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Abstract 

Background Telmisartan (TLT) is a prototypic angiotensin receptor blocker largely used to treat hypertension world-
wide. In addition to its cardioprotective effects, TLT presents pleiotropic activities and notably displays noticeable 
anti-inflammatory and antitumor effects. The repression of the programmed cell death-1 (PD-1)/programmed death-
ligand 1 (PD-L1) immune checkpoint may be implicated antitumor action of TLT, as it is the case with many other 
compounds equipped with a biphenyl moiety. We have used molecular modeling to compare the interaction of TLT 
and derivatives with the PD-L1 dimer protein.

Results Two molecules, TLT-dimer and TLT-acylglucuronide, were found to form more stable complexes with PD-L1 
than TLT itself. In parallel, the docking analysis performed with a series of 12 sartans led to the identification of Olm-
esartan as a potential PD-L1 binder. The stacked biphenyl unit of Olmesartan positions the molecule along the groove 
delimited by the two protein monomers. The flanking tetrazole and imidazole moieties, on each side of the biphenyl 
unit of Olmesartan, contribute favorably to the protein interaction via specific hydrogen bonding interactions.

Conclusions The computational analysis suggests a possible binding of Olmesartan to PD-L1 dimer and thus offers 
novel perspectives for the design of small molecules capable of interrupting the PD-1/PD-L1 immune checkpoint. 
Experimental studies are warranted to validate the hypothesis.
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Background
Telmisartan (TLT) is one of the most frequently pre-
scribed angiotensin receptor blockers (ARB), selectively 
inhibiting angiotensin II type 1 receptor (AT1) [1]. It is 
a classical antihypertensive drug with an excellent safety 
and pharmacokinetic profile, largely used to reduce arte-
rial blood pressure in patients with hypertension, meta-
bolic syndrome, and those at high cardiovascular risk. 
TLT is safe and inexpensive, used worldwide, both in 
Asian and Caucasian populations [2]. The global TLT 
market size reached US$ 3.6 billion in 2022 and contin-
ues to grow; it is expected to reach US$ 4.6 billion by 
2030 [3].

This lipophilic drug is often combined with diuret-
ics, notably hydrochlorothiazide, for the management of 
hypertension, affording a well-tolerated combination to 
treat patients with mild-to-severe hypertension [4, 5]. 
The water solubility (9.9 μg/mL) and bioavailability (40–
60%) of TLT represent limiting factors but these proper-
ties can be improved by reducing the crystal particle size 
(so as to increase the surface area) and via other options, 
such as the development of co-amorphous formulations 
[6, 7].

Through its action on the renin-angiotensin system, 
TLT has positive effects on lipid and glucose metabolism. 
It is considered a drug of interest to treat non-alcoholic 
fatty liver disease (NAFLD) [8]. In addition to blocking 
angiotensin receptor, TLT has a partial peroxisome pro-
liferator-activated receptor γ (PPARγ)-agonistic effect, 
which is a useful property to combat diabetes mellitus 
[9]. In fact, TLT has been shown to exhibit an insulin 
secretagogue activity, independent of AT1 receptor and 

PPARγ [10]. Moreover, the compound displays marked 
anti-inflammatory effects and is also considered a drug of 
interest to provide protection against Alzheimer’s disease 
[11]. Clearly, TLT displays pleiotropic effects [12, 13].

TLT belongs to a large group of ARBs which includes a 
dozen of compounds (Fig. 1) with a common pharmaco-
phore structure, but the therapeutic effectiveness of these 
“sartans” differs one from another [14, 15]. Irbesartan 
presents a higher bioavailability compared to TLT, but a 
shorter plasma half-life. Olmesartan displays a lower bio-
availability but a higher Tmax (time to maximum plasma 
concentration). TLT is considered a long-acting sartan 
whereas Losartan equipped with a tetrazole unit exhib-
its a medium duration of action. EXP3174 corresponds 
to the active metabolite of Losartan [16]. Candesar-
tan, Eprosartan, Azilsartan and other analogues (Fig.  1) 
exhibit specific safety and efficacy profiles [17].

Abundant pharmacological effects have been reported 
with these sartan products, not limited to cardiovascular 
effects [15]. In particular, TLT has revealed marked anti-
tumor effects in different models. Recently, the drug was 
shown to suppress tumor growth in an orthotopic trans-
plant mouse model of glioblastoma, blocking prolifera-
tion, migration, and invasion of cancer cells [18, 19]. TLT 
has demonstrated anticancer activities in different mod-
els and cell lines, including prostate, renal, breast and 
gastric cancers [20–25] and other cancers when the drug 
is used alone or in combination with targeted therapy or 
cytotoxic drugs [26–28]. Different mechanisms have been 
invoked to account for the anticancer effects of TLT, such 
as a down-regulation of the transcription factor Sox9 
[19], the regulation of the epithelial-to-mesenchymal 
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transition (EMT) via down-regulation of the transcrip-
tion factor genes Snail and Slug [27], antagonist targeting 
of N-cadherin [29] and other mechanisms. Interestingly, 
it has been observed that TLT can modulate activity of 
the immune checkpoint PD-1/PD-L1 (Programmed 
Death (Ligand) 1). It has been demonstrated that the 
expression of PD-L1 promoted in patients with obe-
sity and metabolic syndrome could be restored by TLT 
[30]. More recently, it has been demonstrated that TLT 
combined with the kinase inhibitor osimertinib reduced 
PD-L1 expression in non-small cell lung cancer tissues 
[28]. Losartan also revealed an anticancer activity in 
experimental models of glioblastoma and promoted the 
activity of an anti-PD1 immunotherapy [31].

Immune checkpoint blockade therapies that target the 
programmed cell death ligand-1 (PD-L1) or its receptor 
programmed cell death-1 (PD-1) have revolutionized 
the treatment of cancers, at least for a number of solid 
tumors such as melanoma, lung cancer, and renal cancer. 
Monoclonal antibodies directed against PD-1 or PD-L1 
are used to restore the antitumor response of cytotoxic T 

cells [32]. PD-L1 plays also a role in DNA damage repair 
[33, 34]. Several antibodies targeting PD-L1 (atezoli-
zumab, avelumab, durvalumab) are already used to treat 
cancers but new drugs and strategies are needed to rein-
force efficacy notably through the development of com-
bination therapies and drug delivery systems [35]. In this 
context, small molecules targeting PD-L1 are actively 
searched [36]. Orally available anticancer small molecules 
that bind to PD-L1 and induce its dimerization have been 
discovered [37–40]. A few small molecule inhibitors of 
PD-L1, such as INCB086550, are currently undergoing 
clinical trials in patients with advanced solid tumors [41]. 
New drugs targeting PD-L1 are actively searched [42, 43].

The PD-1/PD-L1 checkpoint-associated effects of TLT 
may be totally indirect, not due to a drug binding to the 
ligand or its receptor. However, we noticed that most of 
these sartan compounds possess a biphenyl scaffold as 
found in many PD-L1-binding small molecules. Biphenyl-
based small molecules are intensely studied as antitumor 
PD-L1 inhibitors [44–46]. The biphenyl unit originates 
from the first PD-L1 binders discovered by Bristol-Myers 

Telmisartan (TLT) TLT-dimer TLT-glucuronide 

Losartan Olmesartan Tasosartan 
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Irbesartan Candesartan 
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EXP3174 
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Fig. 1 Structures of the sartan compounds tested here
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Squibb, such as compound BMS-202 which binds tightly 
to and induces dimerization of PD-L1 [47–49]. Over the 
past seven years, numerous biphenyl-containing mol-
ecules and hybrid compounds targeting PD-L1 have been 
designed [50–53]. A biphenyl core is also included in 
PD-L1 positron emission tomography tracers [54, 55]. It 
can be found in other drugs which can be combined with 
monoclonal antibodies targeting PD-1 or PD-L1. For 
example, the biphenyl-containing drug tazemetostat was 
shown to combine well with anti-PD-L1 atezolizumab in 
lymphoma patients [56].

These considerations prompted us to investigate the 
potential interaction of sartan compounds with the 
PD-L1 protein using a molecular docking approach, 
starting from the crystal structure of PD-L1 bound BMS-
202 [47]. We have previously used the same approach 
to identify other PD-L1-binding molecules containing a 
biphenyl scaffold [57]. Here we examined the potential 
interaction of TLT, its metabolites and analogous sartan 
molecules with PD-L1.

Methods
In silico molecular docking procedure
The tridimensional structure of the dimeric form of the 
extracellular domain of PD-L1 was retrieved from the 
Protein Data Bank (www. rcsb. org) under the PDB code 
5J89 [58]. The GOLD 5.3 software (Cambridge Crystal-
lographic Data Centre, Cambridge, UK) was used to per-
form molecular docking analysis. Prior to the docking 
operations, the structure of each ligand was optimized 
using a classical Monte Carlo conformational searching 
procedure via the BOSS software [59]. Molecular graph-
ics and analysis were performed using Discovery Studio 
Visualizer, Biovia 2020 (Dassault Systèmes BIOVIA Dis-
covery Studio Visualizer 2020, San Diego, Dassault Sys-
tèmes, 2020).

The PD-L1 protein structure (5J89) includes the biphe-
nyl small molecule BMS-202 bound to the interface 
of two face-to-face monomers. The BMS-202 binding 
site was considered as the potential binding site for the 
studied sartan compounds. During the process, the side 
chains of the following amino acids within the binding 
site were rendered fully flexible: Tyr56, Met115, Asp122, 
Tyr123, and Lys124 (monomer A), and Tyr56, Gln66, 
Met115, Asp122, and Tyr123 (monomer B). A docking 
grid centered in the volume defined by the central amino 
acid has been defined based on shape complementarity 
and geometry considerations. In general, up to 100 poses 
considered as energetically reasonable are selected dur-
ing the search for the correct binding mode of the ligand. 
The decision to select a trial pose is based on ranked 
poses, using the fitness scoring function (PLP score) [60]. 

The same procedure was used to establish molecular 
models for all sartan compounds.

The Boss program and the Molecular Mechanics/Gen-
eralized Born Surface Area (MM/GBSA) procedure were 
used to evaluate free energies of hydration (ΔG, also des-
ignated Δμh [61] or HFE [62]), in relation with aqueous 
solubility [63]. The Boss program was also used to evalu-
ate the stability of the receptor-ligand complex through 
the empirical potential energy of interaction (ΔE) [64, 
65]. The empirical potential energy of interaction ΔE 
calculated for each drug-protein complex was defined 
using the equation ΔE(interaction) = E(complex)—
(E(protein) + E(ligand)), using the Spectroscopic Empiri-
cal Potential Energy function SPASIBA [64, 65]. SPASIBA 
has been specifically developed to provide refined empir-
ical molecular mechanics force field parameters, as 
described in other studies [64, 66]. Using this specific 
force field for, Monte Carlo (MC) simulations achieve the 
same level of convergence as Molecular Dynamics (MD), 
with less computer time [67].

Results
Docking interactions of TLT and its metabolites with PD‑L1
We started our analysis using the structure of the refer-
ence compound BMS-202 bound to recombinant PD-L1 
(PDB: 5J89) [58]. The drug binds to the interface of two 
monomers, stabilizing a dimeric form of the protein and 
defining an extended cavity that can be exploited for 
drug binding [47]. TLT was docked into the cavity and 
its capacity to form stable complexes with PD-L1 was 
evaluated though the calculation of the empirical energy 
of interaction (ΔE), as reported in Table  1. The analy-
sis indicated that TLT can form complexes with PD-L1 
but the calculated ΔE value was superior (less negative) 
compared to that measured with BMS-202, suggesting a 
weaker affinity. The two compounds are comparable in 

Table 1 Calculated potential energy of interaction (ΔE) and free 
energy of hydration (ΔG) for the interaction of TLT and derivatives 
with PD-L1

a Compound Identity number, as defined in PubChem (https:// pubch em. ncbi. 
nlm. nih. gov)

Compounds CIDa ΔE (kcal/mol) ΔG (kcal/mol)

Telmisartan 65999 − 70.64 − 23.50

Telmisartan amide 11978018 − 69.45 − 17.65

Telmisartan methyl ester 11497808 − 70.50 − 28.95

Telmisartan glucuronide 16681706 − 100.35 − 38.90

Telmisartan dimer 59027207 − 85.42 − 31.95

Telmisartan N-desmethyl 15870912 − 82.42 − 18.00

Telmisartan terbutyl ester 10076748 − 78.00 − 15.83

BMS-202 117951478 − 82.03 − 22.43

http://www.rcsb.org
https://pubchem.ncbi.nlm.nih.gov
https://pubchem.ncbi.nlm.nih.gov
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term of hydration free energy (ΔG). TLT is an acid which 
is a little more favorably hydrated than the reference 
BMS-202 (Table 1). In general, the free energies of hydra-
tion for acidic residues are more favorable than for basic 
residues [61].

Different derivatives of TLT were then tested, such as 
the amide and methyl ester forms but no improvement 
was observed for these two compounds. The two deriva-
tives TLT-terbutyl ester and TLT- N-desmethyl gave 
slightly better results with a ΔE around − 80 kcal/mol, 
comparable to the value measured with BMS-202. A fur-
ther improvement of the PD-L1 interaction was observed 
with two other molecules: a dimeric compound and a 
glucuronide derivative of TLT (Fig. 1). The TLT dimeric 
compound corresponds to a minor impurity detected 
in TLT tablets [68]. This compound has no biological 
relevance, but the observation suggests that an exten-
sion of the drug structure could reinforce drug binding 
to PD-L1. With this dimer, the drug-protein interac-
tion is stabilized via a variety of van der Walls contacts 
and π-stacking interactions. But a large portion of the 

elongated molecule protrudes outside the binding cavity, 
as shown in Fig. 2. The molecule is too long, not perfectly 
adapted to the binding surface but nevertheless it offers 
a linear extended part that inserts well into the protein 
interface.

The case of TLT-acylglucuronide derivative (Fig.  1) is 
more interesting because it corresponds to a major phase 
II liver metabolite of TLT [69]. It is an inactive elimina-
tion product, formed in the liver and excreted through 
the hepatobiliary system but an intestinal deconjugation 
of the TLT glucuronide metabolite restoring the par-
ent compound via the enterohepatic recirculation can 
occur [70]. We found that the compound TLT-glucuro-
nide has a capacity to form very stable complexes with 
PD-L1, with an empirical potential energy of interaction 
ΔE of − 100 kcal/mol calculated for this glycosyl conju-
gate bound to the interface of the PD-L1 dimer. In this 
case, the acyl-β-D-glucuronide moiety projects toward 
the concave (inward) face of the dimeric protein struc-
ture and contributes significantly to the protein interac-
tion via two hydrogen bonds with residues Tyr123 and 

(a) (c) 

(b) 

Van der Waals contact 

π-π-stacking 

Hydrogen bond 

Alkyl or π-alkyl 

Fig. 2 Molecular model of the TLT dimer bound to the dimeric form of PD-L1. a The TLT-dimer compound bound at the interface of the two PD-L1 
units (in cyan and green). b A close-up view of the PD-L1-bound ligand with the solvent-accessible surface (SAS) surrounding the drug binding 
zone (color code indicated). c Binding map contacts for TLT-dimer bound to PD-L1 (color code indicated)
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Lys124, whereas the two benzimidazole units are inserted 
into the narrow protein groove in the hydrophobic part of 
the channel (Fig. 3). This 1-O-acylglucuronide of TLT is a 
stable circulating product, with a low binding to human 
serum albumin, but it is rapidly cleared (clearance of 
180 ml/min/kg compared with 15.6 ml/min/kg for TLT), 
resulting in a low systemic exposure [71]. Therefore, this 
TLT-glucuronide may not contribute to blocking PD-L1 
but here again, the information is important in terms of 
drug design. The substitution of the acid function of TLT 
on the biphenyl portion apparently represents a suitable 
option to obtain novel PD-L1 binders.

Docking interactions of other sartans with PD‑L1
The modeling analysis was extended to a series of 12 
sartans, including close analogues of TLT such as the 
benzimidazole Pomisartan and different analogues 
bearing a tetrazole unit attached to the biphenyl core, 
such as Candesartan and Valsartan. For each com-
pound, molecular models were constructed and their 
potential interaction with PD-L1 was evaluated through 
the calculations of the empirical energy of interaction 

(ΔE) and energy of hydration (ΔG or hydration free 
energy HFE). The values are collated in Table  2. Bind-
ing maps are shown in Additional file  1: Fig. S1. No 
profound improvement was observed compared to 
TLT. The weaker binder was the imidazolinone deriva-
tive Irbesartan and the best compound was the imida-
zole derivative Olmesartan, but all compounds gave 
ΔE values higher (less negative) than that calculated 
with the reference BMS-202. Losartan active metabo-
lite EXP3174 emerged as a poor binder, as it is the case 
with Enoltasosartan.

The investigation was extended to search for other com-
pounds susceptible to bind to PD-L1, but no compound 
better than Olmesartan was identified. For examples, 
we tested derivatives of the AT1 antagonist Eprosartan 
(lacking a biphenyl unit) which has been shown recently 
to exhibit antioxidative and anti-inflammatory proper-
ties [72] but we found no improved binding when test-
ing Eprosartan (CID: 5281037; ΔE = − 66.85 kcal/mol), 
methyl-Eprosartan (CID: 45358786; ΔE = − 75.40 kcal/
mol), and ethyl-Eprosartan (CID: 10049536; ΔE = − 79.80 
kcal/mol).

(a) 

(b) 

(c) 

Hydrophobicity 
Fig. 3 Molecular model of TLT-glucuronide bound to the dimeric form of PD-L1. a The TLT-acylglucuronide compound bound at the interface 
of the two PD-L1 units (in cyan and green). b A close-up view of the PD-L1-bound ligand with the hydrophobicity surrounding the drug binding 
zone (color code indicated). c Binding map contacts for TLT-glucuronide bound to PD-L1 (color code as in Fig. 2)
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Among these sartan compounds, the best molecule 
for interacting with PD-L1 is Olmesartan with its biphe-
nyl unit stacking over residue Tyr56 and its tetrazole 
unit H-bonding to Asp122. It is interesting to note that 
the other side of the molecule is also well engaged in the 
protein interaction, with the 2-OH group on the propyl-
imidazole moiety implicated in two vicinal H-bonds with 
Ala18 and Phe19. Olmesartan emerges as a potential 
PD-L1 binder. The best binding pose selected with Olm-
esartan is not ideal because there is only a van der Walls 
contact (a weak attraction) between the biphenyl unit 
and residue Tyr123, in addition to the essential stacking 
interaction with residue Tyr56. There exists an alterna-
tive pose, less favorable in terms of computed energies 
(ΔE = − 70.00 kcal/mol and ΔG = − 18.60 kcal/mol), but 
characterized by a stacking interaction between the tetra-
zole unit of Olmesartan and Tyr123 (Additional file  1: 
Fig. S2).

Discussion
The established anticancer activity of TLT and the pres-
ence of a biphenyl unit in the drug structure prompted 
us to investigate the potential binding of TLT and 
derivatives to the immune checkpoint ligand PD-L1. 
The modeling analysis suggests that drugs like TLT and 
Olmesartan could interact with PD-L1, thus possibly 
playing a role in their antitumor action. The hypothesis 
remains weak at present but there are interesting ele-
ments to consider. A moderate reduced cancer-specific 
mortality has been noted among users of angioten-
sin receptor blockers (ARB) [73]. ARB seem to exhibit 

a significant overall protective against lung, bladder 
and colorectal cancers [74]. The anticancer activity of 
TLT has been well characterized in different experi-
mental tumor models and its analogue Olmesartan 
has been shown to exert an antitumor action, nota-
bly in pancreatic cancer, and cervical cancer through 
an upregulation of microRNA miR-205 and inhibi-
tion of VEGF-A expression [75–78]. It displays also a 
significant anti-inflammatory action [79]. This biphe-
nyl drug was shown to potentiate the anti-angiogenic 
effect of sorafenib [80]. Irbesartan has been shown 
also to repress the proliferation of cancer cells [81] and 
to overcome chemoresistance [82]. Therefore, there 
are good reasons to investigate further the antitumor 
potential and immune effects of these sartan drugs. 
Very interestingly, Irbesartan has been found to acti-
vate an immune response and in particular the infiltra-
tion of  CD8+ T cells in relapsed tumors [83]. ARB can 
facilitate tumor infiltration by effector T cells [84]. It is 
therefore conceivable that ARB can modulate the PD-1/
PD-L1 checkpoint (Fig. 4).

Here we observed that Olmesartan is better adapted 
than TLT for binding to PD-L1. Olmesartan is per-
haps not the best sartan to study because it can induce 
digestive tract injuries (parenthetically a side effects 
commonly observed also with immune checkpoint 
inhibitors). However, the observations further attest 
of the benefit of considering diverse biphenyl com-
pounds has potential PD-L1 binders. Recent studies 
have underlined the possibility to affect the functional-
ity of the PD-1/PD-L1 checkpoint with diverse biphenyl 
or biaryl compounds and the great benefits of compu-
tational approaches to identify novel PD-L1 binders 
[85–89]. Our study brings another brick in the wall, 
suggesting to consider further some of the sartan com-
pounds as potential modular of the PD-L1 checkpoint. 
The mode of binding of these sartans at the interface 
of the PD-L1 dimer is similar to that observed with the 
reference ligand BMS-202 (Fig. 5).

In conclusion, our molecular docking analysis has iden-
tified the drug Olmesartan as a potential binder to the 
immune checkpoint protein PD-L1. The drug has the 
capacity to interact with the PD-L1 dimer, via its biphe-
nyl core. The study provides guidance for the design of 
novel PD-L1 binders, based on the structure of diverse 
sartan compounds.

Abbreviations
ARB  Angiotensin receptor blockers
AT1  Angiotensin II type 1 receptor
PPARγ  Peroxisome proliferator-activated receptor γ
PD-1  Programmed cell death-1
PD-L1  Programmed death-ligand 1
TLT  Telmisartan

Table 2 Calculated potential energy of interaction (ΔE) and free 
energy of hydration (ΔG) for the interaction of selected sartans 
with PD-L1

a Compound Identity number, as defined in PubChem (https:// pubch em. ncbi. 
nlm. nih. gov)

Compounds CIDa ΔE (kcal/mol) ΔG (kcal/mol)

Azilsartan 135415867 − 76.30 − 20.70

Candesartan 2541 − 62.45 − 10.10

Embusartan 133000 − 72.20 − 17.4

Enoltasosartan 546936559 − 65.60 − 14.90

EXP3174 108185 − 66.90 − 19.42

Irbesartan 3749 − 64.55 − 17.05

Losartan 3961 − 78.53 − 14.52

Olmesartan 158781 − 80.60 − 16.65

Pomisartan 3050407 − 78.60 − 19.40

Saprisartan 60921 − 77.50 − 21.80

Tasosartan 60919 − 78.60 − 19.20

Telmisartan 65999 − 70.64 − 23.50

Valsartan 60846 − 69.35 − 15.05

https://pubchem.ncbi.nlm.nih.gov
https://pubchem.ncbi.nlm.nih.gov
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The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s43094- 023- 00574-1.

Additional file 1: Fig. S1. Binding map contacts for the different drugs 
and compounds bound to PD-L1 dimer. Fig. S2. Binding map contacts for 
the two best binding poses determined with Olmesartan. (left) The best 
binding pose, as shown in Fig. 4 and (right) the second-best binding pose.
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