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Abstract 

Backgrounds The overall survival of patients with lower-grade gliomas and glioblastoma varies greatly. No reli-
able or existing procedures can accurately forecast survival and prognostic biomarkers for early diagnosis in glioma 
and glioblastoma. However, investigations are progressing in immunotherapy, tumor purity, and tumor microenviron-
ment which may be therapeutic targets for glioma and glioblastoma.

Results This study indicated the possible prognostic signatures that can be used to identify immune-related prog-
nostic biomarkers in the prediction of the survival of low-grade glioma (LGG) patients which may be a possible 
therapeutic target. In addition, the Kaplan–Meier plot, ESTIMATE algorithm, and TIMER 2.0 analysis indicated that Krüp-
pel-like factor 15 (KLF15) p = 0.030, Aquaporin 7 (AQP7) p = 0.001, and Human 1-acylglycerol-3-phosphate O-acyltrans-
ferase 9 (AGPAT9) p = 0.005 are significantly associated in glioma. Hence, they may be possible prognostic biomarkers 
in glioma. Meanwhile, in the glioblastoma, only KLF15 has a significant association with glioblastoma (p = 0.025). 
Stromal and immune scores of gliomas were determined from transcriptomic profiles of LGG cohort from TCGA (The 
Cancer Genome Atlas) using the ESTIMATE (Estimation of Stromal and Immune cells in Malignant Tumours using 
Expression data algorithm). The immune infiltration of the KLF15, AQP7, and AGPAT9 for low-grade glioma and glio-
blastoma was determined using TIMER immune 2.0 which indicates correlation with tumor purity for KLF15, AQP7, 
and AGPAT9, but only KLF15 and AGPAT9 are significantly associated in both glioma and glioblastoma, respectively.

Conclusions These results highlight the significance of microenvironment monitoring, analysis of glioma and glio-
blastoma prognosis, and targeted immunotherapy. To our knowledge, this is the first time to investigate an analysis 
that revealed that KLF15, AQP7, and AGPAT9 may be important prognostic biomarkers for patients with glioma 
and KLF15 for patients with glioblastoma. Meanwhile, KLF15 and AGPAT9 are significantly associated in both glioma 
and glioblastoma, respectively, for tumor purity.
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Backgrounds
Glioma is the most prevalent primary malignant 
brain tumor and can be divided into distinct catego-
ries. According to the WHO grading system, it can 
be categorized into astrocytomas, diffuse low-grade, 
intermediate-grade, oligodendrogliomas, and mixed 
oligoastrocytomas [1–3]. The most frequent treatment 
for glioma is surgical resection in combination with 
chemoradiotherapy. Due to its highly invasive nature, 
surgical resection may be difficult to treat, and residual 
tumor could lead to malignant progressions and even 
reoccurrence in the long run [4]. Although the classifi-
cation of low-grade glioma (LGG) is recognized world-
wide, it may not adequately predict its survival rate; 
however, clinicians tend to depend on genetic classifi-
cations to guide its treatment [5–7]. The survival out-
comes of LGG vary widely among different patients [8]. 
However, some LGGs stay stable for a long period while 
some progress into glioblastoma [9–11]. Notwith-
standing more investigations are required to elucidate 
whether gliomas progress to glioblastoma. Gliomas 
account for approximately 75% of primary cancerous 
brain tumors [12]. In the USA, about 13,000 people die 
and 18,000 new cases of CNS tumors and malignant 
brain tumors arise each year due to glioma prognosis 
and occurrence [13, 14], hence a need for therapeutics 
and early diagnosis of the diseases [15].

Glioma is a cancerous tumor of the central nervous sys-
tem that begins in the glial cells that surround and nour-
ish the brain’s neurons [16]. In the treatment of gliomas, 
great progress has been made in genomic, transcrip-
tomic, and epigenetic profiling [17–21]. Astrocytoma, 
ependymoma, glioblastoma, and oligodendroglioma are 
some of the different kinds of glioma [22]. Glioblastoma 
(GBM), the most common and aggressive primary kind 
of malignant brain tumor, is assumed to have started in 
glial cells [23–25]. Scientific evidence, on the other hand, 
reveals that GBM could have developed from a variety of 
cells with neural stem cell characteristics [26, 27]. GBM is 
slightly more common in men than in women, as well as 
in Caucasians and other white races and ethnicities [28, 
29]. GBM is usually found in the supratentorial region of 
the brain such as hypothalamus, pituitary gland, pineal, 
and the four lobes: temporal, parietal, frontal, and occipi-
tal lobes, with cerebellum being a rare exception [30, 31]. 
Sixty-one percent of all primary gliomas are found in 
the brain’s four lobes: 20% in the temporal lobe, 25% in 
the frontal lobe, 3% in the occipital lobe, and 13% in the 
parietal lobe [32]. Glioblastomas are divided into primary 
and secondary subtypes that originate along different 
genetic routes and affect individuals of various ages [33, 
34]. Quite recently, glioblastoma with oligodendroglioma 
component is an uncommon subtype of glioblastoma 

that features certain parts that resemble anaplastic oligo-
dendroglioma, according to the WHO [35, 36].

In clinical practices, mutated genes such as isocitrate 
dehydrogenase 1 (IDHI), IDH2, tumor protein 53 (TP53), 
epidermal growth factor receptor (EGFR), and alpha-
thalassemia/mental retardation, X-linked (ATRX) are 
factors for the prognosis of patients with LGG [37–39]. 
Some other biomarkers, including 1p/19q codeletion 
and methylguanine methyltransferase (MGMT) pro-
moter methylation, are also well-recognized and essential 
prognostic factors for LGGs [40–42]. Sometimes, these 
genetic factors fail to indicate accurate survival outcomes 
[43, 44]. Hence, further investigations are required to elu-
cidate the functions and the mechanisms of the prognos-
tic signatures.

Several studies have shown that cancer recurrence and 
progression are caused not only by the tumor’s underly-
ing genetic changes but also by tumor microenviron-
ment (TME) [45–47]. The TME is basically composed 
of numerous cytokines, extracellular matrix molecules, 
immune cells, chemokines, fluids, and stromal cells [23, 
48, 49]. The cells found in the TME reflect the evolution-
ary nature of cancer and together, promotes the tumor 
immune escape, tumor growth, and metastasis [50, 51]. 
Cancer researchers are not vividly aware of the impact 
of the TME on immune response or tumor progressions 
although multiple genetic mutations increase the preva-
lence of cancer [52]. TME can induce metabolic stress 
on immune cell infiltration thereby causing local immu-
nosuppression and limited reinvigoration of antitumor 
immunity [53, 54]. However, having an in-depth under-
standing of the epigenetic, molecular composition, and 
function of the TME is essential to manage and treat 
cancer progressions, recurrence, and immune response 
[55–57]. Integrating multiple gene biomarkers instead of 
a single model would improve the accuracy of the predic-
tion significantly [58–61].

The survival of glioma patients has received so much 
research and discovery in the aspect of neurosurgery, 
radiotherapy, and chemotherapy. However, a lot of chal-
lenges of glioma are yet to be solved. Currently, immu-
notherapy has unveiled possible therapy for cancer [54, 
62, 63]. Investigations are currently going on in the area 
of immunotherapy, but there is still need for efficient 
molecular biomarkers to differentiate patients with pos-
sible sensitivity to immunotherapy [64, 65]. Therefore, it 
is very crucial to identify immune-related prognostic bio-
markers which may be a possible therapeutic target and 
may be utilized for immunotherapy in patients.

Taken together, differential expressed genes (DEGs) 
using an immune stromal score in glioma and glioblas-
toma, transcriptional microarray of glioma cases from 
multiple TCGA cohorts were investigated to predict the 
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survival of LGG and GBM patients. The following prog-
nostic signatures, such as KLF15, AQP7, and AGPAT9, 
were used in this investigation to determine whether they 
have a significant association with glioma and glioblastoma 
using TCGA and the immune infiltration was unveiled 
for precise immunotherapy. To our knowledge, this is the 
first time to use these signatures for glioma and glioblas-
toma, hence unveiling prognostic biomarker and immune 
infiltration.

Methods
In this investigation, utilization of the Kaplan–Meier 
plots using Xena bower (http:// xena. ucsc. edu/), ESTI-
MATE algorithm (Estimation of Stromal and Immune 
cells in Malignant Tumours using Expression), Timer 2.0 
(http:// timer. comp- genom ics. org/ timer/), and The Cancer 
Genome Atlas (TCGA) database were used to unveil the 
prognostic signature and immune infiltration of glioma and 
glioblastoma analysis.

Bioinformatics approaches were applied to integrate 
copy number variations and differential expressed genes of 
low-grade glioma. The immune cell proportion of the prog-
nostic signatures, such as KLF15, AQP7, and AGPAT9, 
were determined using TIMER immune 2.0. In TIMER, 
the Gene module was used to identify the relationship 
between tumor gene expression and immune infiltration in 
low-grade glioma and glioblastoma. Stromal and immune 
scores of gliomas were estimated in transcriptomic profiles 
of LGG cohort from TCGA using the ESTIMATE. One 
hundred entries of TCGA cohort were entered and used 
to plot the graph showing the presence of stromal scores 
in tumor tissues, immune scores for the infiltration of 
immune cells in tumor tissues, and the ESTIMATE scores 
that infers tumor purity. Herein, we analyzed the immune 
infiltration landscape in LGGs, by applying single-sample 
gene set enrichment analysis (ssGSEA) to evaluate the rela-
tive abundance of each immune cell subpopulation using 
RNA sequencing (RNA-Seq V2) data of 100 LGGs from 
TCGA. The survival analysis of significant DEGs in glioma 
using TCGA database was determined. Kaplan–Meier 
curves were used to produce graphs showing the survival 
probability of prognostic signature genes of glioma and 
glioblastoma and their statistical significance. For example, 
p values of less than 0.05 in all tests were significantly linked 
to low-grade glioma and glioblastoma. The gene expression 
profiles of the prognostic signatures (KLF15, AQP7, and 
AGPAT9) were determined using TIMER immune 2.0.

Results
Kaplan–Meier curve showing the expression of KLF 15, 
AQP7, and AGPAT9 gene in glioma
Herein, we unveiled the survival analysis for glioma 
patients using the TCGA database and Kaplan–Meier 

plots and discovered that the KLF 15 is significantly asso-
ciated (p = 0.03) with the overall survival of the patient 
which indicates that it may be a very possible prognos-
tic biomarker useful for glioma patients Fig.  1a. In our 
investigations, the Kaplan–Meier plot showed that AQP7 
is significantly associated (p = 0.001) with overall sur-
vival of the glioma patients using the TCGA database 
Fig. 1b. Hence, it showed that it may be a prognostic bio-
marker which may be useful for the glioma patient. The 
Kaplan–Meier plot showed that AGPAT9 is significantly 
associated (p = 0.005) with overall survival of the glioma 
patients using the TCGA database (Fig. 1c).

Kaplan–Meier curve showing the expression of KLF 15, 
AQP7, and AGPAT9 gene in glioblastoma
This is a visual representation of expression level of prog-
nostic signature KLF15, which indicates that the p value 
is 0.025 that means it has a significant association with 
glioblastoma and thus can be used as a prognostic sig-
nature in the early detection of glioblastoma (Fig.  2a). 
Meanwhile, the expression level of prognostic signature 
AQP7 has p value of 0.59 that means it has no significant 
association with glioblastoma and thus cannot be used 
as a prognostic signature in the early detection for glio-
blastoma patients (Fig. 2b). Also, AGPAT9 has a p value 
of 0.10 that means it has no significant association with 
glioblastoma and thus cannot be used as a prognostic sig-
nature in the early detection of glioblastoma. Thus, AQP7 
and AGPAT9 have no significant association and so they 
are predictive biomarkers and may not be potential prog-
nostic signatures for glioblastoma patients. However, 
KLF15 showed a significant association with glioblas-
toma and so can be a prognostic biomarker in glioblas-
toma patients.

The stromal, immune, and estimate scores of low‑grade 
glioma
To analyze the immune infiltration landscape in LGGs, 
single-sample gene set enrichment analysis (ssGSEA) 
was applied to evaluate the relative abundance of each 
immune cell subpopulation using RNA sequencing 
(RNA-Seq V2) data of 100 LGGs patients from The Can-
cer Genome Atlas (TCGA). By performing single-sample 
gene set enrichment analysis (ssGSEA), we calculated 
stromal and immune scores to predict the level of infil-
trating stromal and immune cells and these form the 
basis for the ESTIMATE score to infer tumor purity in 
tumor tissue Fig. 3.

The expression levels of KLF15 in LGG using different 
immune infiltrate variables
KLF15 has a correlation with low-grade glioma. Corre-
lation value of 0.124 and the genes are highly expressed 

http://xena.ucsc.edu/
http://timer.comp-genomics.org/timer/
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Fig. 1 Kaplan–Meier curve showing the expression of KLF 15, AQP7, and AGPAT9 gene in glioma

Fig. 2 Kaplan–Meier curve showing the expression of KLF 15, AQP7, and AGPAT9 gene in glioblastoma
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in the tumor cells which show a positive correlation with 
tumor purity and significantly association (p = 0.000005) 
Fig.  4. B cell, CD8+ T cell, CD4+ T cell, macrophages, 
neutrophil, and dendritic cells are the immune infiltrates 
which show that the expression level of KLF15 has a 
partial correlation, and it is significantly associated with 
immune infiltration in all the cells except that of the mac-
rophages where the P value is 0.07.

The expression levels of AQP7 in LGG using different 
immune infiltrate variables
Based on investigations, it shows that the tumor purity of 
AQP7 has a negative correlation with low-grade glioma; 

correlation value = − 0.007 (Fig.  5). Also, purity and B 
cells do not show a significant association with glioma; p 
values = 0.8, 0.4, respectively. CD8+ T cell, CD4+ T cell, 
macrophages, neutrophil, and dendritic cells show that 
the expression level of AQP7 has a partial correlation 
with the infiltration level and significantly associated. 
CD8+ T cell, CD4+ T cell, macrophages, neutrophil, and 
dendritic cells also show a significant association with 
glioma with p values of 0.006, 0.05, 0.003, 0.003, and 0.01, 
respectively.

The expression levels of AGPAT9 IN LGG using different 
immune infiltrate variables
Based on the investigation, it also shows that tumor 
purity of AGPAT9 has a negative correlation with low-
grade glioma; correlation value = − 0.238, and it shows a 
significant association with the tumor purity with p value 
(p = 0.000000014) (Fig.  6). All the immune cells have 
positive correlation and show significant association with 
glioma except macrophages.

The expression levels of KLF15 in GBM using different 
immune infiltrate variables
The dendritic cells, CD4 T cell, neutrophil, and CD8+ 
T cell immune infiltrate are significantly associated with 
glioblastoma. Meanwhile, B cell, CD8+ T cell, CD4+ 
T cell, macrophages, neutrophil, and dendritic cells 
immune infiltrates indicated that KLF15 expression level 
is partially correlated with immune infiltration level in 
GBM, and purity immune infiltrate is correlated. Herein, 
during the analysis of the KLF15, we realized that the 

Fig. 3 The stromal, immune, and estimate scores of low-grade 
glioma

Fig. 4 The expression levels of KLF15 in LGG using different immune infiltrate variables
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immune infiltrates are significantly association except 
that of the B cells (p = 0.1) and the macrophages (p = 0.3). 
The correlation value was 0.254 and the genes are highly 
expressed in the tumor cells. In the tumor purity, it 
shows positive correlation and significantly associated 
(p = 0.00000013) (Fig. 7) in glioblastoma.

The expression levels of AQP7 in GBM using different 
immune infiltrate variables
Here, no significant association (p = 0.26). It was also 
indicated that the tumor purity of AQP7 has a negative 

correlation with its immune infiltration level; Correlation 
value = − 0.055 (Fig. 8). However, neutrophil and CD4 T 
cells have partial correlation and significantly associated 
in glioblastoma patients with p value of 0.0000195 and 
0.0000177, respectively.

The expression levels of AGPAT9 in GBM using different 
immune infiltrate variables
B cells and macrophages show no significant associa-
tion with glioblastoma multiforme. The purity, CD8+ T 

Fig. 5 The expression levels of AQP7 in LGG using different immune infiltrate variables

Fig. 6 The expression levels of AGPAT9 IN LGG using different immune infiltrate variables
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cell, CD4+ T cell, neutrophil, and dendritic cells show 
a significant association with glioblastoma multiforme. 
Based on the analysis, the tumor purity of AGPAT9 has 
a negative correlation with low-grade glioma; correla-
tion value = − 0.363. It also shows a significant associa-
tion p = 0.000012 (Fig. 9).

Discussions
Krüppel-like factor 15 (KLF15) is a signature that is yet 
to be fully elucidated in the glioma patient, but previous 
investigations have been done in the area of clear cell 
renal cell carcinoma [66] adenocarcinoma lung cancer 
[67]. Krüppel-like factor 15 (KLF15) is useful in a lot 
of biological processes which include cell proliferation, 

Fig. 7 The expression levels of KLF15 in GBM using different immune infiltrate variables

Fig. 8 The expression levels of AQP7 in GBM using different immune infiltrate variables
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cell cycle, adipogenesis, etc. [68–70]. KLF15 has an 
important role in RNA polymerase II-specific DNA-
binding transcription factor activity [71, 72]. Hence, it 
is known to have significant functions in different types 
of cancer. KLF15 is responsible for the suppression and 
activation of genes in carcinogenesis. Previous investi-
gation has shown that KLF15 is a positive regulator of 
carcinogenesis [73–76]. Therefore, KLF15 may be use-
ful immune-related prognostic signature in glioma and 
glioblastoma patients.

Investigations have been conducted on the Aquaporin 
7 (AQP7) association with lymphatic metastasis, breast 
cancer, liver cancer, and clear renal cancer [77–81]. It 
is otherwise known as water channels which have been 
known to be related to the invasion, proliferation, and 
migration of human breast tumors [77, 82–84]. How-
ever, investigations are yet to discover the potential 
roles of AQP7 in glioma and glioblastoma patients as 
a possible therapeutic target and prognostic biomarker. 
Aquaporin (AQP) family members were first inves-
tigated in 1992 [85–87]. Various investigations have 
shown that it can be expressed in epithelial and non-
epithelial cells [88]. AQP7 is also important in fatty 
acid metabolism and enhances the migration of water 
and glycerol [78]. Human 1-acylglycerol-3-phosphate 
O-acyltransferase 9 (AGPAT9, also known as GPAT3 
or LPCAT1) is correlated with tumor progression and 
tumor microenvironment [89]. It is related to fatty acid 
metabolisms and involved in a lot of biological pro-
cesses. It catalyzes de novo synthesis of triacylglycerol 
[89]. Hence, AQP7 and AGPAT9 indicate usefulness as 

prognostic biomarker which may be advantageous for 
the glioma patient.

Stromal and immune scores were estimated from tran-
scriptomic profiles of LGG cohort from TCGA using 
the ESTIMATE. One hundred entries of TCGA cohort 
were entered and used for the investigation. Hence, the 
presence of stromal scores in tumor tissues, immune 
scores for the infiltration of immune cells in tumor tis-
sues and the ESTIMATE scores that infers tumor purity 
is observed [90–92].

Immune infiltration of malignancies correlates strongly 
with clinical outcomes. In terms of chemotherapy and 
immunotherapy, the makeup of tumor-infiltrating 
immune cells (TIICs) can serve as biomarkers for pre-
dicting treatment response and survival in distinct 
patient subgroups [93]. Hence, the immune cell propor-
tion of the three-signature for LGG were determined 
using Timer immune 2.0. The Gene module allows a user 
to identify the relationship between tumor gene expres-
sion and immune infiltration in a fast, comprehensive, 
and unbiased way [94]. Therefore, the signatures may 
be a potential prognostic signature for glioma and use-
ful for screening immunotherapy for glioma patients. 
Hence, this is in consistent with previous investigations 
[95, 96]. Therefore, B cell, CD8+ T cell, CD4+ T cell, 
macrophages, Neutrophil, and dendritic cells immune 
infiltrates indicated that AQP7 expression level is par-
tially correlated with immune infiltration level in LGG 
[97], while purity infiltrate is correlated. Hence, it may be 
a potential prognostic signature for glioma and useful for 
screening immunotherapy for glioma patients [98].

Fig. 9 The expression levels of AGPAT9 in GBM using different immune infiltrate variables
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B cell, CD8+ T cell, CD4+ T cell, macrophages, neu-
trophil, and dendritic cells show that the expression level 
of AGPAT9 has a partial correlation with the infiltration 
level. Purity, B cell, CD8+ T cell, CD4+ T cell, neutrophil, 
and dendritic cells show a significant association with gli-
oma [99], while macrophages do not have any significant 
association with glioma. Therefore, B cell, CD8+ T cell, 
CD4+ T cell, macrophages, neutrophil, and dendritic 
cells immune infiltrates indicated that AGPAT9 expres-
sion level is partially correlated with immune infiltration 
level in low-grade glioma, while purity immune infiltrate 
is correlated [100].

Determination of immune cell proportion of the 
KLF15, AQP7, and AGPAT9 signatures on the glioblas-
toma multiforme prognostic using Timer immune 2.0 
indicated that the tumor purity of KLF15 has a positive 
correlation with glioma and glioblastoma [101]. Hence, 
KLF 15 may be a potential prognostic biomarker and 
useful for screening immunotherapy for glioma and 
glioblastoma patients. B cell, CD8+ T cell, CD4+ T cell, 
macrophages, neutrophil, and dendritic cells show that 
the expression level of KLF15 has a partial correlation 
with the infiltration level. Therefore, CD8+ T cell, CD4+ 
T cell, neutrophil, and dendritic cells immune infiltrates 
indicated that KLF15 expression level is significantly 
associated with the GBM patients. Thus, KLF15 may be a 
useful signature for monitoring immunotherapy in GBM 
[102].

B cell, CD8+ T cell, CD4+ T cell, macrophages, neu-
trophil, and dendritic cells show that the expression level 
of AGPAT9 has a partial correlation with the infiltration 
level. CD4+ T cell, macrophages, and neutrophil cells 
do not show a significant association with glioblastoma 
multiforme. The tumor purity, dendritic cells, and CD8+ 
T cell immune infiltrate have a significant association 
with glioblastoma using the AGPAT9 gene [66]. There-
fore, B cell, CD8+ T cell, CD4+ T cell, macrophages, 
neutrophil, and dendritic cells immune infiltrates indi-
cated that AGPAT9 expression level is partially corre-
lated with immune infiltration level in GBM [89], while 
purity immune infiltrate is correlated. Dendritic cells are 
known for their ability of promoting tumor immunosup-
pression [103]. Dendritic cells are divided into two forms, 
myeloid DC and plasmacytoid DC, which can produce 
large amount of Interferon gamma [104]. It can also 
induce T cell immunity or tolerance [105, 106]. Hence, 
AGPT9 may be useful for monitoring immunotherapy 
in glioblastoma patients. Concerning the association of 
CD8 T cells, it shows that CD8+ T lymphocytes are cru-
cial components of the tumor-specific adaptive immu-
nity that attacks tumor cells [107]. Clinical outcomes are 
highly connected to the immune infiltration of malignan-
cies [108]. The composition of tumor-infiltrating immune 

cells (TIICs) may serve as biomarkers for predicting 
treatment response and survival in various patients sub-
groups in terms of chemotherapy and immunotherapy 
[109, 110].

Conclusions
The analysis revealed that KLF15, AQP7, and AGPAT9 
may be prognostic biomarker genes that may be useful 
for prognosis of patients with glioma. Utilization of bio-
informatics tools such as TIMER, ESTIMATE, Kaplan–
Meier plot, TCGA database; the immune proportion, 
stromal and immune scores, various expression levels of 
the prognostic signatures, infiltrating levels, and tumor 
purity of glioma and glioblastoma multiforme were 
determined. Further investigations will be required using 
X-tile software, Database for Annotation, Visualization, 
and Integrated Discovery (DAVID), string, cytoscape, 
Kyoto Encyclopedia of Genes and Genomes (KEGGs) 
databases to unveil the molecular mechanisms of glioma 
and glioblastoma. Use of single cell sequencing will be of 
great usefulness in the treatment of glioma and glioblas-
toma. Investigations into hormone-based therapy will be 
fascinating. It would be enormously fascinating to vali-
date maybe the biomarker predicts both precision immu-
notherapy and prognosis. The determination of real-time 
quantitative PCR analysis is also important.
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