
Soriano‑Ursúa et al. 
Future Journal of Pharmaceutical Sciences            (2024) 10:7  
https://doi.org/10.1186/s43094‑023‑00575‑0

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/.

Future Journal of
Pharmaceutical Sciences

In vitro and in vivo evaluation 
of nanoliposomes loading quercetin 
and 3‑bromopyruvate against glioma
Marvin Antonio Soriano‑Ursúa1, Angélica Vega‑García2, Vinnitsa Buzoianu‑Anguiano2, 
Ana Lilia Ocampo‑Nestor1, Joaquín Manjarrez‑Marmolejo3 and Iris Angélica Feria‑Romero2*   

Abstract 

Background Diffuse astrocytoma (a type of glioma) and its prevalence are matters of concern worldwide. Patients 
with this type of tumour have a poor prognosis because after surgical treatment, radiotherapy and/or chemotherapy, 
these tumours eventually regrow or progress. To date, there is no effective treatment that can cure affected patients. 
Quercetin and 3‑bromopyruvate are chemical compounds that have been proven to have antitumour effects alone 
or in combination with other compounds. Nevertheless, combination treatments including these agents are not used 
for treating diffuse astrocytoma.

Methods The use of nanoliposomes loaded with quercetin and 3‑bromopyruvate as combination therapy was evalu‑
ated by treating C6 cells in vitro and in vivo (in Sprague–Dawley rat brain).

Results The 0.5 mg/mL quercetin + 0.75 mg/mL 3‑bromopyruvate combination treatment decreased the expression 
of the biomarkers Annexin V and Caspase‑3 and inhibited tumour growth; this was consistent with the in vivo results 
that revealed the administration of this treatment resulted in improved animal survival.

Conclusions The observations in the present study support the further exploration of this combination of active 
agents in the treatment of high‑grade diffuse astrocytoma, especially in cases for which wide resection is possible.

Keywords High‑grade diffuse glioma, Loaded liposomes, Apoptosis, Tumour volume

Background
The incidence rates of all primary malignant brain 
tumours range from 6.10 to 8.65 per 100,000 person-
years; among these tumours, 80% are diffuse gliomas and 
76% are high-grade astrocytomas and glioblastomas [1]. 
These tumours have become issues of concern worldwide 
since the population will increase to 2 billion people in 
the next 30  years [2]. The reason for the appearance of 
diffuse gliomas is unclear, but the process seems to be 
multifactorial. Factors that contribute to the development 
of diffuse gliomas include population ageing, overdiagno-
sis, ionizing radiation, air pollution, virus infection, etc. 
[3, 4]. The degree of malignancy depends on location, 
patient age, growth rate, infiltration of healthy tissues, 
and the presence of established and specific molecular 
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markers [5]. Nevertheless, in most patients with grades 3 
and 4 gliomas, aggressive evolution results in poor prog-
nosis, and risk of mortality increases one year after diag-
nosis [6, 7]. Despite increasing technological advances 
to achieve more significant tumour surgical resection, 
effective treatment is lacking [5, 8, 9]. Consequently, the 
recurrence of these tumours is frequent [10, 11]. There-
fore, searching for new treatments and using more effec-
tive drugs to target tumour progression or regrowth is a 
significant issue in neuro-oncology [12, 13].

In vitro and in vivo studies make it possible to evaluate 
the efficacy of new cancer treatments. The direct admin-
istration of chemical compounds and drugs to C6 cell 
cultures and the intrathecal or intraperitoneal adminis-
tration of these agents to tumour cell transplantation rat 
models are both widely used to study gliomas [14]. These 
models have histopathological and molecular features 
that are similar to those of developing adult-type diffuse 
gliomas in humans [15]. The pharmaceutical preparations 
that have been proposed for treating high-grade gliomas 
include formulations with nanoparticles, particularly for-
mulations with nanoliposomes (liposomes with a radius 
smaller than 100 nm), which have more attractive char-
acteristics such as enhanced bioavailability of carried 
substances and increased efficacy due to the active sub-
stances and liposome components [16–18].

Moreover, nanoliposome formulations containing 
quercetin (Quer, a flavonoid with anti-inflammatory, 
antioxidant, and antineoplastic properties) have been 
shown to exert an antitumour effect against high-grade 
glioma [19, 20]. In recent reports, Ersoz et al. found that 
quercetin-loaded nanoparticles improve cytotoxic effects 
and antioxidant activity in C6 glioma cells [21]. Wang 
et al. also showed that PEGylated Quer-containing nan-
oparticles exert similar effects [22]. Zang et al. reviewed 
several Quer-containing formulations that are character-
ized by high encapsulation efficiency, stability, sustained 
release, prolonged circulation time, improved accumula-
tion at tumour sites, and therapeutic efficiency. In addi-
tion, the authors suggested that combining quercetin 
with specific agents enhances the ability to detect or treat 
tumours [23].

One active compound that been used to treat glioblas-
toma is 3-bromopyruvate (3BP), which is a pyruvate-like 
alkylating compound that inhibits hexokinase II and glyc-
eraldehyde-3-phosphate dehydrogenase [24]. 3BP exerts 
effects against several tumour cells, and its cytotoxicity 
is associated with the induction of autophagy; however, 
at the doses required for 3BP to be effective against glio-
blastoma cells, 3BP exerts toxic effects against healthy 
cells, which indicates a need to administer lower doses 
to limit systemic adverse effects [25]. In this sense, com-
binations of valproate, antimycin, menadione, and other 

antineoplastic agents with low doses of 3BP have also 
been suggested as effective and safe combinations for tar-
geting some neoplastic processes [26, 27].

Hence, in this work, a nanoliposome formulation 
loaded with Quer and 3BP was evaluated as a combina-
tion therapy for treating C6 glioblastoma cells in  vitro 
and in  vivo. The current observations support further 
exploration of this combination of active agents for the 
treatment of diffuse astrocytoma.

Methods
Cellular culturing and selection of cells
The rat cell-line C6 (ATCC, USA) was cultured in cul-
ture recipients of 75  cm2 with D-MEM FK12 (Dulbecco’s 
Modified Eagle  Medium/Nutrient Mixture F-12, ATCC, 
USA) media, supplemented with 20% horse foetal serum 
(HSF, ATCC, USA); 10% bovine foetal serum (BFS, 
ATCC, USA) and 2% antibiotic/antimycotic media (A.A., 
GIBCO, USA). The culture plates were kept in an incuba-
tor (Water Jacketed, Nuaire, USA) at stable condition, 5% 
 CO2 at 35 °C for growth and propagation.

The sub-cell-cluster (Sub-C6) was obtained with serial 
dilutions 1:10 from the starting C6-cells. The last dilu-
tion was seeded in a 96 wells-plate/100 μL with supple-
mented D-MEM FK12 (20% HSF, 10% BSF, 10% A.A.). 
The wells with one cell were selected, then, growth to 
confluence. After that, sub-clusters were recovered with 
trypsin (Trypsin- EDTA 0.05%, cat 25,300,054, Ther-
moFisher) and spread into 6 well-plates and bottles of 75 
 cm3. The cluster with highest FOXM1 (K19 clone SC500, 
SantaCruz biotechnology, USA) and VEGF (C20 clone- 
SC152, SantaCruz biotechnology, USA) protein expres-
sion was selected.

Apoptosis‑markers detection
Cells, each for treatment from C6 cluster and sub-clus-
ters, were seeded in 24 well-plates with 5 ×  104 cells each 
well in supplemented D-MEM FK12 (20% HSF, 10% BSF, 
10% A.A.) and treated with 5.7 ng, 17.1 ng y 34.2 ng of 
3BP (376,817-M, Millipore) and/or 3.8  ng, 11.4  ng and 
22.8 ng of Quer (Q4951, Sigma-Aldrich) during 3, 6, 12, 
24, 48 and 72  h. Next, cells were washed with PBS and 
fixed by using paraformaldehyde 2%. Treated cells were 
incubated with the primary antibody against Annexin 
V (1:500, Santa Cruz Biotechnology, mouse sc-74438) 
by 48  h at 4  °C and Caspase 3 (1:500, Santa Cruz Bio-
technology, mouse sc-56053), then with the secondary 
antibody Alexa 546 (anti-mouse 1:1000, cat A-11030, 
ThermoFisher) during 48 h a 4 °C, finally contrasted with 
Hoechst 33,342 (cat H3570, Invitrogen) by 20 min.

Samples from cultures were analysed with an inverted 
confocal microscope (Nikon Ti Eclipse with A1 through 
the NIS Elements v.4.5.0 software). Three photography 
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were acquired to different fields at 20 × in each treat-
ment. The quantification and analysis were determined 
by a binary mask (black and white) to discard noise or 
artefacts by using the Image-Fiji software (London SW7 
2AZ, UK). Values considered as Caspase 3 activation and 
translocation by Annexin V were calculated as mean den-
sity by each cell.

Liposomal formulations preparation and characterization
10  mL of each unilamellar liposome preparation was 
made with a mixture of Quer and 3BP. Three different 
classes of liposomes were prepared: (1) control liposomes 
or empty liposomes, (2) low-dose liposomes (0.5 mg/ml 
Quer + 0.75  mg/mL 3BP) and (3) high-dose liposomes 
(0.75  mg/mL of Quer + 1.125  mg/mL of 3BP), based on 
the reverse phase evaporation method [28]. Briefly, for 
the formation of the lipid bilayer, 10  mg of cholesterol 
were dissolved in 2–3  mL of chloroform and added, 
together with 440 μL of phosphatidylcholine, in a conical 
flask with two necks (one with vacuum connection and 
the other with ability to place a removable filter) from 13 
to 100 mm in diameter, and dried under vacuum so that 
the lipids remain uniformly distributed at the bottom of 
the flask.

Simultaneously the active ingredient was dissolved in 
milli-Q® water. As far as the Quer is concerned, it was 
dissolved in chloroform and a (1:1) proportional amount 
of water was added to them. Subsequently, the lipid 
bilayer was dissolved with 3  mL of diethyl ether and 
the previously dissolved active ingredient was added to 
this solution. The flask was then vortexed for 1 min and 
through immersion in a sonicator for an additional 1 min 
(5 s pulses). To carry out the control of liposomes, water 
was added instead of the active principle. Returning the 
flask to the vortex, a vacuum was applied for approxi-
mately 1  min, during which the ether was evaporated 
[29]. Maintaining erasure, 6  mL of saline solution con-
taining 0.13% spermine was added. At this point, the 
preparation was evaluated by visualization (a cloudy sus-
pension is considered adequate; the formation of lumps, 
inadequate). The liposome preparations obtained were 
filtered by extrusion, with Millipore Swinnex® mem-
branes with 0.22  μm pore diameter (pressure 100–100 
psi), to homogenize the size of the vesicles and to pre-
serve them under sterile conditions. This suspension of 
liposomes was titrated with saline to a volume of 10 mL, 
pH 7.0.

Morphological characterization was done by means 
of atomic force microscopy, using a Nanos-Senterra 
(Bruker Optiks, Ettlingen, Germany) in the non-con-
tact / tapping-mode; analysis was done on a plate with 
a maximum xy scan range of 40 × 40  µm and a z range 
of 8  µm. Cantilevers were standard microfabricated 

(POINTPROBE-PLUS® Silicon-SPM-Sensor, Nanosen-
sors® Wetzlar-Blankenfeld, Germany). The length of the 
AFM tip was 200 mm, and the resonance frequency was 
165  kHz. The average height and roughness of the cell 
surface were analysed, and images were processed by 
using SPIP® software (Image Metrology, Hørsholm, Den-
mark) as previously [30].

Animal model
Animals
Forty-two male Sprague–Dawley rats, ageing 10  weeks, 
and weighting 210–255 g at the start of assays, were used. 
They were contained in acrylic boxes (50 × 40 × 40  cm), 
maintained under 12:12 h light/dark cycles, with Formu-
Lab Diet #5008 food and water ad libitum.

This protocol was evaluated by the local committee for 
research and ethics in health research 3601 (Registering 
Number: R-2012–3601-106). The surgical procedures 
were done in the vivarium by using all the aseptic and 
antiseptic protocols and materials. The project followed 
the local laws for animal care and the ARRIVE (Animal 
Research: Reporting of In  Vivo Experiments) guidelines 
(available at https:// arriv eguid elines. org/ arrive- guide 
lines) for avoiding suffering to involved animals.

Stereotaxic approach was done in anaesthetized ani-
mals (90 mg/kg ketamine + 10 mg/kg xylazin). Once the 
head was fixed, the skull was exposed a trephine was 
done at anteroposterior 2  mm, lateral 2  mm and deep 
2 mm from bregma [31]; at this site, 2.5 ×  105 or 1 ×  106 
cells suspended in D-MEM FK12 medium (ATCC, USA) 
were injected and the skin was sutured. Then, a 5-day 
recovery period was permitted, being at the first three 
days treated with antibiotics (Gentamicin 80  mg + Ben-
zathine penicillin 1,200,000 IU) and analgesic (Tramadol 
dose, 10 U).

Individual and combined treatments
The animals were divided into four groups (N = 24, n = 6 
per group): Control) Treated with empty liposomes; 
Experimental 1) Treated with liposomes + Quer (1 mg/kg 
of Quer); Experimental 2) Treated with liposomes + 3BP 
(1.5  mg/kg of 3BP) and Experimental 3) Treated with 
liposomes + Quer + 3BP (1 mg/kg of Quer + 1.5 mg/kg of 
3BP).

Low and high combined treatments
The animals were divided into three groups (N = 18, n = 6 
per group): Control) Treated with saline solution; Experi-
mental 1) Treated with low-dose liposomes (1 mg/kg of 
Quer + 1.5  mg/kg of 3BP) and Experimental 2) Treated 
with high-dose liposomes (1.5 mg/kg of Quer + 2.25 mg/
kg of 3BP).

https://arriveguidelines.org/arrive-guidelines
https://arriveguidelines.org/arrive-guidelines
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Administration of treatments and obtaining samples
The liposomal formulations were administered 3 times, 
at 72 h intervals, via i.p. being the first administration on 
the sixth day of the implant. Finally, the animals were sac-
rificed three weeks after implantation, due to an overdose 
of pentobarbital (100  mg/kg), to obtain and dissect the 
brains.

Samples processing
The brains were perfused and fixed in 4% paraformalde-
hyde for posterior paraffin embedding. After that, 5 µm 
slices were obtained every 250 microns for tumour iden-
tification. Briefly, the slices were mounted on slides cov-
ered with poly-L-lysine (10%, P4832, Sigma), the excess 
paraffin was removed (55ºC, oven), and they were rehy-
drated (xylol, 100% alcohol, 96% and 70%, and water). 
Subsequently, the sections were stained with Harris hae-
matoxylin for 5 min, rinsed with water, treated with lith-
ium bicarbonate, and counterstained with eosin. Before 
mounting the slides with Entellan resin (107,960, Merck-
Millipore), they were dehydrated (70%, alcohol, 96% and 
100%, and xylol) [32].

The images were photographed with a NI5_Elements 
D (5.110064 bit, Nikon, Japan) microscope 40 × and the 
calculation of the tumour areas were calculated with the 
Image Pro7 (Media Cybernetics, Rockville, MD 20852 
USA) software. Tumour volumes were calculated with 
the formula:

Subsequently, the values were converted to  mm3 and 
75% of the volume of water was added.

Statistic analysis
The differences in the medians of Caspase 3 activation 
and translocation detected by Annexin V in C6-cells 
culture by exposure to Quer, 3BP or the combination 
were analysed using the nonparametric Kruskal–Wallis 
test. Differences in tumour size were analysed using the 
Mann–Whitney U nonparametric median comparison 
statistical test. All performed by using the Prima STAT v 
12.0 software, a p-value < 0.05 was considered significant.

Results
Liposomal formulations were obtained as described for 
similar liposome formulations that contain nanoparticles 
(with radii ranging from 20 to 200 nm, Fig. 1). The Quer 
and 3BP encapsulation efficiency was not determined, 
but it was estimated to be > 90%, as described in multi-
ple previous reports of similar systems [28, 33, 34]. When 

v µm3
=

Vn+1

Vn

1

3
∗ (250) ∗ (An + An+1 + An ∗ An+1)

in solution, the rest of the described compounds were 
administered as original formulations and were used in 
our in vivo evaluations.

Effects of Quer and/or 3BP on C6 cell culture
Annexin V detection.

Decreased cell viability in the initial stage of apopto-
sis induction was reflected by Annexin V-stained Alexa 
546-positive cells [35]. The administration of Quer to cell 
cultures induced significant differences in proportion of 
apoptotic cells, which differed with both Quer concentra-
tion and treatment time (p < 0.0001). The highest propor-
tions of Annexin V-positive cells were observed at 12 and 
72  h, and the lowest proportion of Annexin V-positive 
cells was observed at 6  h after treatment with all Quer 
concentrations (Fig. 2A).

The administration of 3BP to cell cultures induced 
significant differences in the proportion of Annexin 
5-positive cells at all the concentrations that were tested 
and at all the time points that were studied (p < 0.0001). 
The highest proportion of Annexin V-positive cells was 
observed at 72 h, and the lowest proportions of Annexin 
V-positive cells were observed at 3, 6 and 24 h (Fig. 2B).

When both compounds were added to cell cultures, 
significant differences were observed in the proportions 
of Annexin V-positive cells at all the concentrations that 
were tested and at all the time intervals that were studied 
(p < 0.0001), except for 6 and 48  h. The highest propor-
tions of Annexin V-positive cells were observed at 12 and 
72  h, and the lowest proportion of Annexin V-positive 
cells was observed at 6 h (Fig. 2C).

Finally, when individual treatments were compared 
with the combination treatment, a higher proportion of 
Annexin V-positive cells was observed in the group that 
received the combination treatment.

Caspase 3 activation.
The apoptosis execution pathway was studied by meas-

uring Caspase 3 activation in cultured cells as described 
elsewhere [36]. The administration of Quer to cell cul-
tures induced significant differences in Caspase 3 activa-
tion, which differed with both Quer concentration and 
treatment time (p < 0.0001). In fact, the highest degree of 
Caspase 3 activation was observed at 12  h, followed by 
48 and 72 h. In contrast, the lowest degree of Caspase 3 
activation was observed at 6 h (Fig. 3A).

Additionally, 3BP administration to cell cultures 
induced significant differences in Caspase 3 activation, 
which differed with both Quer concentration and treat-
ment time (p < 0.0001); these results similar to those after 
Quer treatment (Fig. 3B).

When both compounds were administered, significant 
differences were observed in the activation of Caspase 3, 
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which differed with both concentration and treatment time 
(p < 0.0001), except for the 3-h timepoint. In this case, the 
highest degree of Caspase 3 activation was observed at 3 
and 12 h, and the lowest degree of Caspase 3 activation was 
observed at 6 h and 12 h (Fig. 3C).

Finally, when the effects of the single treatments were 
compared with those of the combination treatment, the 
highest degree of Caspase 3 activation was observed after 
treatment with 3BP.

In vivo effects of liposomal formulations with combined 
treatment on tumour growth
A subclone of the C6 cell line was used, and the number 
of implanted cells that allowed the longest model sur-
vival was determined; this number of cells was used for 
subsequent experiments. For this experiment, intracra-
nial tumour growth was measured in rats (n = 20) that 
received 1 ×  105 cells (n = 10) or 2 ×  105 (n = 10) cells. A 
placebo treatment of empty liposomes (n = 5) or saline 

Fig. 1 Morphological approach of nanoliposome formulation containing Quer and 3BP. A Three‑dimensional topographic image was obtained 
by atomic force microscopy and shows liposomal nanoparticles. B Topographic mode view on the left. Length values are presented in the centre 
and are marked in cross‑sectional lines of amplitude view on the right
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solution (n = 5) was administered, and the experiment 
was continued for three weeks. One hundred per cent 
of the animals in the 1 ×  105 cell implant group sur-
vived at 21  days; however, only 80% of the animals in 
the 2 ×  105 cell implant group survived at 21 days (data 
not shown).

Subsequently, the Quer and/or 3BP individual and 
combination treatments that had been tested in cell 
cultures and had elicited the best apoptotic path-
way response (11.4  ng Quer, 17.1  ng 3BP and 11.4  ng 
Quer + 17.1 ng 3BP) were administered.

Figure  4 shows representative tumour growth in the 
section with the largest area that was identified in each 
case. A tumour region was observed mainly in the con-
trol groups, and similar regions were observed in the 
groups treated with either Quer or 3BP alone; in contrast, 
no areas of necrosis and less angiogenesis were observed 
in the combination treatment group (liposomes with 
Quer + 3BP), and only the inoculated cells, without obvi-
ous tumour formation, was observed.

Consequently, it was decided to test the combination 
treatment at a higher dose and to increase the cellular 
inoculum to further test the efficacy of the treatments.

After the administration of low and high doses of the 
liposomal formulations of the combination treatment, 
the animals were reactive, and obvious tumour forma-
tion was observed. Figure 5 shows representative tumour 
growth after the administration of low and high concen-
trations of liposomes. Smaller tumours were observed in 
the low-dose treatment group, but an apparent reversal 
of the therapeutic effect was observed in the high-dose 
treatment group.

Figure 6 shows a plot of the mean tumour volumes in 
the three groups of liposome-treated animals; there was 
a significant decrease between the control group and the 
group treated with low-dose combination treatment of 
Quer + 3BP (p < 0.05).

Discussion
The increasing incidence of glioblastoma and the 
regrowth of tumours after gross total resection followed 
by adjuvant treatment with temozolomide (gold stand-
ard in chemotherapy) and radiation therapy require the 
development of pharmacological tools for glioblastoma 
treatment [37, 38].

Fig. 2 Annexin V (as a marker of initial phase of cellular death involving cell membrane dysfunction) staining of C6‑cells treated with Quer 
and/or 3BP. C6 cells were treated with different concentrations of Quer or 3BP, and then, the mean cell density was measured at 3, 6, 12, 24, 48 
and 72 h. A Cells treated with 3.8, 11.4 or 22.8 ng Quer. B Cells treated with 5.7, 17.1 and 34.1 ng 3BP. C Cells treated with 3.8 ng Quer + 5.7 ng 3BP, 
11.4 ng Quer + 17.1 ng 3BP and 22.8 ng Quer + 34.1 ng 3BP. Significant differences were determined by the Kruskal‒Wallis test and are indicated 
by &p < 0.01, †p < 0.001, #p < 0.005 and *p < 0.0001
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The implantation of glial cells into rat brains has been 
used to model human glioma for more than four dec-
ades; effective models have been used to test different 
treatments that control the growth and development of 
these cells [39]. Auer et al. (1981) determined the number 
of cells necessary to obtain a reliable model by studying 
an implant concentration gradient; they determined that 
the implantation of 1 ×  104 cells results in a 100% glioma 
formation rate [40]. In this work, we implanted 2.5 and 

10 times more cells than the number originally recom-
mended by Auer et al. because preliminary experiments 
in our laboratory (not shown) revealed no tumour devel-
opment after implantation of the original cell number.

The aim of this study was to test a liposomal formu-
lation of Quer and 3BP combination treatment. These 
two components have been separately tested as neuro-
protectors and glioblastoma cell regulators, although 
not in a combined formulation, and they have been 

Fig. 3 Caspase 3 (marker of apoptosis pathway) expression in C6‑cells treated with Quer and/or 3BP. C6 cells were treated with different 
concentrations of Quer or 3BP, and then, the mean cell density was measured at 3, 6, 12, 24, 48 and 72 h. A Cells treated with 3.8, 11.4 or 22.8 ng 
Quer. B Cells treated with 5.7, 17.1 and 34.1 ng 3BP. C Cells treated with 3.8 ng Quer + 5.7 ng 3BP, 11.4 ng Quer + 17.1 ng 3BP and 22.8 ng 
Quer + 34.1 ng 3BP. Significant differences were determined by the Kruskal‒Wallis test and are indicated by an asterisk, *p < 0.0001

A) Control B) Liposomes + Quer C) Liposomes + 3BP D) Liposomes + Quer + 3BP

Representative slices (H&E) of 
the intracranial tumor.
Implantation of 2.5x104 C6 cells.

necrosis

parenchyma

vessels cell infiltration

tumour proliferation

parenchyma

vessels
tumour
proliferation

parenchyma

tumour
cells

parenchyma

Fig. 4 Sections of the brain from rats implanted with 2.5 ×  104 C6 cells and treated with liposomes containing Quer or 3BP were stained with H&E. 
A Treated with empty liposomes, B treated with liposomes loaded with 0.5 mg/mL Quer, C treated with liposomes loaded with 0.75 mg/mL 
3BP and D treated with liposomes loaded with 0.5 mg/mL Quer + 0.75 mg/mL 3BP. These sections were obtained from rats 3 weeks after C6 cell 
implantation. The arrows indicate histopathological alterations due to the tumour. Scale bar 100 µm
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demonstrated to exert effects in animal glioma models 
[21, 26, 41–44]. Notably, the material in the liposomal 
formulation used to improve drug availability to neo-
plastic cells is a third component of this formulation. 
In this work, the methodology used in the formulation 
of liposomes assumes a high encapsulation efficiency as 

has been reported [28]. Originally, the encapsulation 
efficiency was reported > 65%, but currently is near 90% 
(84.7 ± 5%) [45].

Quercetin is insoluble in water due to its lipophilic 
property, so it has poor absorption, low bioavailability, 
and a limited ability to cross the BBB, therefore could not 
be used for the treatment of gliomas. The use of this lipo-
some formulation increased the solubility of quercetin 
and guaranteed the probability of acting in the brain as 
well as limiting peripheral effects and reduction of drug-
related toxicity [20, 33, 34, 46, 47]. In fact, several con-
centrations were evaluated for treating rats acting as a 
murine model of grade 4 astrocytoma, with the purpose 
of evaluating the possible therapeutic effects of adjuvant 
treatment after wide (implantation of 2.5 ×  104 cells) or 
partial resection (implantation of 1.0 ×  105 cells).

Anticancer properties of Quer are a consequence of 
different mechanisms that favour the progression of can-
cer cells. The antioxidant property is reflected in being 
an effective reactive oxygen species (ROS) scavenger 
and inhibiting lipid peroxidation; also, regulating sig-
nal transduction pathways, such as NRFB, MAPK and 
AMPK, as demonstrated by in vitro studies [48–50]. The 
anti-inflammatory properties are related to the inhibi-
tion of pro-inflammatory cytokines (TLR4 pathway) and 
a decrease in the production of cyclooxygenase (COX) 
and lipoxygenase (LOX) [51, 52]. Cell cycle progression 

A) Control B) Low dose C) High dose
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Fig. 5 Comparison of brain sections with free development of implanted C6 cells and brain sections from rats implanted with 1 ×  105 C6 
cells and treated with liposomes containing Quer or 3BP. Above are the entire brains, below are brain sections. All sections were stained 
with Haematoxylin & Eosin. A Treated with saline solution, B treated with liposomes loaded with 0.5 mg/mL Quer + 0.75 mg/mL 3BP and C treated 
with liposomes loaded with 0.75 mg/mL Quer + 1.125 mg/mL 3BP. These sections were obtained from rats 3 weeks after C6 cell implantation. The 
arrows indicate histopathological alterations due to the tumour. Scale bar 100 µm
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differences were determined by the Kruskal‒Wallis test and are 
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of different cancer cells is affected by the arrest of the G0/
G1 and G2/M phases, because of the inhibition of cyc-
lins, release of p53 and caspase activation [53–55]. The 
synergistic effect of Quer with different chemotherapeu-
tic agents and with radiotherapy has been reported; these 
studies are complemented by the cytotoxicity of Quer in 
glioma cells when the late stage of autophagy is inhibited 
[56, 57].

The suggested mechanisms of 3BP action include 
decreasing ATP by disrupting the function of several 
cysteine-rich proteins [58, 59]. Additionally, 3BP-medi-
ated inhibition of hexokinase II, which is involved in the 
survival of glioblastoma cells, has been demonstrated, 
probably providing additional sources of ATP in neo-
plastic cells [60, 61]. In addition, several reports showed 
increased intracellular ROS production in diverse malig-
nancies after 3BP exposure as well as the specific pyru-
vilation of glyceraldehyde 3-phosphate dehydrogenase, 
which is a major intracellular biochemical mechanism, 
resulting in the metabolic disruption of cells and induc-
ing apoptosis [62–64].

Thus, considering that tumour growth and progres-
sion are favoured by acidic microenvironments and the 
reactive oxygen and nitrogen species that are produced 
during anaerobic glycolysis (Warburg effect), in which 
hexokinase II (HK II) degrades glucose into pyruvate, 
producing two molecules of ATP and various glycolytic 
intermediates that are fed into multiple biosynthetic 
pathways, it is suggested that the combined effect of this 
formulation is additive, as differences were observed with 
formulations that included only one of these compounds. 
3BP can also act directly because pyruvate is converted 
into lactate in the cytoplasm by the enzyme lactate dehy-
drogenase (LDH). In contrast, normal astrocytes use the 
combination of acute aerobic glycolysis (Crabtree effect) 
and slow aerobic glycolysis, favouring high glucose con-
tents and ATP generation without affecting the integrity 
of the mitochondrial membrane and maintaining a bal-
ance between glycolysis and respiration [65, 66].

Annexin V, which is specifically related to the processes 
that are associated with the initial phases of cell death, 
is considered a marker of membrane dysfunction [35]. 
Quer administration modulated the changes in the cell 
cycle that are associated with the initial phase of apop-
tosis, as shown by the increased proportion of Annexin 
V-positive cells described in prostate, colorectal and 
other neoplastic cells [67–69]. 3BP administration also 
induced high expression of Annexin V or high propor-
tions of Annexin V-positive cancer cells, such as was 
observed in melanoma and lung neoplastic cells [70, 71].

Complementarily, in this study, caspases (cysteine 
proteases) are considered key proteins in apoptotic pro-
cesses, specifically in the execution phase. Caspase 3 

expression and activation have been shown to be modu-
lated by Quer administration in different cells [72–74]. 
Similarly, 3BP induced an increase in the Caspase 3 stain-
ing intensity in potentially different types of neoplastic 
(liver, lung, colorectal) cells, including glioma cells [64, 
71, 75].

Regarding the formulation used (simple bilayer 
liposomes with charges neutralized by spermidine addi-
tion), it should be noted that the main advantages of the 
use of liposomes is efficient transport to the target site 
and evasion of natural barriers in the organism; however, 
other functional properties have been described in the 
treatment of gliomas; among these the facilitation of drug 
transport across the blood–brain barrier, the improve-
ment of cellular uptake and the reduction of P-glyco-
protein (P-gp) excretion of drugs, reversing of multidrug 
resistance, regulation of autophagocytosis and induction 
of apoptosis [34].

Additionally, formulations could include active protein 
members of the ATP-binding cassette (ABC) transporter 
superfamily. In the brain, these proteins are found in the 
blood‒brain barrier, the blood-cerebrospinal fluid bar-
rier, and the blood-arachnoid barrier, while in tumour 
cells, the overexpression of these ABC transporters is 
associated with drug resistance and regulated by metab-
olites that are generated during aerobic glycolysis; thus, 
3BP could act indirectly by inhibiting the expression of 
these transporters [76–78]. On the other hand, there are 
reports that Quer favours the overexpression of P-gp, 
which is considered a substrate of these transporters [79, 
80].

It should be noted that in  vitro (Annexin V and Cas-
pase 3 expression) and in  vivo (limitation of growth) 
results are congruent and in line with the involvement of 
the mechanism(s) of action linked to regulation of death 
cells, mainly by apoptosis. However, other mechanisms 
such as metabolism disorders, avoiding of drugs expul-
sion of neoplastic cells and limitation of vascular devel-
opment could be key in the observed effect. In this sense, 
an interesting finding of our in vivo experiments is that 
the combination treatment strategy seems to inhibit vas-
cular formation. An antiangiogenic effect of Quer (at 
different doses and in different formulations) has been 
reported in multiple in vitro and in vivo studies, includ-
ing those using liposomes as carriers [41, 81–85]. In 
contrast, scarce data suggest an effect of 3BP on vascular-
ization in tumours; truly, its effects are linked to metabo-
lism disruption, as briefly described above. In this work, 
the inhibition of neovascularization by the combination 
treatment could be an effect of both disrupted metabo-
lism (particularly aerobic glycolysis) and direct inhibition 
of the production and actions of stimulating factors, such 
as VEGF (Vascular endothelial growth factor) [86, 87]. 
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Further studies are required to support or refute these 
hypotheses. The determination of efficient doses of each 
component, the exploration of additional nanoliposome 
formulations as well as the comparison of effects from 
diverse administration pathways are desirable for testing 
this formulation in human cells, since this would increase 
the potential outcomes of this study and the possible 
clinical application. Also, an intentioned toxicity evalu-
ation in higher or prolonged administration (studies of 
posology) compared with those used in this study should 
be done.

Conclusions
The tested combination liposomal formulation 
(Quer + 3BP) inhibited the expression of the biomark-
ers caspase-3 and Annexin V and tumour growth, but 
in vivo, its administration resulted in higher animal sur-
vival and lower volumes of developed tumours  than in 
control groups. These observations support the further 
exploration of these active agents in the treatment of 
high-grade diffuse astrocytoma. Specifically, this explor-
atory study suggests that postsurgical treatment with 
liposomes loaded with Quer 1  mg/kg + 3BP 1.5  mg/kg 
allows glioma inhibition in cases where wide resection is 
possible or slows tumour growth when partial resection 
is possible. Further studies are required to support these 
findings.
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