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Abstract 

Background Osteoporosis, among other bone diseases, has become a prevalent cause of decreased quality of life 
in older and postmenopausal women. Traditional anti‑osteoporotic therapies, though widely prescribed, are limited 
by a lack of cell‑ or tissue‑specific targeting ability and effectiveness without side effects. Gene therapy is rapidly 
replacing traditional therapeutics, primarily because of its specific targeting ability and efficiency. Among viral‑ 
and non‑viral‑based gene therapies, the latter is often preferred over the former due to lower cytotoxicity, immuno‑
genicity, and ease of modification with different molecules to improve efficiency and extend gene expression. We 
designed and synthesized a multifunctional bone‑targeting ribonucleic acid (RNA) delivery system based on poly‑
amidoamine (PAMAM). PAMAM was modified with the serine‑aspartate‑serine‑serine‑aspartate (SDSSD) peptide 
to deliver antagomir 138‑5p to osteoblasts (MC3T3‑E1 cell line) in vitro and in vivo using the ovariectomized (OVX) 
mouse model.

Results The results showed that this system was less cytotoxic than polyethylenimine (PEI) and could bind to RNA 
favorably while maintaining gene delivery ability in vitro. In vivo data showed that the distal tibia and femur 
of the mice in the PAMAM‑SDSSD (PS) + RNA group had improved bone mineral density (BMD), bone mineral content 
(BMC), and bone volume compared to those in the PS + Negative Control (NC) or OVX groups. Moreover, the femurs 
of the PS + RNA group mice demonstrated a higher breaking point, stress, stiffness, and elasticity than those 
of the PS + NC or OVX mice, suggesting improved femur strength in the OVX mice treated with RNA delivered 
through SDSSD‑modified PAMAM.

Conclusion This study shows that SDSSD modification of PAMAM not only improves gene delivery capacity 
but also enhances the cell targeting efficiency of nanoparticles towards osteoblasts. The successful delivery of antago‑
mir 138‑5p to osteoblasts demonstrates cell‑specificity and gene delivery to alleviate osteoporotic symptoms.
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Background
Bone disorders such as osteosarcoma, Paget’s disease, 
osteoarthritis, and osteoporosis have become major 
disorders that affect millions around the world. Among 
these, osteoporosis is the most common, affecting more 
women than men, and can significantly increase morbid-
ity, financial costs, and even mortality [1]. Osteoporosis 
is characterized by decreased bone strength and integrity 
as a result of compromised bone microstructure, which 
increases the risk of fractures such as spine, hip, and fore-
arm fractures, but hip fractures have the most devastat-
ing impact on life. In general, the situation is associated 
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with older people and postmenopausal women [2]. The 
main causal link to osteoporosis is the disruption of bone 
remodeling, a highly coordinated process of osteoblast-
mediated bone formation and osteoclast-mediated bone 
resorption mediated by hormones and signaling pro-
teins [3]. Genetics, age, smoking, inadequate intake of 
calcium and vitamin D, and other diseases contribute to 
the progression of osteoporosis, but estrogen deficiency 
is the major contributing factor in osteoporosis in post-
menopausal women [4]. Dual-energy X-ray absorptiom-
etry (DXA) is generally performed for the diagnosis of 
osteoporosis and to chart the next course of treatment. 
The existing osteoporosis treatments include chemical 
as well as biological agents and function as anti-resorp-
tive agents. The chemical agents include bisphospho-
nates, while estrogen and selective estrogen receptor 
modulators (SERMs), parathyroid hormone (PTH) and 
PTH-related peptide (PTHrP), denosumab, and odana-
catib constitute biological agents [5, 6]. However, due to 
their side effects and low efficiency, alternative therapies 
such as gene therapy have become highly sought-after 
therapeutics.

Usually, viral- and non-viral-based agents are employed 
for gene delivery. Although viral-based vectors have a 
high transfection rate, the emergence of pre-existing 
immunity, a virus-induced immunogenic response, 
genome integration, and payload size limitations, restrict 
their wider exploitation [7, 8]. Non-viral vectors, on the 
other hand, have become the preferred alternative as 
gene vectors for medical purposes due to their bicompat-
ibility, low immunogenicity, and low mutagenic effects [9, 
10]. Nevertheless, they lack greater targeting efficiency, 
specificity, and prolonged gene expression, which mini-
mizes their utilization in preclinical and clinical studies 
[11]. Among non-viral-based substances such as cationic 
lipids, cationic and engineered polymers, nanoparticles, 
etc., cationic polymers, due to their simplicity in pro-
duction, controllable chemical composition, and chemi-
cal flexibility, have become popular choices to facilitate 
nucleic acid transfer [12, 13]. Linear or branched poly-
ethylenimine (PEI) is regarded as an ideal cationic poly-
mer candidate for non-viral gene delivery because of the 
abundance of amine groups on the surface, which not 
only provides a greater surface for nucleic acids but also 
allows the synthesis of hybrid molecules [14]. However, 
its non-specific interactions with blood components, 
the extracellular matrix, and off-target cell effects have 
made it necessary to find alternative polymers. As an 
alternative to PEI, dendrimers can be used as gene vec-
tors because of their branching structure, uniform size, 
versatility, selectivity for biological targets, and ability to 
improve the solubility and stability of the payload [15]. 
Their branched structure provides a large surface for 

drug encapsulation either through non-covalent inter-
action or through covalent coupling, and they can be 
modified according to the chemical nature of the payload. 
These have shown promising effects in anti-neoplastic, 
anti-inflammatory, antiviral, and imaging diagnostic 
therapies [16, 17].

Polyamidoamine (PAMAM) is one such dendrimer that 
can be used to carry genes and allows greater flexibility in 
alterations, such as the addition of target-specific moie-
ties. These are synthesized through a series of sequen-
tial reactions known as "generations” (G), which can 
be controlled to achieve uniform size. The high-density 
cationic charges on their surface electrostatically inter-
act with nucleic acids (DNA and RNA), forming com-
plexes that effectively deliver genes in  vitro and in  vivo 
[18]. PAMAM dendrimers of Generations 5 and 6 (G5 
and G6) have been described as effective in  vitro gene 
delivery systems; however, their poor in vivo efficacy and 
high cytotoxicity have been setbacks. These drawbacks 
can be overcome by modifying PAMAM with different 
molecules. Polyethylene glycol (PEG), arginine-glycine-
aspartate (RGD), alkyl-carboxylate chain, and cholesteryl 
chloroformate-based modifications of PAMAM have 
been shown to considerably improve biocompatibility 
and hemocompatibility by reducing RBC aggregation 
and enhance transfection efficiency [19–21]. Because of 
their ability to provide real-time monitoring as well as 
non-invasiveness, nanoparticles can also be labeled with 
fluorescent moieties. Among the various fluorescent 
moieties, amine-attached 1,8-naphthalimide cores have 
the potential to be useful as lysosome staining agents, 
efficient non-viral gene delivery vectors, and fluorescent 
sensors for live animal imaging [22–25].

Because its successful clinical applications can sig-
nificantly advance the treatment of bone injuries and 
disorders, bone-targeted drug delivery is a new area for 
research. As potential moieties for targeted delivery sys-
tems, molecules with a high affinity for bone, low sys-
temic concentrations, and a propensity to remain in the 
bone tissue for an extended period of time have been 
investigated [26]. Previous studies have shown that the 
addition of small molecules like repeating sequences of 
amino acids and aptamers can improve the polymer’s 
ability to target specific bone cells in bone tissue [27]. 
However, their use as bone formation surfaces may be 
restricted due to their preference for bone resorption 
surfaces and highly oriented hydroxyapatite crystals 
[28–30]. Given the advancements in finding new long 
noncoding RNAs (lncRNAs), small interfering RNAs 
(siRNAs), microRNAs (miRNAs), and antisense oligo-
nucleotides (ASOs) in bone tissue and osteoporosis, 
significant improvements have been made in the iden-
tification of new targets and potential therapeutics for 
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gene therapies [31–33]. RNA-based gene silencing, as 
opposed to pDNA-based gene silencing, has become the 
preferred method for preventing antagonistic genes from 
being expressed in osteoporosis [34]. The most signifi-
cant barrier to developing an efficient bone-targeted gene 
delivery system, however, remains the safe and efficient 
delivery of RNA to specific bone cells with no or limited 
circulation in other tissues [35, 36]. (DSS)6 or SDSSD 
peptides added to the surface of polymers have been 
shown to improve gene delivery to specific bone cells 
and, as a result, bone architecture, indicating their capa-
bility as targeting and non-viral gene vectors [30, 37].

However, a multifunctional delivery system that can 
deliver a gene, provide live monitoring in study animals, 
and have a strong preference for a specific cell or tissue 
has not yet been reported. By combining the capabilities 
of PAMAM, a strong cationic nucleic acid binding poly-
mer, 4-amino-1, 8-naphthalic anhydride as a fluorescent 
probe, and SDSSD peptide as a targeting moiety towards 
osteoblasts, we designed a novel multifunctional delivery 
system to effectively and specifically deliver RNA to bone 
tissue in the hope that it will offer an alternative to con-
ventional bone therapeutics.

Materials
Materials
Polyamidoamine (PAMAM (G5), Mw: 28,826) was pro-
vided by Weihai Chenyuan Molecular New Materials 
Co., Ltd. (China), amino and hydroxyl groups protected 
bone-targeting peptides were procured from Jill Bio-
chemical (Shanghai) Co., Ltd. Polyethylenimine hydro-
chloride (PEI, linear, average Mn 20,000, PDI ≤ 1.2) was 
obtained from Sigma-Aldrich (USA). Lipofectamine™ 
2000 (Lipo™ 2000) was purchased from Thermo Fisher 
Scientific (USA). 4-amino-1,8-naphthalic anhydride 
was obtained from Ruixibio (Xi’an, China). 1-hydroxy-
benzotriazole (HOBt), dimethyl sulfoxide (DMSO), 
and 1-ethyl-3-(3-dimethylaminopropyl) carbonyldiim-
ide hydrochloride (EDCl) were purchased from Beijing 
Ouhe Technology Co. Ltd. (Beijing, China). Diisopro-
pylethylamine (DIPEA), triethylamine, p-methylphenol, 
pentobarbital sodium, and 3-(4, 5-dimethylthiazolyl-2)-2, 
5-diphenyltetrazolium bromide (MTT) was purchased 
from Beijing Solarbio Science & Technology Co., Ltd. 
(Beijing, China), trifluoroacetic acid (TFA) was obtained 
from Beijing Coupling Technology Co., Ltd. MiR 138-5p 
(antagomir (5’CGG CCU GAU UCA CAA CAC CAGCU3’) 
and NC (F-5’AGC UGG UGU UGU GAA UCA GGCCG3’ 
R-5’UCG ACC ACA ACA CUU AGU CCGGC3’) were 
obtained from GenePharma (Shanghai, China), and 
EGFP siRNAs (F-5’GGC UAC GUC CAG GAG CGC 
ACC3′ R-5’UGC GCU CCU GGA CGU AGC CUU3′) 
were obtained from GenePharma (China). Primers were 

synthesized and obtained from TsingKe (Beijing, China). 
RNA in this article refers to the antagomir 138-5p unless 
specified. As a solvent for chemical preparation, milli-
Q grade distilled and deionized water was used in all 
experiments.

Synthesis
Dendritic molecule polyamidoamine G5 (1.0 equivalents 
(eq)) and 4-amino-1,8-naphthalic anhydride (10 eq) were 
dissolved in 1 ml of ethanol solution, stirred for 0.5 h at 
room temperature, heated for 8 h, and dialyzed for 48 h 
to obtain compound 1. In this article, we referred to 
this compound 1 as P. Naphimide-modified compound 
1 (1.0 eq) was dissolved in the mixture of EDCI (80 eq), 
HOBt (80 eq), and DIPEA (80 eq) with 80 equivalents of 
amino and hydroxyl-protected bone-targeted peptides in 
2  ml of dichloromethane for 24  h. After the end of the 
reaction, the mixture was dialyzed for 48  h to obtain 
compound 2. Compound 2 was dissolved in 2  ml of 
TFA at room temperature for 24 h and dialyzed for 48 h 
to obtain the final compound (compound 3) (Fig.  1A). 
In this article, we referred to this compound 3 as PS 
(PAMAM-SDSSD).

Characterization
Scanning electron microscopy (SEM)
The morphology of particles was determined by scan-
ning electron microscopy according to a previously 
established protocol [38]. Briefly, 1 μl of antagomir 138-
5p (200 μg/mL) was mixed with the appropriate volume 
of PS nanoparticle solution to form complexes and then 
diluted with water. After incubation at 37  °C for 5  min, 
complexes were added dropwise onto the silicon slice. 
The slice was dried at room temperature at atmospheric 
pressure overnight and then observed under a scanning 
electron microscope.

1H NMR
The structural composition of compounds was investi-
gated according to the previous protocol [39] through 1H 
NMR spectra analysis using a Bruker Avance III 400 MHz 
spectrometer at 25 °C using  D2O as a solvent.

Zeta potential and size
The complex of PS with RNA was prepared by adding 
1 μl of antagomir 138-5p (264 μg/ml) to the appropriate 
volume of the stock solutions of PS. After 30  s of vor-
texing, the complex solution was diluted with deionized 
water. The zeta potential and the hydrodynamic size were 
measured using the Nano-ZS 3600 ZetaPlus Particle 
Size and Zeta Potential Analyzer (Malvern Panalytical, 
Worcestershire, UK).
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Gel retardation assay
The different molecular weight ratio complexes of PS 
with RNA were prepared by adding the appropriate 
volume of the polymers to 80 nM of antagomir-138-5p. 
After incubation for 20  min at room temperature, the 
samples were analyzed using 1% (w/v) agarose gel elec-
trophoresis with Tris–acetate (TAE) as a running buffer 
for 30  min at 120  V. The bands were visualized using 
the Gel Doc XR imaging system (BioRad, USA) and 
processed using Quantity One software.

Cell culture and transfection
The mouse pre-osteoblasts (MC3T3-E1 cells) were cul-
tured in α-Minimal Essential Media (MEM), and mouse 
leukemic monocyte/macrophage (RAW264.7) (ATCC 
(Manassas, USA), HEK293-EGFP transgenic cells, and 
C3H10T1/2 were cultured in Dulbecco’s Modified Eagle 
Medium (DMEM, Gibco™, Thermo Fisher Scientific) 
media, respectively, supplemented with 10% FBS (Bio-
logical Industries, Israel), 100  µg/ml streptomycin, and 
100 units/ml penicillin (Amresco, USA) and maintained 

Fig. 1 Design and Synthesis of PS. A Chemical synthesis route of PS. B Schematic diagram of PS showcasing the design of the nucleic acid delivery 
system
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at 37 °C, 5%  CO2, and 95% humidity. 0.25% trypsin con-
taining 10 mM EDTA was used for the passage of cells in 
the experiment.

For cell transfection, MC3T3-E1 or RAW264.7 were 
seeded at a cell density of 8 ×  104 cells  cm−2 and trans-
fected with antagomir-138-5p or agomir-138-5p (nega-
tive control (NC)) only, and with PS and P. The antagomir 
or NC concentration was 50 nM. After incubation for 6 h, 
the serum-free medium was replaced by a fresh growth 
medium containing 10% FBS. 48 h after transfection, cells 
were harvested for real-time polymerase chain reaction 
(PCR) or cytotoxicity assays.

Cytotoxicity
The cell viability assay was performed to assess the cyto-
toxic effect of PEI or PS on MC3T3-E1, RAW 264.7, 
and C3H10T1/2. Briefly, MC3T3-E1, RAW264.7, and 
C3H10T1/2 were seeded in the appropriate medium and 
exposed to various concentrations of PEI, or PS. After 
treatment for 12 h, the spent medium was replaced with 
MTT solution (5  mg/ml in PBS), and the plates were 
further incubated for 4 h in the incubator. After incuba-
tion, DMSO was added to each well, and absorbance was 
measured at 570 nm using a microplate reader (Synergy 
HT, Bio-Tek, USA).

EGFP gene knockdown experiment
HEK293-EGFP cells were seeded in a 48-well plate at a 
density of 8 ×  104 cells per well in 0.5 ml culture medium 
and incubated overnight. After reaching 80%-90% con-
fluence, cells were transfected with green fluorescent 
protein (GFP) siRNA using P, PS, Lipofectamine™ 2000, 
or PEI polymers for 6 h in serum-free media (siRNA at 
a final concentration of 120  nM/well). The transfection 
medium was replaced with a culture medium and cells 
were incubated for another 24  h. The EGFP expression 
was measured using fluorescence microscopy. ImageJ 
software was used to semi-quantify images. P, Lipo-
fectamine™ 2000, and PEI-treated groups served as posi-
tive controls.

RNA extraction and real‐time quantitative PCR (RT‑qPCR)
Total RNA was extracted from cell samples using the 
Omega Total RNA Kit (Omega, USA) according to the 
manufacturer’s instructions, and RNA quality was deter-
mined by ultraviolet (UV) spectrophotometry. 1  μg of 
total RNA was reverse transcribed into complemen-
tary DNA using a cDNA synthesis kit (PrimeScript™ 
RT Reagent Kit, TaKaRa, Japan) following the manufac-
turer’s instructions. The primer sequence for miR 138-
5p reverse transcription was 5’-GTC GTA TCC AGT GCA 
GGG TCC GAG GTA TTC GCA CTG GAT ACG ACC GGC 
CT-3’. Real-time quantitative PCR was performed using 

the SYBR® Premix Ex Taq™ II kit (TaKaRa, Japan) and 
gene-specific primers (MACF1 F‐5′‐GAA AAC ATT CAC 
CAA GTG GGT CAA C‐3′, R‐5′‐TGT CCA TCC CGA AGG 
TCT TCA TAG ‐3’; GAPDH F‐5′‐TGC ACC ACC AAC 
TGC TTA G‐3′, R‐5′‐GGA TGC AGG GAT GAT GTT C‐3’; 
miR-138-5p F-5’- GCG GCG GAG CTG GTG TTG TGA 
ATC -3’, R-5’- ATC CAG TGC AGG GTC CGA GG-3’; U6 
F-5’-GTG CTC GCT TCG GCAG CAC ATA T-3’, R- 5’-RAA 
AAT ATG GAA CGC TTC ACGAA-3’), using the CFX96 
Touch Thermal Cycler (Bio-Rad, USA) with an initial 
denaturation at 95  °C for 30  s, followed by 45 cycles of 
denaturation, primer annealing, and primer extension at 
95  °C for 10 s, 60  °C for 30 s, and 72  °C for 5 s, respec-
tively. PCR data were analyzed with the comparative CT 
method  (2−ΔΔ CT). Gapdh and U6 served as internal con-
trols for the mRNA and miRNA analyses, respectively.

Mice and mouse models
Mice
6-week-old C57BL/6 J female mice weighing 19.8 g were 
purchased from the Laboratory Animal Center of Air 
Force Medical University, Xi’an, Shaanxi, China, and were 
maintained in specific-pathogen-free (SPF) conditions 
with free access to water and feed. All animal experi-
ments were performed in compliance with relevant ethi-
cal regulations of the Guiding Principles for the Care and 
Use of Laboratory Animals (the Institutional Experimen-
tal Animal Committee of Northwestern Polytechnical 
University, Xi’an, China [202000001]) and were approved 
by the Institutional Experimental Animal Committee of 
Northwestern Polytechnical University, Xi’an, China.

Osteoporosis OVX mouse model
The OVX mouse model was constructed using 8-week-
old female C57BL/6  J mice according to a previously 
established procedure [40]. Briefly, a single midline dor-
sal incision was made on the back of anesthetized mice, 
and subcutaneous connective tissue was freed from the 
underlying muscle on each side. The ovaries were located 
under the thin muscles, and by securing a single ligature 
around the oviduct, the ovaries were removed. The mus-
cle layers and skin incision were sutured. Mice were then 
kept under observation for a full recovery and then ran-
domly divided into different groups.

Pre‑therapeutic evaluation of anti‑miR‑138‑5p delivered 
by PS to OVX mice
Nine 8-week-old female C57BL/6 J mice were ovariecto-
mized (OVX) and then left untreated for 4 weeks. OVX 
mice were then divided into three groups: the OVX 
group, the PS + NC group, and the PS + RNA group. The 
OVX group received PBS; the PS + NC and PS + RNA 
groups received 100  μl of PS + NC and PS + antagomir 
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138-5p, respectively, with an NC or antagomir dose of 
1 mg/kg. The mice in each group received four periodic 
intravenous (tail vein) injections at an interval of 1 week 
for 4 weeks. Table 1 summarized the experimental groups 
and dosage administered during the treatment period. 
After completion of treatment, mice were euthanized, 
and bones were collected for further analysis (Fig. 6A). 

Dual‑energy X‑ray absorptiometry (DXA)
The mice were sedated with pentobarbital sodium 
(1.2  mg/10  g) and placed on the specimen tray of the 
DXA body composition analysis system (InAlyzer, 
Medikors) in a prone position for scanning. Radiographic 
images as well as related parameters of various bone 
regions were acquired using InAlyzer Dual X-ray Digital 
Imaging Software (InAlyzer, Medikors).

Mechanical properties of bone
The mechanical properties of the femur were investigated 
using a three-point bending test, as previously described 
[41]. A UniVert (CellScale Biomaterials Testing, Canada) 
was used to perform a three-point bending test on each 
femur. The femurs were placed horizontally on two sup-
ports spaced 5  mm apart. To load the midpoint of the 
femur, an accutator was lowered at a speed of 1.0 mm per 
minute. The bending load was applied continuously until 
the fracture occurred. Load and displacement data were 
collected at a 100 Hz sampling rate.

Statistical analyses
The mean ± SD is used to express all statistical data. 
Unpaired student’s t-tests were used to analyze the sig-
nificant differences between the two groups. Two-way 
ANOVA was performed to compare the differences 
among multiple groups followed by Tukey’s test.All sta-
tistical analyses were performed using GraphPad Prism 7 
software. P < 0.05 was regarded as statistically significant. 
For the experiment, significance was defined as *P < 0.05, 
**P < 0.01, ***P < 0.001, and ****P < 0.0001.

Results and discussion
Synthesis
We designed a functional delivery system having the 
capabilities of PAMAM (G5) and SDSSD (PS) to deliver 
the desired gene to osteoblasts, as shown in Fig. 1B.

Characterization
Prepared PS nanoparticles were characterized for their 
size, structural composition, and nucleic acid bind-
ing capacity. The shape of the nanoparticle was exam-
ined using scanning electron microscopy (SEM), which 
showed a uniform spherical morphology of the particles 
(Fig.  2A). 1H NMR analysis of PS nanoparticles con-
firmed the successful attachment of the SDSSD peptide 
to PAMAM (Fig. 2B).

Furthermore, we used dynamic light scattering (DLS) 
to determine the size and zeta potential of PS nano-
particles. The average zeta potential of PS was 17.6  mV 
(Fig. 2C), and the diameter was 217.2 nm (Fig. 2D), sug-
gesting that the prepared particles were stable and could 
resist flocculation. The agarose gel electrophoresis assay 
showed that even at the lowest weight ratios of PS/
nucleic acid (P/N, wt/wt), i.e., 5:1, PS nanoparticles could 
impede the migration of nucleic acid (Fig. 2E).

Cytotoxicity
At the cellular level, the MTT assay confirmed the bio-
compatibility of PS nanoparticles. Compared to PEI, PS 
nanoparticles demonstrated a high percentage of cell 
viability at all concentrations, whereas PEI showed a 
toxic effect on the cell line tested (Fig. 3A-C). Overall, PS 
proved to be an excellent in vitro biocompatible particle.

Gene silencing ability of PS nanoparticles
We tested whether adding the SDSSD peptide to modi-
fied PAMAM had any effect on its gene delivery ability 
by transfecting HEK293-EGFP cells with GFP siRNA. 
We observed no significant difference in the reduction 
in fluorescence between P + GFP siRNA and PS + GFP 
siRNA-treated cells. Interestingly, we detected a signifi-
cant reduction in fluorescence in the PS + GFP siRNA 
group compared to the PEI + siRNA group (Fig.  4A-B). 
This indicates that the attachment of SDSSD to PAMAM 
had no negative effect on PS’s transfection ability.

Table 1 Experimental groups and dosage during treatment

Sr. No Group Number of mice Therapeutic (Dosage) Duration 
of 
Treatment

1 OVX group 3 Saline 4 weeks

2 PS + NC group 3 Negative control with PS (1 mg/kg)

3 PS + RNA group 3 Antagomir 138‑5p with PS (1 mg/kg)
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In vitro RNA delivery ability in osteoblasts
The specificity of SDSSD-modified PAMAM was also 
examined towards osteoblast. The osteoblast-specific 
RNA delivery capacity of PS particles was investigated 
by using mouse pre-osteoblast MC3T3-E1 and leu-
kemic monocyte/macrophage RAW264.7 cell lines. 
Previous research has found that miR-138-5p targets 
microtubule actin crosslinking factor 1 (MACF1), 
which is involved in osteoblast differentiation, and 
thus negatively regulates osteoblast differentiation and 
bone formation [42, 43]. Therefore, PS nanoparticles 
were used to deliver antagomir 138-5p to investigate its 
potential as a bone anabolic therapy for osteoporosis.

Cells were incubated with PS nanoparticles with 
antagomir 138-5p, and after 24 h, the ability of PS nan-
oparticles to deliver antagomir 138-5p in osteoblasts 
and osteoclasts was determined by measuring the 
relative expression of miR 138-5p and its target gene, 
MACF1, using qPCR. The data showed a significant 
reduction in the expression of miR 138-5p (Fig. 5A) and 
increased levels of microtubule-actin crolinking factor 
1 (MACF1) in MC3T3-E1 cells treated with PS + antag-
omir 138-5p compared to non-modified nanoparticles 
with antagomir 138-5p (Fig. 5B). However, no such sig-
nificant correlation was observed in the RAW 264.7 cell 

Fig. 2 Characterization of PS nanoparticles: A A typical image of a scanning electron micrograph of PS (scale bar: 1 µm). B 1H NMR spectrum of PS. 
C Zeta potential of PS determined by dynamic light scattering. D The particle size distribution of PS. E The binding capacity of PS to miR‑138‑5p 
measured by an electrophoretic mobility assay

Fig. 3 Biocompatibility and gene silencing ability of PS nanoparticles. Cytotoxic effect of different concentrations of PS and PEI on different 
cell lines using the MTT assay after 24 h of incubation; A MC3T3‑E1 cell line; B RAW 264.7 cell line; and C C3H10T1/2 cell line. All data are shown 
as mean ± SD, n = 3. A student’s t‑test was used to compare the differences between the two groups. *P < 0.05, **P < 0.01, and ****P < 0.0001 vs. PEI. 
(PS: SDSSD‑modified PAMAM; PEI: Polyethylenimine)
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line (Fig.  5C and D), indicating their ability to deliver 
antagomir 138-5p preferentially to osteoblasts.

In vivo delivery ability and mechanical properties of bone
Based on the results of in  vitro research, we performed 
a preliminary therapeutic investigation of PS + antagomir 
138-5p in OVX mice. After receiving injections through 
the tail vein once a week for four weeks, mice were sub-
jected to DXA InAlyzer analysis to acquire radiographic 
images as well as related parameters of various bone 
regions. In comparison to OVX and PS + NC, the distal 
tibia and femur of mice that received repeated injections 
of PS + antagomir 138-5p showed a significant increase in 
the BMD (Fig. 6B and C), BMC (Fig. 6D), and bone vol-
ume (Fig. 6E).

The mechanical characteristics of mouse femurs, 
including stress and elasticity, were then tested using 
a three-point bending test to see if the improved BMD 
also improved bone strength. It was found that a greater 
force was required to achieve the end result (break in 
the femurs) in the femurs of mice in the PS + RNA group 
than in the OVX or PS + NC groups (Fig. 7A). Addition-
ally, compared to the femurs of OVX or PS + NC group 

mice, the femurs from PS + RNA group mice were able to 
withstand higher stress (Fig.  7B) and displayed a higher 
modulus of elasticity (Fig.  7C), indicating that they 
were stiffer and more force-resistant. However, PS + NC 
groups showed no significant value when compared to 
the OVX group. Therefore, it suggests that these nano-
particles could deliver antagomir 138-5p in  vivo and 
improve bone health in OVX mice.

Discussion
Polymers have evolved as strong candidates to facilitate 
nucleic acid delivery to various cells, but their cytotox-
icity and inability to specifically deliver the cargo often 
hamper their broader application, and in such cases, 
modifications can provide the answer. Much work on 
polymer modification with peptides has shown their 
capability to specifically deliver nucleic acids to cells 
without having any significant toxicity. One such pep-
tide is Ser-Asp-Ser-Asp (SDSSD), which has been 
demonstrated to possess a high affinity for osteoblast-
specific factor 2 (OSF-2) and thus can specifically tar-
get osteoblasts [37, 44]. PAMAM modification with 
SDSSD demonstrated that these nanoparticles were 

Blank P+siRNA                               PS+siRNA                         Lipo TM 2000+siRNA               PEI+siRNA 

A 

B
Fig. 4 Gene silencing ability of PS nanoparticles in HEK293‑EGFP cells transfected with GFP siRNA. A Fluorescent microscopy images 
of HEK293‑EGFP cells transfected with GFP siRNA using P, Lipofectamine™ 2000 (Lipo™ 2000), and PEI. Lipofectamine™ 2000 (Lipo™ 2000), 
and PEI‑treated groups served as positive controls (scale bar: 50 µm). B Semi‑quantified analysis of green channel images using ImageJ software. 
Data are represented as mean ± SD, n = 3. A student’s t‑test was used to compare the differences between the two groups. *P < 0.05, **P < 0.01 vs. 
blank. (P + siRNA: PAMAM + GFP siRNA; PS + RNA: SDSSD‑modified PAMAM + GFP siRNA; Lipo + siRNA: Lipofectamine™ 2000 + GFP siRNA; PEI + siRNA: 
Polyethylenimine + GFP siRNA; ns: not significant)
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biocompatible and could specifically target and deliver 
antagomir 138-5p into osteoblast cells, as evidenced by 
qPCR results. Previous research suggested that inter-
nalization could have occurred via a periostin-mediated 
mechanism [37]. Our in  vivo study shows that BMD 
and bone strength were improved by the injection of 
RNA with these nanoparticles. These results indicate 
that PS nanoparticles could deliver antagomir 138-5p 
in vivo and alleviate osteoporotic symptoms.

This study, however, was limited to in vitro and prelimi-
nary in vivo investigations. As a result, we were unable to 
assess the ability of PS nanoparticles to target osteoblasts 
in vivo at this time. We would like to emphasize that the 
delivery system’s targeting and delivery capabilities were 
evaluated quantitatively (qPCR).

Conclusion
In conclusion, we demonstrate that a novel gene deliv-
ery system could be developed by modifying PAMAM 
with the SDSSD peptide. This preliminary study shows 
that PS nanoparticles could target and selectively 
deliver RNA to osteoblasts in vitro and alleviate osteo-
porotic symptoms in  vivo. As a result, the findings of 
this study suggest that PS nanoparticles could be a 
potentially safe and effective delivery system for osteo-
blasts. Based on these findings, more in-depth in  vivo 
analysis experiments are needed to evaluate and estab-
lish its potential as a therapeutic delivery system for 
treating bone disorders.

Fig. 5 In vitro targeting and delivery ability of PS nanoparticles. A Relative expression of miR‑138‑5p and B its target gene, MACF1, in the MC3T3‑E1 
cell line. C Relative expression of miR‑138‑5p and D its target gene, MACF1, in the RAW 264.7 cell line. U6 and GAPDH were the internal controls 
for 138‑5p and MACF1, respectively. Data are shown as mean ± SD, n = 3. A student’s t‑test was used to compare the differences between the two 
groups. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 vs. P + RNA. (RNA: Antagomir 138‑5p; P + RNA: PAMAM (without SDSSD) + Antagomir 138‑5p; 
PS + RNA: SDSSD‑modified PAMAM + Antagomir 138‑5p; Anti‑miRNA: Antagomir 138‑5p; ns: not significant)
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Future prospects
Given the amount of research that is being carried 
out to understand the effects of RNA in healthy as well 
as disease states, their potential as RNA therapeutics 
has become an interesting area of research. However, 

RNA alone is not efficient enough to impart therapeu-
tic effects when administered, and therefore, delivery 
systems need to be developed to transport RNAs. This 
study, though limited to preliminary in  vivo investiga-
tions, has shown promising results so far. To establish 

Fig. 6 In vivo targeting and delivery ability of PS nanoparticles. A A schematic diagram illustrating the experimental design. B BMD of distal 
tibia, and C BMD of distal femur. D BMC of distal tibia and femur. E Bone volume of distal tibia and femur. A student’s t‑test was used to compare 
the differences between the two groups. Two‑way ANOVA was performed to compare the differences among multiple groups followed by Tukey’s 
test. Data are shown as mean ± SD, n = 3. *P < 0.05, **P < 0.01, ***P < 0.001 vs. OVX or PS + NC. (PS + NC: SDSSD‑modified PAMAM + Negative Control; 
PS + RNA: SDSSD‑modified PAMAM + Antagomir 138‑5p)
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SDSSD-modified polymers as an effective bone-targeting 
system, their pharmacokinetic profile needs to be estab-
lished to determine the exact dosage interval needed to 
achieve maximum therapeutic effect without toxicity. 
Moreover, the establishment of various mouse mod-
els, such as osteosarcoma or osteopenia, could provide 
insight into the pharmacodynamic properties of the PS 
nanoparticles. Additionally, more in-depth effects of the 
nucleic acid delivery abilities of PS nanoparticles can be 
assessed through micro-computed tomography to ana-
lyze trabecular as well as cortical structure and through 
immunohistochemistry.

All animal experiments were performed in compli-
ance with relevant ethical regulations of the Institu-
tional Experimental Animal Committee of Northwestern 
Polytechnical University, Xi’an, China. Ethical Approval 
Number – 202,000,001.
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