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Abstract 

Background There is a soar in the figure of companies aiming to achieve efficiency in undergoing experimen-
tal processes. Therefore, instead of deploying one-factor-at-a-time, design of experiments is becoming rampantly 
utilized in order to reduce the resources outflow. There are a copious of different smart designs which could be 
employed as design of experiments tools. Central composite and d-optimal designs were investigated in this paper. 
The purpose of this investigation was to compare the two designs and identify the most accurate design at analyz-
ing, interpreting and making predictions with regards to the data offered. The aforementioned purpose was achieved 
by applying both designs to a preexisting study which sought to prolong the gastrointestinal retention of repaglinide 
tablets through deploying a full factorial design. Further optimization was performed using Design-Expert software 
after inducing an outlier point.

Results R-squared, adjusted R-squared, predicted R-squared and adequate precision were computed in addition 
to acquiring diagnostics figures such as predicted versus actual, residual versus run, Box–Cox, contour plot and 3D 
surface plots. Model equations were also produced for each design. Results showed that both designs were suc-
cessful at modeling the data both scoring r-squared values > 0.7 and adequate precision > 4 implying high fitting, 
prediction power and ability to navigate the experimental space using a reduced number of experimental runs. The 
d-optimal design obtained the least relative error of only 3.81%.

Conclusions In conclusion, the d-optimal design provides a great tool for reduction of experimental testing which 
in turn diminishes resources consumption. Therefore, this design is favored to be enforced in the pharmaceutical 
sector.

Keywords Repaglinide, Floating, Optimization, d-optimal, Central composite

Background
The production of pharmaceutical commodities is a 
sophisticated, time-consuming, expensive and labor-
intensive endeavor which necessitates extensive planning 
and exhaustive testing of products and processes with the 
aspire of achieving the most optimized process and the 
superlative quality of the medicine [1]. For this reason, 
many methods have prevailed with the purpose of coher-
ent optimizing the production of medications [2]. Con-
ventionally, one-factor-at-a-time (OFAT) studies were 
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adopted to deduce the optimized formulation of rem-
edies. The one-factor-at-a-time optimization approach 
adheres to the concept that in order to ascertain the 
impact of a single factor, it is imperative to keep all 
other factors constant. In other words, only one factor is 
altered at a time. This experimental design may not be the 
most efficient approach when the factors under consid-
eration are interacting or interfering. Due to the proven 
inefficiency of OFAT, it is now rarely implemented in 
the pharmaceutical engineering processes. To solve the 
impracticality of OFAT, a new statistical approach was 
developed by Sir Ronald Fitcher in the twentieth century 
[3]. His method was named as “design of experiments 
(DOE)”. This systematic formulation of experiments 
entails a multifaceted strategy aiming at enhancing the 
quality of a product through limited experimentation 
and judicious allocation of resources [4]. The design of 
experiment (DOE) approach relies on planning and exe-
cuting the least amount of experiments where variables 
are altered simultaneously to produce a cause-and-effect 
relationship, while minimizing errors [5–7]. The steps 
of DOE deployment are designing, developing, evaluat-
ing and finally analyzing the product. The application of 
design of experiments (DOE) is widely employed for the 
execution of Quality by Design (QbD) [8]. In this con-
text, Q8 and Q9 are major constituents of QbD where 
Q8-pharmaceutical development and Q9-quality risk 
assessment were first introduced in the international 
conference on harmonization (ICH) in 2009. Quality by 
Design is a concept which revolves around the notion 
that attainment of product and process understanding 
serves as the pivotal factor in ensuring the quality of the 
end product [9, 10]. This comprehensive apprehension is 
illustrated by embedding quality in the developing stages 
of the product and its processes of manufacturing in lieu 
of testing for quality after the manufacturing process is 
finalized [11]. Mitigating possible quality hazards is cru-
cially achieved by identifying possible failures that may 
negatively influence the quality of the product and subse-
quently actions are put in place to ensure sustainment of 
product compliance with the quality standards [12]. Pos-
sible failures that might prevail could be pinpointed using 
fishbone diagram, a root cause analysis tool.

There are a multitude of different designs currently 
employed throughout the pharmaceutical industry. Two 
of the response surface designs include the central com-
posite and the d-optimal. Central composite designs fun-
damentally select the upper and lower limits of testing 
values and extend the space of the experiments beyond 
both thresholds (alpha + 1 & alpha − 1) [13]. The cen-
tral composite design is suitable for materials which are 
insensitive to harsh testing condition. Sensitive mate-
rials which should not be implemented in the central 

composite design include proteins and liposomes. On the 
other hand, the d-optimal design works by assembling 
information matrices for all points then deducing their 
determinants. The points procuring the highest determi-
nants are encompassed in the model [14].

Despite differences, both are concurrently consid-
ered smart designs. These types of designs depend on 
exploiting rich-information points to establish their 
models. Rich-information points consist of a lower num-
ber of points which conceal the space of the experiment 
effectively.

In the current study, the use of smart response surface 
designs such as the d-optimal and the central compos-
ite was proposed instead of the full factorial in order to 
optimize pharmaceutical dosage forms aiming for the 
reduction of number of experiments and therefore sav-
ing resources, time and effort. Moreover, the two inves-
tigated smart designs were compared regarding the 
r-squared, adjusted r-squared, predicted r-squared, ade-
quate precision and through different diagnostics tests 
and finally comparing them regarding the percentage rel-
ative error. The design with the lowest relative error was 
recommended.

To our knowledge, this is the first study that compares 
these two smart experimental designs in the optimiza-
tion of pharmaceutical dosage forms. This concept can be 
projected to the other more sophisticated pharmaceuti-
cal processes such as extraction or analysis methods [15, 
16] and to optimize advanced drugs carriers and delivery 
systems such as the lipidic, polymeric and inorganic nan-
oparticles [17–19] and regarding their different processes 
of preparation and characterization [20–23].

Methodology
Software
The models and plots for the d-optimal and central com-
posite designs that were provided in this paper were pro-
duced using Design Expert v.7.0. software (Design-Expert 
software, Stat-Ease Inc., MN).

The investigated work
For the purpose of comparing the d-optimal and central 
composite designs, a paper was selected as a basis for 
application of both designs [24]. Subsequently, compar-
ing and contrasting the two models was conducted. The 
chosen paper was entitled “Design expert supported 
mathematical optimization of repaglinide gastroreten-
tive floating tablets: in vitro and in vivo evaluation” [24]. 
Repaglinide is an oral agent that falls under the megli-
tinide class, serving as an anti-hyperglycemic medica-
tion. It necessitates regular administration prior to meals 
due to its brief half-life, which lasts only one hour. Con-
sequently, the medication can result in adverse effects, 
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including discomfort in skeletal muscles, headaches, and 
gastrointestinal disturbances [25]. The investigation pre-
sented in the selected paper aimed to prolong the absorb-
ance of Repaglinide tablets by optimizing the critical 
quality attributes (CQAs) entailing the floating lag time 
response. This was accomplished using a three-factor 
three-level full factorial design (usually called 33 full 
factorial design). Three different components concen-
trations were altered: Okra gum (OG), HPMC (hydroxy-
propyl methylcellulose) K15M and xanthan gum. In QbD, 
the factors contributing in the CQAs are the CPPs (criti-
cal process parameters) and the material and formulation 
parameters.

Other than the factors included in the investigated 
study, some factors also representing CPPs of the pre-
pared tableting process included subjecting the granules 
to adjusted conditions of a temperature range of 55–60 °C 
for approximately 120 min, while ensuring that the mois-
ture content remained within the range of 3–5%. The 
powder was administered through an 80-mesh (0.177 mm 
pore size) after initial mixing. A 30-mesh (0.595 mm pore 
size) was used after adding a portion of the granulating 
medium. A 30-mesh (0.595 mm pore size) was used once 
more to sift the granules following drying. Furthermore, 
the compression force was adjusted to maintain the hard-
ness of the tablets within 5 to 8 kg/cm2.

The material and formulation parameters comprised 
other numerous crucial excipients satisfying various con-
centrations, including 2  mg of repaglinide, 10% sodium 
bicarbonate, 5% citric acid, 7% ethyl cellulose, 2% magne-
sium stearate, 1% talc in addition to lactose with a quan-
tity sufficient to produce a 200-mg tablet. The granulation 
medium comprised 8% PVP K30 in 80% ethanol [24].

The use of central composite and d‑optimal designs 
to reoptimize the results
Both central composite and d-optimal designs were used 
to further optimize the generated gastroretentive tablets 
regarding the floating lag time response instead of the 
three-level three-factor full factorial design which origi-
nally consisted of 27 experimental runs.

A total of 20 points were used to produce the central 
composite design model; six of the design points were 
center points.

On the other hand, a total of 25 points were used to 
build the d-optimal design model. The 25 points com-
prised 10 model points, 5 replicate points, 5 points to 
estimate lack of fit and 5 additional center points. The 
“Model use” was adjusted to point exchange prior to 
execution.

Table 1 demonstrates the used factors (the investigated 
material and formulation parameters) accompanied with 
their tested ranges.

Induction of an outlier
The results of the new embraced design points were 
produced from the equation that was generated in the 
extensively examined paper [24]. An outlier central point 
result was introduced for all the central points of both of 
the newly adopted designs. Accordingly, the floating lag 
time for coded points corresponding to (0, 0, 0) for OG, 
HPMC K15M and xanthan gum, respectively, was altered 
to a value of 90 s instead of 45.

Analysis of results
It is necessary to document the process by which the 
models were generated which were both quadratic. 
To empirically ascertain the significance of the model, 
ANOVA analysis was performed. This statistical test per-
mits the assessment of differences underlying groups and 
provides valuable insights into the overall effectiveness 
and sturdiness of the model. Moreover, in order to affirm 
the reliability and accuracy of the results, an assortment 
of values was computed including; R-squared, adjusted 
R-squared and predicted R-squared. R-squared value 
reflects the fitting of the model, adjusted R-squared 
reflects the model’s R-squared value after insignificant 
terms are excluded and the predicted R-squared rep-
resents the model’s accuracy at predicting the floating 
lag time [1]. Additionally, the adequate precision of the 
model was also determined. This measure provides a 
quantitative assessment regarding the signal to noise 
ratio [26]. Moreover, to further appraise the validity and 
precision of the model and identify any potential flaws 
or inefficiencies that could be ameliorated, a series of 
diagnostic tests were conducted. These tests includ-
ing Box–Cox, residual versus run and predicted versus 
actual provide a valuable insight regarding the valid-
ity of the model and notifies for any necessary adjust-
ments or modifications [27]. Finally, in order to visually 
portray the model and facilitate a deeper understand-
ing of its underlying relationships, contour and 3D sur-
face plots were obtained. These plots provide a graphical 
representation of how the change in the compositions of 
(OG, xanthan gum and HPMCK15) contributes to the 

Table 1 The investigated factors associated with their used 
ranges

Factors Ranges of values (%)

High (+ 1) Medium (0) Low (− 1)

Concentrations of OG 35 22.5 10

HPMC K15M 15 7.5 0

Xanthan gum 10 0 0
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response and highlights how the variation in these vari-
ables are reflected upon the outcome of the CQA (float-
ing lag time). Furthermore, contour and 3D surface plots 
clarify the observation of the optimum quadrants of the 
model and allow for a more intuitive interpretation of the 
findings. Overall, the process of generating the model, 
determining its significance, calculating the different val-
ues and adequate precision, performing diagnostic tests, 
and obtaining contour and 3D surface plots were essen-
tial elements for ensuring the validity and consistency of 
the findings presented in this study.

Calculation of the percentage relative error (% relative 
error)
The percentage relative error was calculated by utilizing 
the following equation [24]:

Results
Tables 2 and 3 demonstrate the different runs (points) 
generated as rich-information points of the central 
composite and the d-optimal designs, respectively, 
accompanied with the results of these runs as calcu-
lated from the generated equation of the used work of 
Naveen et  al. [24] utilizing a three-level full factorial 

Relative error(%) =
Predicted value− Actual value

Predicted value
× 100.

design to optimize the floating lag time of repaglinide 
floating tablets.

Table  4 illustrates the significance of both models 
(P < 0.001) [28]. The type of the two generated models 
corresponding to the two adopted designs was a quad-
ratic function. Furthermore, the R-squared, adjusted 
R-squared and predicted R-squared differences were 
within 0.2 increments for both models and all of them 
scored values above 0.7 implying acceptable and reli-
able models. For the central composite model, the 
discrepancy between the R-squared and predicted 
R-squared was 0.0056 which is a minimal value, while 
for the d-optimal model, the discrepancy was higher 
(0.1289). The adequate precision exceeded a value of 4 
as counseled for both models (adequate precision for 
d-optimal was 14.161 and for the central composite was 
122.830). Furthermore, the parameter “lack of fit” was 
favorably insignificant in both models.

It is highly visible by observing Fig. 1 that the points 
present in the predicted versus actual plot of the cen-
tral composite model were closer to the 45-degree line 
(indicating the close values of the predicted results to 
the actual counterparts). Hence, the model floating 
lag time predictions were closer to the actual values. 
Also obviously, the predicted versus actual plot of the 
d-optimal model acquired values that seemed relatively 
distant from the 45-degree line; yet, they were still con-
sidered close.

Table 2 The central composite generated design points associated with their calculated results

Experiment number OG concentration HPMCK15M Xanthan gum Floating lag time

1 0 0 0 90

2 − 1 1 1 71.34

3 0 − 1.68 0 141.39

4 0 0 − 1.68 74.71

5 − 1 − 1 − 1 72.18

6 1 1 1 69.84

7 1 1 − 1 94.78

8 1 − 1 − 1 177

9 0 0 0 90

10 − 1 1 − 1 52.28

11 − 1.68 0 0 77.72

12 0 0 1.68 79.02

13 0 1.68 0 46.27

14 0 0 0 90

15 − 1 − 1 1 102.24

16 1 − 1 1 163.06

17 0 0 0 90

18 0 0 0 90

19 0 0 0 90

20 1.68 0 0 164.60
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Table 3 The d-optimal generated design points associated with their calculated results

Experiment number OG concentration HPMCK15M Xanthan gum Floating lag time

1 − 1 1 − 1 52.28

2 − 1 0 1 70.21

3 0 0 − 1 56.24

4 0 0 0 90

5 0 0 0 90

6 − 1 1 1 71.34

7 0 0 0 90

8 0 0 0 90

9 − 1 − 1 1 102.24

10 0 1 0 35.24

11 1 − 1 − 1 177

12 − 1 1 − 1 52.28

13 1 − 1 1 163.06

14 1 1 − 1 94.78

15 1 − 1 − 1 177

16 0 − 1 − 1 98.35

17 0 0 0 90

18 1 1 1 69.84

19 − 1 − 1 0 76.63

20 0 − 0.5 0.5 69.20

21 1 − 1 1 163.06

22 1 0 0 99.01

23 1 1 − 1 94.78

24 1 1 1 69.84

25 − 1 − 1 − 1 72.18

Table 4 The generated model analysis results

Design type Central composite D‑optimal

Significance Significant Significant

P < 0.0001 P < 0.0001

Model type Quadratic Quadratic

R-squared 0.9991 0.9210

Adjusted R-squared 0.9984 0.8736

Predicted R-squared 0.9935 0.7921

Adequate precision 122.830 14.161

Generated equation Floating Lag Time = −7828.09234

+ 1007.19857 * OG concentration

+ 880.39460 * HPMC K15M

+ 1364.29190 * Xanthan Gum

− 15.58000 * OG concentration * HPMC K15M

− 11.00000 * OG concentration * Xanthan Gum

− 2.75000 * HPMC K15M * Xanthan Gum

+ 4.43181 * OG concentration2

− 43.99831 * HPMC K15M2

− 125.72119 * Xanthan Gum2

Floating Lag Time = +76.99172

+ 26.21690 * OG concentration

− 27.47543 * HPMCK15M

+ 1.21784 * Xanthan Gum

− 16.51078 * OG concentration * HPMCK15M

− 10.24740 * OG concentration * Xanthan Gum

− 2.74859 * HPMCK15M * Xanthan Gum

+ 17.47349 * OG concentration2

+ 4.43398 * HPMCK15M2

− 1.65511 * Xanthan Gum2
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As inferred from Fig.  2, the points representing the 
different runs of the two investigated models were 
evenly scattered around the zero line of the Design-
Expert® generated plots of both designs and repre-
sents the models functions. Moreover, for the residual 
versus run point distribution of the central composite 
model, 40% of the points were situated above the zero 

line, approximately 30% were situated on the zero line, 
and 30% were situated under the zero line. On the other 
hand, for the residual versus run point distribution for 
the d-optimal model, 60% of the points were situated 
above the zero line, 8% of the points were approxi-
mately situated on the zero line, and 32% of the points 
were situated under the zero line.

Fig. 1 Predicted versus actual plots for a central composite and b d-optimal designs
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As obvious from Fig. 3, both models powers lied within 
the confidence interval ranges of the Box–Cox diagnostic 
and validating test generated from the utilized software 
while acquiring power correspondents of lambda = 1 [2].

Contour plots use varied gradients of colors to repre-
sent segments which occupy high and low floating lag 
time responses as depicted in Fig. 4.

3D surface plots are similar to contour plots in that 
they show areas where the response is at different 

Fig. 2 Residual versus run plots for a central composite and b d-optimal designs
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values but with a three-dimensional viewing facet. The 
peak response occurred at the red areas while the low-
est response occurred at the blue areas [29]. It is obvi-
ous from Fig. 5 that the peak floating lag time response 

was present at coded values of (1, 0, − 1) corresponding 
to OG, xanthan gum and HPMCK15 concentrations, 
respectively.

Fig. 3 Box–Cox plots for a central composite and b d-optimal designs
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The d-optimal design had a lower relative error com-
pared to the central composite design by a difference of 
0.7556% for the coded point: 0.66 OG concentration, 
HPMC K15M and 0.85 xanthan gum, in spite of inducing 
an outlier critical point (Table 5).

Discussion
Both of the discrepancy values between the adjusted 
r-squared and the predicted r-squared of the two inves-
tigated designs were considered low. Hence, the models 

Fig. 4 Contour plots for a central composite and b d-optimal designs at a constant xanthan gum (at its middle level, code = 0)
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were sufficient in predicting the results of un-carried 
experiments and to fully navigate the experimental space.

The values of adequate precision of both designs indi-
cated a very high signal to noise ratio. Therefore, the dif-
ferences in the acquired results for the floating lag time 
were a consequence of real signals and not due to random 

Fig. 5: 3D surface plots for a central composite and b d-optimal designs at a constant xanthan gum (at its middle level, code = 0)

Table 5 Percentage relative error obtained between the 
predicted and actual values for the coded point: 0.66 OG 
concentration, 1.00 HPMC K15M and 0.85 xanthan gum

Design Relative error (%)

Central composite 4.5699

d-optimal 3.8143
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outcomes and both models are considered successful in 
navigating the space of the investigated experiment [1].

The predicted versus actual plots mainly evaluate the 
accuracy of the model at making predictions regard-
ing actual experimental values through depicting how 
close the predicted values are to the actual ones [2]. This 
is implemented by using the 45-degree line as a refer-
ence. The closer the points are to this line, the higher the 
capability of the model at making accurate predictions. 
Despite the fact that the points in both predicted versus 
actual plots were relatively close to the 45-degree line, 
these results implied the high predictive ability of the two 
investigated designs-generated models.

Residual versus run plots usually identify the errors 
present in the model. The required ideal situation is that 
the total distances from the points above the zero line, 
which represents the model, are approximately equal 
to the total distances of the points under the same line 
so that the errors even out [30]. This was approximately 
obtained for both models. As a conclusion, the points 
in both models were moderately and favorably scattered 
around the zero line.

The Box–Cox test primarily aims to accommodate 
the model response (CQA) with the optimum numeri-
cal power. The response is raised to different powers and 
the power with the best fitting is recommended. Usually, 
the power which presents the optimum fitting lies in the 
area between the high and low confidence intervals. The 
confidence intervals are manifested by the red lines. If 
the value of the power (lambda) requires altering, then 
the recommended value should be applied through the 
transformation tab of the adopted software. Therefore, 
it was concluded that the power transformation was not 
required for both of the generated models.

The alteration of color gradients in the contour and the 
3D surface plots is correlated with the change of compo-
sitions of the factors contributing to the response [14].

The peak floating lag time response scored at coded 
values of (1, 0, − 1) corresponding to OG, xanthan gum 
and HPMCK15M concentrations, respectively, may be 
attributed to the higher swelling index of okra gum (260% 
[31]) as compared to the other constituents (xanthan 
gum and HPMCK15M which only reached a maximum 
of < 250% [32]) contributing to its significant positive 
effect on the floating lag time.

It could be interpreted from the current study fig-
ures and tables that both designs have been success-
fully leveraged to produce models with excellent 
qualities. Despite that the central composite scored bet-
ter R-squared, adjusted R-squared, predicted R-squared 
and adequate precision values, the d-optimal design 
was slightly more accurate at predicting the floating 
lag time response The high accuracy of both models 

generated from the two utilized smart surface response 
designs at predicting the floating lag time response is 
related to a statistical perspective where DoEs utilizing 
designs such as the central composite and the d-opti-
mal create response models by reducing the maximum 
variance of the predicted responses and minimizing 
the error in the estimated coefficients of the model. 
This approach offers benefits when employing dispro-
portionate shapes and incorporating additional design 
points [28]. Moreover, the superiority of the d-optimal 
design at predicting the response for experimental 
points which were not included as design points (as 
inferred from the calculated value of the percentage 
relative error) comes back to the statistical element of 
building the design through choosing rich-information 
points that originate from an information matrix pos-
sessing the highest determinant which allows handling 
of a larger experimental space [33]. Although the CCD 
resulted in excellent and slightly higher R-squared val-
ues, this may be ascribed to the problem of overfit-
ting that sometimes occur with experimental designs, 
wherein the model excessively coincides with and con-
forms to the existing data points. This phenomenon 
results in a perfect or ideal coinciding of the actual 
experimental design points with the generated model 
predictions. It usually happens with higher order func-
tions (above linear, quadratic, cubic, etc.) possessing 
high curvatures aiming to reduce residuals of the gen-
erated model results [34]. This was obviously noticed in 
the predicted versus actual figure corresponding to the 
CCD results (Fig.  1). It is worth-noting that the limi-
tation of this paper lied on the use of only one check 
point (experimental external validation point) in calcu-
lating the percentage relative error of the two investi-
gated statistical experimental designs. Nevertheless, 
that was a forced limitation because this point was 
solely conducted in the originally experimental paper 
that the current paper was based on.

Conclusion
The current study aimed to compare the central com-
posite and the d-optimal statistical experimental 
designs in optimizing the floating lag time response of 
repaglinide gastroretentive tablets.

The findings of this study showed that:

• Both smart designs extensively discussed in the 
paper have been successfully utilized to further 
optimize the tablets with a very high accuracy simi-
lar to a previous optimization implemented using a 
three-level full factorial design despite the induc-
tion of an outlier point representing the central 
critical point of both designs.



Page 12 of 13Elsayed and Hathout  Future Journal of Pharmaceutical Sciences           (2024) 10:34 

• After computing the percentage relative error, it was 
concluded that the d-optimal design is more robust 
in predicting the accurate result values of actual 
experiments of points not included in the designs 
built.

• The adopted work drew the attention to the problem 
of overfitting which may lead to decrease the predic-
tivity power of the statistical experimental designs.

Based on the aforementioned conclusions, integrating 
both smart surface response designs and more specifi-
cally the d-optimal design into the routine of experimental 
activities, companies can excel the effectiveness of testing 
in addition to reducing expenses by considerable margins. 
The use of the investigated smart statistical experimental 
designs accompanied with its assessment can be projected 
to any dosage form design and conventional or advanced 
drug delivery systems aiming of reducing the number 
of runs and experiments conducted and hence saving 
resources, efforts and time.

One important contribution of this paper is that it pro-
vides a guide or an assist to companies and especially phar-
maceutical entities when choosing the smart design, they 
seek to adopt.

Moreover, another contribution of this paper toward the 
pharmaceutical industry is that it could guide users on how 
to calibrate design expert software efficiently to produce 
the d-optimal and central composite designs and their gen-
erated models. Future studies should compare the d-opti-
mal design with other smart counterparts.
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