana plant extracts and reported anticancer prop-
erties against HeLa cell line. The above NPs can initiate 
lipid peroxidation, produce ROS, and finally cell cycle 
arrest at  subG1 phase [138].

Yuan et al., have reported silver NPs and camptothecin, 
a topoisomerase inhibitor for their potential synergistic 
effects on HeLa cells [28, 139]. The activation of 
caspases 9, 6, and 3 and changes to the permeability of 
the mitochondrial membrane made this combination 
effective in the treatment of cervical cancer. The 
combination of NPs and drugs represent a possible 
strategy in study of cancer. Luo and colleagues created 
polylactic-co-glycolic acid NPs which is modified 
by biotin, and showed reducing intracellular ROS 
formation, and enhance the impact on proliferation of 
15,16-dihydrotanshinone I in HeLa cells [44, 140]. Due 
to the over-expression of the transferrin receptor in 
cancerous cells relative to healthy cells, transferrin was 
extensively utilized as a chemical agent for targeting 
cells. Boondireke et  al., have used monoacylglycerol 
monomyristin (encapsulation) from the saw palmetto 
palm, in dextran-coated polylactide NPs linked to 
transferrin and showed increased cytotoxicity profile 
of monomyristin in HeLa cells. Anticancer properties 
and water solubility efficiency of monomyristin were 
enhanced via encapsulation of NPs and targeting 
transferrin receptor [141]. In other way, cisplatin 
(CDDP), first metal-based drug for cancer treatment but 
its usage has been constrained because it is not selective 
for cervical cancer treatment. As a result, Cheng et  al., 
implemented CDDP by using fluorescein PEG amine 
grafted-aldehyde HA (Cy5.5- PEG-g-A-HA) NPs and 
increase acidic pH response for cervical cancer [142]. 
While HA is an agent that targets in NCs, a significant 
portion may collect in the liver and could be quickly 
excreted. This problem appears to have been lessened 
and aldehyde HA (A-HA) was used in this experiment. 
The results showed that CDDP was well-tolerated by the 
body and NPs can effectively target cervical tumours and 
trigger apoptosis. In another report, preparation of lipid 
polymer NPs and surface modified by folic acid to treat 
cervical cancer with pH-sensitive tailored administration 
of carboplatin and paclitaxel. The dual-functionalized 
NPs were able to suppress tumour growth by targeting 
specific receptor and pH-responsive drug release in 
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cervical cancer cells [143]. Furthermore, the synthesis 
of layer-by-layer (multifunctional) mesoporous calcium 
carbonate nanoparticles with regulated drug release 
properties for the targeted delivery of doxorubicin 
to cervical cancer cells. The creation of intelligent 
nanoparticles has been achieved through a layer-
by-layer approach, utilizing folic acid as a ligand for 
targeting cancer cells, and replacing components with 
sodium alginate and chitosan. Transfection of cervical 
cancer cells with doxorubicin was regulated by using 
pH responsiveness and receptor recognition [144]. An 
innovative bioinspired NP method for administration 
of siRNA and paclitaxel for the successful treatment of 
cervical cancers was revealed in recent research. A novel 
biomimetic approach was employed to develop a dual-
drug delivery system, wherein siRNA and paclitaxel were 
encapsulated within PLGA nanoparticles coated with 
HeLa cell membrane. The newly developed biomimetic 
dual-drug delivery system demonstrated an enhanced 
ability to achieve drug-specific tumour localization 
through its immune escape capability. Therefore, the 
cervical tumour volume was reduced by about 83% 
without causing adverse effects to the major organs [145].

Breast cancer
The second most prevalent kind of cancer is breast can-
cer (BCa) [146]. However, photothermal treatment (PTT) 
is viewed as a desirable anticancer treatment, cancer cells 
treated with PTT may become thermoresistant which is 
attributed to the over-expression of heat shock proteins 
(HSPs), notably heat shock protein 70 (HSP70). Hence, 
preventing increased HSP70 may reduce the tumour 
cells resistance to PTT. In addition to inhibiting HSP70, 
protein kinase B and caspase-3 are likewise inhibited by 
the dietary flavonoid quercetin. As opposed to that, NPs 
are given significant benefits by a cell membrane-camou-
flaged mechanism.

A novel therapy for breast cancer was developed 
by Zhao et  al. in which hollow bismuth selenide 
nanoparticles loaded with quercetin  (M@
BS-QE  NPs)  were disguised with macrophage 
membranes [30, 147]. Due to the M@BS-QE NPs ability 
to evade the immune system, they were able to remain 
in the bloodstream for longer periods of time, which 
increased the accumulation of BCa cancer treatment. 
Quercetin increased active targeting, made cancer cells 
more responsive to photo-therapy, and inhibition of 
tumour development and metastasis when combined 
with bismuth-based NPs and macrophage membranes. 
Tumour metastasis and actin cytoskeletal remodelling 
have a strong relationship. Qin et  al., have developed 
novel small-sized fullerenol NPs which affect migrating 
BCa cells. The NPs might interfere with the dynamics 

and rearrangement of the actin cytoskeleton in cancer 
cells and prevented the aggressive BCa from spreading 
[148]. Piceatannol, a polyphenol was synthesised by 
Dhanapal and Balaraman Ravindran coated with PLA 
and chitosan NCs for anticancer therapy [37, 149]. 
Combining chitosan with the PLA polymer prevented 
chitosan from degrading. By continuously releasing 
the encapsulated piceatannol, these polymeric NPs 
increased the effectiveness of cytotoxicity through 
mitochondria-dependent mechanisms of BCa and 
other neoplastic cell lines. In combination with 
photothermal treatment, Kong et  al. have devised 
(DTX-) loaded cholic acid-functionalized AS1411 
aptamer-polydopamine-poly(caprolactone-ran-lactide) 
(CA(PCL-ran-PLA)), which reduced the risk of BCa 
development [150].These NPs look potential for the 
synergistic chemophotothermal method of BCa because 
of their great biocompatibility and few negative effects. 
Metformin, a biguanide anti-diabetic drug has shown 
to increase the susceptibility of BCa cells with Dox 
resistance through reducing activity of P-gp, according 
to Shafiei-Irannejad et al., [151]. They have reported Dox 
and metformin-encapsulated biodegradable PEG 1000 
succinate NPs containing poly(lactide-co-glycolide)-D-
tocopheryl, which were effective in inactivating resistant 
BCa cells [152]. It may be useful to delivery metformin 
and Dox using polymeric NPs.

The most widely used MOF is Zeolitic imidazolate 
Framework (ZIF-8), pH-responsive for drug release 
which is utilised because it is more porous, sensitive, 
and capable of holding more drugs. Tian et  al., devel-
oped fluorescein-ZIF-8/graphene oxide nanocrystals 
with acidic pH-responsive fluorescein release [153]. 
Due to the photothermal impact 4T1 breast cancer cells 
were effectively inactivated. Chen et al., developed ATP-
responsive Dox-loaded aptamer-gated nano-MOFs and 
used in MDA-MB-231 BCa cells, the results reveal that 
around 40–55% cells are died after 5  days of treatment 
[154]. Moreover, they have reported on a Zr-MOF which 
is Dox-loaded, ATP/Mg2+ sensitive and selectively lethal 
to MDA-MB-231 cell lines [155]. The nucleolin receptor 
sites are the target of the aptamer because cancer cells 
overexpress ATP, which results in increased nano-MOF 
cell penetration.

In order to effectively distribute doxorubicin for breast 
cancer treatment, multiwalled carbon nanotubes have 
been coated with glycopolymers conjugated with folic 
acid, according to a recent study. By simultaneously 
targeting the folic acid receptors and the glucose 
transporter protein in breast cancer cells, doxorubicin 
was administered to breast cancer cells with precision 
[156]. Another recent study described the use of gold 
NPs with folic acid-functionalized surfaces for breast 
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cancer treatment with a combination of chemotherapy 
(methotrexate) and phototherapy. Due to the specific 
distribution and overexpression of folic acid receptors on 
the surfaces of breast cancer cells, the nano technology 
enhanced the effects of combined chemo-phototherapy 
[157]. The selective administration of paclitaxel using 
dual targeting polymeric NPs for the treatment of bone 
metastatic breast cancer was also described. To achieve 
dual drug targeting, alendronate-modified D-tocopheryl 
polyethylene glycol succinate and folic acid were used to 
adorn the NPs. The innovative approach demonstrated 
hydroxyapatite binding affinity and subsequent receptor-
mediated internalisation, demonstrating superior 
therapeutic outcomes for the medication in the context 
of bone metastatic cancer by reducing tumour incidence 
and elevating rate of survival [158].

Lung cancer
According to an ACS assessment from 2012, lung cancer 
causes 335,000 deaths per year in Europe and 160,000 in 
the USA. Furthermore, 85% of the cases mentioned are 
non-small cell lung cancer (NSCLC). In Spain, both the 
overall incidence and recurrence of lung cancer among 
males have grown during the past century. Lung cancer 
is still more common in males, but as smoking patterns 
change, it is also becoming more common in women 
[159–161]. The transmembrane protein EGFR, some-
times referred to as the EGF receptor is involved in 
essential growth factor signalling from the extracellular 
environment to the cell [162]. Since, EGFR has emerged 
as a key target for cancer therapy, since it accounts for 
more than 60% of NSCLCs [163, 164]. The usefulness 
of using nanotechnology in drug administration has 
considerably expanded with the development of sev-
eral nanoparticulate systems, such as liposomes, NPs, 
and other nanoparticulate systems. The traditional NCs 
have certain drawbacks, such as drug leakage and stabil-
ity problems. These problems have been overcome utilis-
ing strategies such as covering the NPs and employing 
stimuli-responsive NCs. Additionally, these techniques 
support the achievement of organ-restricted drug deliv-
ery and enhancement of pre-existing properties. These 
kinds of smart NCs have found to use in fighting cancer 
because cancer tissues have a specific pH and enhanced 
enzyme levels. The effectiveness of several NCs carry-
ing diverse compounds against lung cancer has also been 
developed and evaluated. They have reported various 
kinds of stimuli-responsive NCs, as well as exogenous 
stimuli-responsive NCs such asthermos-responsive, 
magnetic-responsive, ultrasound-responsive, and photo-
responsive NCs and their use to targeting lung cancer 
[165].

Skin cancer
Skin cancer, one of the most prevalent and challenging 
kinds of cancer, has one of the highest global mortal-
ity rates. Chemotherapy, surgery, radiation, and other 
therapies are currently offered for skin cancer. The kind 
of skin cancer and the patient’s health are often taken 
into consideration when choosing a treatment plan 
for skin cancer. The therapeutic efficacy of skin cancer 
treatment remains restricted owing to inadequate drug 
penetration into the lesions or stratum corneum, sub-
optimal effectiveness, and the necessity for elevated 
concentrations of the pharmacologically active con-
stituents to elicit a therapeutic response. Additionally, 
the need for high doses, low bioavailability at the site 
of action, and drug absorption through the stratum 
corneum is considerably hindered by skin irritation. In 
order to circumvent the problems with conventional 
anticancer pharmaceutical delivery methods, NCs have 
been developed. The present state of skin cancer treat-
ment has showed significant promise for nanotechnol-
ogy-based therapy, and these could potentially serve as 
a more effective method for delivering drugs to treat 
cancer. Researchers have also looked at the several nan-
oparticulate therapy modalities and how well they treat 
skin cancer [166].

Hepatic cancer
Extracellular matrix (ECM) and cancer associated 
fibroblasts (CAF) have been identified as major actors 
in biology of cancer and have become crucial cancer-
related targets therapy and medication development. 
Both the specific ECM and CAF components are 
detected in tumours that lack a noticeable desmoplastic 
reaction within the tumour, as well as in tumours that 
are rich in stroma, such as pancreatic, biliary, and 
certain sub types of hepatocellular carcinoma (HCC). 
Cancer is supported by various mechanisms such as 
extracellular matrix remodeling, angiogenesis, and 
active immune-suppression. These mechanisms involve 
the secretion of tumour-promoting and immune-
suppressive cytokines, growth factors, and chemokines. 
They contribute to the developing, growing, 
metastasis, and resistance of cancer to chemotherapy 
or checkpoint inhibitor therapy. Cancer-associated 
fibroblasts (CAFs) exhibit similarities to activated 
hepatic stellate cells (HSC)/myofibroblasts due to 
their expression of smooth muscle actin and fibroblast 
activation protein (FAP). CAFs have been observed to 
upregulate additional functional cell surface proteins, 
such as the insulin-like growth factor receptor II 
(IGFR II) and platelet-derived growth factor receptor 
(PDGFR). Notably, NPs were injected preferentially to 



Page 15 of 22Bag et al. Future Journal of Pharmaceutical Sciences            (2023) 9:88  

Table 1 NCs in cancer medication delivery (reused from Kaushik et al., 2022, distributed under Creative Commons Attribution 4.0 
International License, which permits unrestricted use, distribution, and reproduction in any medium. (http:// creat iveco mmons. org/ 
licen ses/ by/4. 0/) [170]

NC NC@drug Material advantage Specificity References

Liposomes Liposomal doxorubicin Improved delivery to site of disease; 
decrease in systemic toxicity of free 
drug

Ovarian cancer; multiple myeloma [172]

Liposomal daunorubicin Improved delivery to tumour site; 
lower systemic toxicity arising 
from side effects

Karposi’s sarcoma [173]

Genistein and plumbagin encapsu-
lated nanoliposomes

Inhibition of cell metabolism In vitro and in vivo prostate cancer [174]

Folate-conjugated bovine serum 
albumin bound paclitaxel NPs

Increased solubility, cellular uptake; 
targeted specificity

Prostate cancer cells [175]

Protein-based NPs Alpha mangostin loaded crosslinked 
silk fibroin-based NPs

Physico-chemically stable, increased 
the drug’s solubility

Colorectal and breast cancer [176]

Noscapine-loaded human serum 
albumin NPs

High drug-loading efficiency 
(85–96%) and delivery of maximum 
quantity of drug to the tumour site

Breast cancer cells [177]

Plasmid cDNA (pGL3) polyethyl-
eneimine (PEI)-coated HSA NPs

Enhance endosomal escape In vitro gene delivery application [178]

Micelles Polymeric methoxy-PEG-poly(D,L-lac-
tide) micelle formulation of paclitaxel

Improved delivery to site of disease; 
decrease in systemic toxicity of free 
drug

Breast cancer; ovarian cancer [179]

Folate-PEG/Hyd-curcumin/C18-g-
polysuccinimide

pH sensitive drug release Colon cancer [180]

PEGylated prodrug nano-micelles Glucose-sensitive In vitro and in vivo anticancer activity [181]

Polymeric Micelles CD44v6-targeted polymeric micelles 
(PM) loaded with niclosmide

Increase drug safety Efficacy against colorectal stem cells [182]

Self-assembly Aptamer-tethered DNA assembly Stronger targeting ability, higher 
cellular uptake

Cancer cell imaging [183]

DNA-aptamer conjugated RNA-triple 
helix hydrogel

Efficient cellular uptake 
and enhanced nuclease resistance 
with superior biocompatibility

Triple negative breast cancer detec-
tion and treatment

[184]

Folate-modified MPEG-PCL Improved bioavailability, low toxicity, 
sustained drug release

Colorectal cancer mice model [185]

Folate receptor-targeted 
β-cyclodextrin (β-CD)

Biosafety, bioavailability, and improve 
curcumin drug loading capacity

Cervical cancer, fibroblast cells [186]

Table 2 A compilation of the NCs employed in clinical trials (reused from Kaushik et al., 2022, distributed under Creative Commons 
Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium. http:// creat iveco 
mmons. org/ licen ses/ by/4. 0/) [170]

Products Drug Nanocarrier Application

Lipoplatin Cisplatin Liposomal Non-small cell lung cancer

Onco-TCS Vincristine Relapsed non-Hodgkin lymphoma

OSI-211 Lurotecan Head, neck, and ovarian cancer

SPI-077 Cisplatin Head, lung, and neck cancer

PNU166945 Paclitaxel Polymeric Solid tumours

XMT-1001 Camptothecin Gastric cancer and lung cancer

PEG-SN38 Irinotecan derivate Solid tumours and breast cancer

Livatag Doxorubicin Liver cancer

NKTR-105 Docetaxel Solid tumours and ovarian cancer

Paclical Paclitaxel Breast, lung, and ovarian cancer

PEG-docetaxel Docetaxel Solid tumours

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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the liver if they are designed with an appropriate size 
and zeta potential. A variety of formulations tailored 
to nanotechnology were successfully used to assess 
the delivery of drugs to activated HSC/myofibroblasts. 
The surface modification of nanoparticles with 
cyclic peptides that bind to the PDGFR  or mannose-
6-phosphate that binds to the IGFR II  has proven 
to be effective in directing the delivery of drugs to 
stimulated HSC/CAF in vivo. Lipoplexes and unguided 
nanohydrogel particles containing siRNA have 
exhibited a significant in  vivo uptake and functional 
delivery of siRNA in activated HSCs. This is attributed 
to the specific targeting of liver CAFs  and HSCs by 
well-designed NCs  with optimized physico-chemical 
characteristics. As a result, CAFs  have emerged as 
a highly desirable target for stroma-focused cancer 
treatments, with a particular emphasis on liver cancer 
[167].

Tables 1 and 2 demonstrated the NCs employed in can-
cer medication delivery and the NCs under clinical trial, 
respectively [187–195].

Conclusion and prospects for the future
Chemotherapy for various cancers is recommended due 
to its less intrusive nature. Some chemotherapeutic med-
icines lack target specificity and physicochemical charac-
teristics, limiting their clinical application. This lowered 
efficacy and caused major negative effects. The aberrant 
biology of the cancer microenvironment complicates 
drug targeting. NCs are interesting cancer therapeu-
tic targets due to their small size and changed physico-
chemical properties.The attractive surface characteristics 
of certain NCs also influenced its selection. Researchers 
in cancer research prefer NCs with surface-engineered 
payload release at the tumour location. Drug researchers 
are working hard to create NC-based targeted delivery 
systems for breast, colon, ovarian, and lung cancer. The 
research suggests that lipid, liposomes, polymeric, metal 
nanoparticles, micelles, carbon nanotubes, and nano-
MOFs may deliver chemotherapeutic medications to par-
ticular cancer sites for cervical, colon, lung, and breast 
cancer. Surface-functionalized NCs with enhanced redox 
status, acidic pH, or hypoxia-responsive NPs may target 
cervix, breast, colon, and lung cancers. The bulk of the 
currently authorised nano-drugs come from straightfor-
ward NPs and recognised conventional drugs.

Failure of NPs in late-stage clinical trials is often 
attributable to their  disease  heterogeneity,  chemical, 
physical, and biological instabilities, and unantici-
pated in  vivo behaviour. These factors also contribute 
to the absence of recognised procedures for assessing 
the toxicity of NCs and nanodrugs. Preventing NPs 
from failing in clinical trials and permitting effective 

regulation of their stability, biocompatibility, and con-
sistent in vivo behaviour need an understanding of the 
heterogeneity of cancer and the fundamental proper-
ties of NPs. Similar to this, research in nanomedicine 
for treating breast, colon, ovarian, and lung cancer has 
been dominated by early-stage formulation and mate-
rial investigations. It is recommended to employ mul-
tidisciplinary methods and just animal experiments to 
acquire information about possible medicinal applica-
tions. The prospect for NCs technology’s multifaceted 
future seems bright, given the worldwide trend towards 
precision medicine. Moreover, regularity procedures 
continue to be a key barrier; as a result, a simple and 
comprehensive approval procedure method should be 
developed. Nonetheless, nanodrug platforms are grow-
ing increasingly sophisticated and include a wide vari-
ety of NP types. Future clinical usage of various novel 
nanodrugs is predicted by the research being done in 
this field. Additionally, current research in this area 
indicates that intelligent NP systems will soon be able 
to diagnose illnesses, monitor patients’ health, and 
deliver targeted chemotherapy all at once. Although 
there are numerous obstacles to overcome in the cre-
ation of nanodrugs, it could only be a matter of time 
until these substances provide distinctive remedies for 
unmet therapeutic requirements.
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