
Abdelrahman et al. 
Future Journal of Pharmaceutical Sciences           (2024) 10:37  
https://doi.org/10.1186/s43094-024-00610-8

RESEARCH

Genotype–phenotype correlation 
of fecal Streptococcus regulator (fsr) locus 
with gelatinase activity and biofilm formation 
intensity in clinical E. faecalis isolates
Khaled A. Abdelrahman1, Mona T. Kashef2, Ramy K. Aziz2,3 and Yomna A. Hashem1*   

Abstract 

Background Enterococci, known for their disturbing involvement in nosocomial infections, possess a diverse set 
of virulence factors, regulated by multiple genes. A key virulence regulator is the fecal Streptococcus regulator (Fsr) 
quorum sensing system. Multiple reports describe the involvement of fsr genes in several virulence mechanisms, 
notably gelatinase production and biofilm formation; however, the presence of fsr genes does not necessarily predict 
those virulence phenotypes. This study investigates the factors affecting the relation between molecular detection 
of fsr genes and accurate prediction of gelatinase activity and biofilm formation intensity.

Methods One hundred enterococcal samples were collected from patients suffering from urinary tract infections. 
The isolates were identified through the use of a polymerase chain reaction (PCR) technique targeting the ddl gene. 
Biofilm formation was quantified by the crystal violet assay, while gelatinase activity was evaluated on gelatin agar 
plates. PCR was used to detect the fsrA and fsrB genes, as well as the gelatinase enzyme-encoding gene (gelE).

Results Out of the collected 100 isolates, 93% were identified as Enterococcus faecalis. The isolates formed biofilm 
with different intensities: 47% were strong biofilm producers, 28% moderate, and 21% weak, while only four isolates 
(4%) did not form biofilm. Only 14% of all isolates had detectable gelatinase activity. The fsrA and fsrB genes were 
detected in 26% and 28% of the tested isolates, respectively, while gelE was detected in 57% of the isolates. Whereas 
no association was found between biofilm formation intensity and fsr locus genes or gelatinase activity, a strong posi-
tive correlation (r = 1) was found between the detection of both fsrA and fsrB genes and the gelatinase activity.

Conclusion fsrA and fsrB have a diagnostic value and may be used as biomarkers for gelatinase activity in E. faecalis.
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Background
Enterococci are Gram-positive members of the intestinal 
microbiota; however, they frequently act as opportunis-
tic pathogens with the ability to cause community- and 
hospital-acquired infections. E. faecalis and E. faecium 
are the enterococcal species most frequently linked to 
infections [1].

Infections of the urinary tract represent the most prev-
alent type of infection caused by Enterococcus spp., which 
is responsible for more than 30% of nosocomial urinary 
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tract infections and has been identified as the second 
most common pathogen after Escherichia coli in cathe-
ter-associated urinary tract infections [2].

To be able to cause such diseases, enterococci pos-
sess several virulence factors that give them an advan-
tage over their host’s immune system. Quorum sensing 
is one of the important virulence mechanisms, and can 
be regulated by the fsr locus, made up of fsrA, fsrB, fsrD, 
and fsrC genes [3]. FsrA protein has a DNA-binding 
domain from the LytTR family [4]. The attachment of 
phosphorylated FsrA to LytTR-binding sites located in 
the regions preceding fsrB and gelE suggests that FsrA 
acts as the response regulator within this control sys-
tem [4]. FsrB, a protein found within the cell membrane, 
is a member of the accessory gene regulator protein B 
family. It is responsible for transforming FsrD into an 
active form that stimulates the production of gelatinase, 
through the activation of the pheromone GBAP, which is 
subsequently exported outside of the cell [5]. The fourth 
gene within this locus, fsrC, is responsible for coding the 
transmembrane histidine kinase, FsrC, serving as the 
sensor-transmitter for the fsr operon [4].

The fsr locus regulates the synthesis of the gelatinase 
and serine protease enzymes, in addition to regulat-
ing the expression of EF1097 and EF1097b genes, which 
encode for enterocin [4]. Studies of the transcriptome 
have shown that, beyond its role in controlling gelE, sprE, 
and EF1097, the Fsr system plays a part in regulating 
approximately 75 other genes. These include genes asso-
ciated with surface proteins (EbpR), biofilm formation 
(BopD), and various metabolic activities [6]. These pro-
teins are engaged in a variety of biological processes and 
contribute to E. faecalis virulence and pathogenicity [3].

Downstream of the fsr locus lies the gene responsible 
for gelatinase production (gelE gene) [3]; The gelatinase 
enzyme, produced by E. faecalis, serves as a crucial viru-
lence factor, enabling it to break down gelatin, collagen, 
casein, hemoglobin, and other peptides [7]. This enzyme 
facilitates the degradation of host tissues, aiding E. faeca-
lis in colonizing and infiltrating host structures [8].

Quorum sensing also regulates another important viru-
lence mechanism, which is biofilm formation. A biofilm 
is a community of microorganisms that are adhered to 
either living (biotic) or non-living (abiotic) surfaces, usu-
ally encased within a protective layer made up of extra-
cellular polymeric substances [9]. Biofilm formation is an 
important element of E. faecalis pathogenicity because it 
helps the bacteria colonize a variety of settings, including 
host tissues and medical devices [10].

In addition to quorum sensing, gelatinase activity has 
also been linked to biofilm formation through degrading 
other bacterial cells and stimulating the release of AtlA, 
the major autolysin involved in biofilm formation [11].

A critical gap still remains in our understanding of 
the relationship between molecular detection of fsr 
genes and the accurate prediction of gelatinase activ-
ity, as well as biofilm formation intensity in enterococ-
cal infections. The observed discrepancy between the 
presence of the gelE gene and actual gelatinase activity, 
along with the ambiguous role of the fsr locus in biofilm 
formation intensity, underscores the complexity of trans-
lating molecular diagnostics into effective clinical predic-
tions and treatment strategies for Enterococcus-related 
infections.

Methods
Bacterial strains and culture condition
E. faecalis ATCC 29212 and Bacillus subtilis ATCC 6633 
were used as positive control strains. One hundred iso-
lates were retrospectively collected from Al-Borg Medi-
cal Laboratories from patients in Egypt diagnosed with 
urinary tract infections during the period of 2020 to 2021. 
These isolates were preserved at − 80 °C in Brain Heart 
Infusion broth supplemented with 25% glycerol. For cul-
turing purposes, samples from the stock were isolated on 
bile esculin agar and incubated at 37 °C overnight.

Identification of bacterial isolates
Pure bacterial colonies were obtained through surface 
streaking on bile esculin agar and identified to the genus 
level using Gram staining, catalase test, and their ability 
to tolerate 6.5% NaCl broth.

Identification of the enterococci to the species level
DNA extraction
DNA from the isolates under examination was extracted 
using the boiling method [12], wherein 3 to 5 well-sep-
arated colonies from the culture being tested were sus-
pended in 100 µL of nuclease-free water and subjected to 
heating at 100 °C for 5 min. Following this, the suspen-
sion was rapidly cooled to − 20 °C for 5 min and then 
centrifuged at 10,000 rpm for 10 min. The supernatant, 
which contained the crude DNA extract, was then stored 
at − 20 °C for preservation.

Polymerase chain reaction (PCR)
The PCR was conducted in a total reaction volume of 50 
µL, which included 25 µL of DreamTaq Green PCR Mas-
ter Mix (Thermo Scientific, USA),  10 pmol of both the 
forward and reverse primers specific to the ddl genes 
(Table  1), and 2.5 µL of the extracted crude DNA. The 
multiplex PCR process encompassed an initial denatura-
tion phase of 2 min at 95 °C, followed by 30 cycles that 
each included a denaturation step at 95 °C for 30 s, an 
annealing step at 52 °C for 30 s, and an extension step at 
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72 °C for 30 s. The procedure was concluded with a final 
extension step that lasted for 5 min at 72 °C [13].

The PCR products were visualized by electrophoresis 
on a 1.5% agarose gel (w/v), stained with ethidium bro-
mide, using a electrophoresis system (Mupid exU, Japan). 
A Generuler 100 bp DNA ladder (Fermentas, Germany) 
served as the marker. The presence of the ddl gene in E. 
faecalis and E. faecium was confirmed by the visualiza-
tion of 942 bp and 535 bp bands, respectively. E. faeca-
lis ATCC 29212 was used as the positive control in these 
experiments.

Biofilm assay
Biofilm formation was evaluated through the use of the 
crystal violet assay method [15], with certain modifica-
tions. The process for assessing biofilm formation began 
with inoculating an overnight culture of the tested iso-
lates into trypticase soy broth (TSB) enriched with 1% 
glucose, followed by a 24-h incubation at 37 °C. Post-
incubation, the optical density (OD) of the culture was 
adjusted to a 0.5 McFarland standard, with further dilu-
tion of the cultures to a 1:100 ratio in TSB. This diluted 
culture (200 µL) was then transferred to the wells of a 
sterile flat-bottomed 96-well plate and incubated again at 
37 °C for 24 h.

After this incubation, the contents of the wells were 
discarded, and the wells were washed with saline and 
left to dry. The biofilm, comprised of adherent microbial 
cells, was fixed with absolute methanol and then stained 
with a 0.1% crystal violet solution for 15 min. Subsequent 
to the staining, the excess crystal violet was removed, 
and the wells were washed with distilled water before the 
plates were left to dry.

The adhered stain was dissolved using 33% glacial ace-
tic acid, and the OD of the dissolved stain was meas-
ured at 570 nm using a plate reader (Unicam, UK). TSB 
containing 1% glucose without tested isolate served as 

the negative control. The experiment was conducted in 
triplicate.

The degree of biofilm formation by each iso-
late was classified based on the OD of the dissolved 
stain as follows: strong biofilm formation was indi-
cated if OD > 4 × OD.c, moderate biofilm formation if 
2 × OD.c < OD ≤ 4 × OD.c, and weak biofilm formation if 
OD.c < OD ≤ 2 × OD.c, where OD.c represents the optical 
density of the negative control plus three times the stand-
ard deviation of the negative control [16].

Gelatinase assay
Gelatinase production was assessed by the nutrient gela-
tin plate method [17], with slight adjustments. In sum-
mary, the isolates under investigation were streaked 
onto the surface of nutrient agar plates that were sup-
plemented with 5% gelatin. These plates were then incu-
bated at 37°C for a 24-h period. Following the incubation, 
Frazier solution was applied dropwise onto the agar 
surface. The appearance of a clear zone surrounding the 
microbial growth served as an indicator of positive gelati-
nase activity. Bacillus subtilis ATCC 6633 served as the 
positive control for the experiment.

Genotypic screening for fsrA, fsrB, and gelE genes
For the detection of the fsrA, fsrB, and gelE genes, PCR 
was used. The PCR protocol for each reaction started 
with an initial denaturation phase at 95 °C for 2 min, 
followed by 30 cycles of denaturation at 95 °C for 30 s. 
Annealing temperatures were set at 50 °C for fsrA, 49 °C 
for fsrB, and 47 °C for gelE gene detection (Table 1), each 
for 30 s, with an extension at 72 °C for 30 s. This was con-
cluded by a final extension step lasting 5 min at 72 °C.

The PCR products were then subjected to electropho-
resis in a 1.5% agarose gel (w/v), stained with ethidium 
bromide for visualization. A 100 bp DNA ladder was used 
as a marker, and the identification of the fsrA, fsrB, and 

Table 1 Primers used in this study and their sequence

Target gene Primer pair Amplicon size (bp) References

ddl of E. faecalis Forward: ATC AAG TAC AGT TAG TCT TTA 942 [13]

Reverse: AAC GAT TCA AAG CTA ACT 

ddl of E. faecium Forward: CCA AGG CTT CTT AGAGA 535 [13]

Reverse: CAT CGT GTA AGC TAA CTT C

fsrA Forward: CGT TCC GTC TCT CAT AGT TA 474 [14]

Reverse: GCA GGA TTT GAG GTT GCT AA

fsrB Forward: TAA TCT AGG CTT AGT TCC CAC 428 [14]

Reverse: CTA AAT GGC TCT GTC GTC TAG 

gelE Forward: GGT GAA GAA GTT ACT CTG AC 704 [14]

Reverse: GGT ATT GAG TTA TGA GGG GC
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gelE genes was confirmed by the visualization of ampli-
fication products measuring 474 bp, 428 bp, and 704 bp, 
respectively.

Statistical analysis
Experiments were performed in triplicates. All correla-
tions were tested by the Pearson correlation coefficient. 
The association between the presence/absence of genes 
and different phenotypes was tested by Chi-Square test, 
for multiple categories (i.e., biofilm strength), or Fisher’s 
Exact test, for two-category comparisons (i.e., gelatinase 
activity). P-value < 0.05 was considered significant. Visu-
alization and statistical tests were performed in Graph-
Pad Prism 9.5.0 (GraphPad, San Diego, CA).

Results
One hundred isolates were confirmed to be Enterococcus 
species based on their appearance as brownish-black col-
onies encircled by a black zone on bile esculin agar. Gram 

staining of these samples revealed Gram-positive coc-
cobacilli, which were typically arranged in pairs or short 
chains. Additional identification procedures involved 
catalase and 6.5% NaCl tolerance tests. The results dem-
onstrated that the isolates were catalase-negative and 
capable of growing in high concentrations of NaCl.

PCR identification of the isolates indicated that 93% of 
them were E. faecalis and 7% were E. faecium. All E. fae-
cium isolates were excluded from further study.

The crystal violet assay, used to evaluate bacterial bio-
film formation, showed that only four isolates did not 
form biofilm, while the majority were strong biofilm 
producers (n = 44; 47%). About 28% of the isolates were 
moderate biofilm producers (n = 26), and the remaining 
isolates were weak biofilm producers (n = 19; 21%; Fig. 1).

The nutrient gelatin plate method confirmed that 13 
isolates had gelatinase activity, while the majority of the 
collected isolates (86%, n = 80) were unable to produce 
detectable gelatinase activity.

Fig. 1 Biofilm-formation by the tested Enterococcus faecalis isolates. The intensity of the biofilm formation by each clinical isolate is expressed 
as the absorbance of the dissolved dye from stained biofilms at 570 nm. The horizontal lines represent the absorbance cutoff values for non-, weak, 
moderate, and strong biofilm formation
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Using PCR allowed the detection of the fsrA and fsrB 
genes in 24 and 26 isolates, respectively (26% and 28% of 
the isolates, respectively, Fig. 2).

No significant correlation was found between the 
intensity of biofilm formed by different isolates and the 
PCR detection of quorum sensing genes fsrA (r = − 0.14), 
and fsrB (r = − 0.11), or the gelatinase-encoding gene 
gelE (r = − 0.04). Additionally, the intensity of the formed 
biofilms was not correlated with the gelatinase activity 
(r = − 0.06; Fig. 3).

The gelE gene was detected in all gelatinase-positive 
isolates, and 50% (n = 40) of gelatinase-negative isolates, 
with a significant association (p = 0.0004; Table  2), but 
weak positive correlation (r = 0.35; Fig. 3).

The fsrA gene was detected in all gelatinase-positive 
isolates and 14% (n = 11) of gelatinase-negative isolates, 
while the fsrB gene was present in all gelatinase-positive 
isolates and in 16% (n = 13) of the gelatinase-negative 
isolate.

The PCR detection of fsrA and fsrB was positively 
and significantly correlated with gelatinase production 
(r = 0.68 and 0.65, respectively, p < 0.0001; Fig.  3 and 
Table 2).

The molecular detection of the fsrA, fsrB, and gelE 
genes together was directly correlated with the gelatinase 
activity (r = 1). Likewise, the presence of just fsrA and 
fsrB together was directly correlated with the gelatinase 
activity (r = 1; Fig. 3).

Discussion
In this study, 100 clinical enterococcal isolates were col-
lected from patients with urinary tract infections and 
identified to the species level, where most of the iso-
lates were E.  faecalis (n =  93). A similar predominance 
of E. faecalis infection was reported in Egypt [18] and 

worldwide [19]. Most of the tested E.  faecalis isolates 
(96%) were capable of biofilm formation to different 
intensities; only four isolates were non-biofilm former. 
Similar results about biofilm formation capabilities in 
E. faecalis are available [20]. In accordance with previous 
studies [21, 22], most of the isolates formed biofilms with 
either strong or moderate intensity (72%).

Only 14% of the tested isolates had detectable gelati-
nase activity on gelatin-agar plates. The low frequency of 
detected gelatinase activity in E. faecalis isolates was pre-
viously reported [23, 24]; however, in a study by Robert 
and colleagues (2004), the percentage of gelatinase-pro-
ducing E.  faecalis isolates from clinical and community 
settings reached 67% [25].

It is worth noting that available information about 
the role of the fsr locus in biofilm formation and inten-
sity is still contradictory. Here, a lack of correlation was 
observed between the fsr locus presence and biofilm 
intensity, and similar results were previously reported 
[26]. To the contrary, other studies reported reduced bio-
film formation among fsr mutants [27].

A direct correlation was observed in this study between 
the presence of the fsrA and fsrB genes and the gelatinase 
activity, and the presence of both genes together with the 
gelE genes was detected in all isolates with positive gelati-
nase activity. The correlation between the Fsr system and 
gelatinase activity was previously reported [3]; however, 
a study by Hashem et al. [21] reported fsrB as a stronger 
predictor of gelatinase activity.

The gelatinase activity was suggested to affect biofilm 
production and to be important for pathogenicity in dif-
ferent infection models [28]. Here, we did not find any 
correlation between gelatinase production and the inten-
sity of biofilm formation. Similar results about the lack 
of correlation between biofilm intensity and gelatinase 

Fig. 2 The gelatinase activity, and the detectability of gelE, fsrA, and fsrB genes in the tested Enterococcus faecalis isolates. (Yellow: Present; black: 
Absent)
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production in E.  faecalis isolates were reported [21, 29]. 
On the other hand, some studies on gelE mutant strains 
confirmed the role of gelatinase production in biofilm 
formation [30, 31]. Therefore, further studies are needed 
to determine the exact role of gelatinase in biofilm 
production.

In this study, gelE gene was detected in 57% of collected 
isolates. However, gelatinase activity was only found in 
14% (n = 13) of the isolates. This may have resulted from 
the partial deletion in the fsr locus as previously dis-
cussed by Qin et al. [32], who found that gelatinase activ-
ity was abolished after the deletion of the fsr locus. This 
loss of activity was documented [3].

In terms of diagnostic value of the fsr locus genes as 
biomarkers for gelatinase production, the finding that 
both fsrA and fsrB were positively correlated with the 
gelatinase production phenotype suggests that, while 
the molecular detection of these two genes is not fully 

correlated with the gelatinase phenotype, it still might be 
useful for rapid molecular screening or when culturing 
the bacteria is not possible. For example, in microbiome 
analysis studies, the detection of these genes in DNA 
extracted from fecal specimens or sewage samples could 
suggest potential for gelatinase activity.

Conclusions
The gelatinase activity of E.  faecalis clinical isolates is 
strongly positively correlated (r = 1) with the presence 
of the quorum sensing-associated fsrA and fsrB genes, 
and no gelatinase activity was measurable when fsrA and 
fsrB were absent. Although reported in many studies, no 
direct correlation was found between fsrA, fsrB, or gelati-
nase production and biofilm formation intensity, which 
suggests that other genetic factors are associated with 
biofilm intensity.

Fig. 3 The correlation between the detectability of fsrA, fsrB, and gelE genes, the gelatinase activity, and the intensity of formed biofilm. The 
correlation was estimated by the Pearson correlation coefficient. The color scale on the right represents the correlation coefficient
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Abbreviations
Fsr  Fecal Streptococcus regulator
PCR  Polymerase chain reaction
TSB  Trypticase soy broth
UTI  Urinary tract infection
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