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Abstract 

Background Obesity is a precursor for many co-morbid diseases. One of the main triggering factors for obesity 
is the abnormal expansion of white adipose tissue characterized by high rates of genesis and differentiation of pre-
cursor cells into mature adipocytes. As a result, targeting adipogenesis and adipogenic transcription factors opens 
new roadmaps for developing novel antiobesity pharmacotherapies. The present study was intended to rationally 
develop topiramate–phenolic acid conjugate for targeting obesity via inhibition of PPARγ which is often considered 
as the master regulator of adipogenesis.

Results 2D QSAR models were built to foretell PPARγ inhibitory activity of designed conjugates. The models pre-
sented excellent robustness, goodness of fit, and predictive capability compounds. The highest PPARγ inhibitory 
activity was predicted for T3 (topiramate–caffeic acid conjugate) with a  pIC50 value of 7.08 µM. Molecular docking 
was performed for all the designed conjugates against PPARγ (PDB ID: 3VSO). The highest binding affinity was exhib-
ited by T3 (− 11.27 kcal/mol) and displayed strong and stable interactions with the receptor within the allosteric 
pocket in comparison to the irreversible PPARγ antagonist, GW9662 (binding affinity, − 9.0 kcal/mol). These results 
were confirmed by subjecting the best-docked molecules to molecular dynamic simulations. The PPARγ–T3 complex 
was observed to be most stable with maximum number of hydrogen bonds (maximum observed RMSD = 0.57 Å 
at 100 ns) in comparison to PPARγ–topiramate and PPARγ–caffeic acid complexes. Consequently, T3 was synthesized 
and further subjected to in vitro screening. The TR-FRET assay established T3 as a PPARγ antagonist  (IC50 = 6.78 µM). 
T3 also significantly reduced the lipid buildup in the 3T3-L1 adipocytes in a dose-dependent manner. In addition, T3 
also reduced the protein expression levels of PPARγ as evidenced from western blot results.

Conclusions Studies clearly indicated that T3 reduces adipose tissue cell differentiation by downstreaming PPARγ 
expression at protein levels, thereby emerging as a novel scaffold for antiobesity pharmacotherapy.
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Graphical abstract

Background
The last decade has laid down a crystal-clear picture 
of obesity as an ever-increasing global pandemic [1]. 
Obesity is often associated with co-morbidities encir-
cling type II diabetes, cardiovascular disorders, hyper-
tension, liver dysfunctions, dyslipidemia, obstructive 
sleep apnea, polycystic ovarian disease, and many can-
cers. As a master precursor of almost all major chronic 
metabolic disorders, obesity substantially shoots up 
the socio-economic burden worldwide by rocketing 
high healthcare costs [2–7]. Consequently, numerous 
pharmacotherapeutic agents are developed for the mit-
igation or cure of obesity by targeting an array of physi-
ological targets, such as pancreatic lipase, 5-hydroxy 
tryptaminergic receptor 2C, β3 adrenergic receptor, 
GLP-1 (glucagon-like peptide 1), and many other gut 
peptides [8] Presently, orlistat, lorcaserin, phenter-
mine/topiramate, bupropion/naltrexone, and liraglutide 
are approved by FDA (Food and Drug Administration) 
for obesity pharmacotherapy [9].  Nonetheless, orlistat 
and lorcaserin have been permitted for longer duration 
therapy [10, 11]. Incidentally, potential and novel drugs 
without undesirable physiological adverse actions are 
the utmost need of the hour for countering obesity.

Topiramate (TPM) is an inhibitor of carbonic anhy-
drases and glutamate, while acts as an agonist for 
GABA (ℽ-aminobutyric acid). It is used for therapy of 
epilepsy and migraine [12]. Epilepsy patients on TPM 
medication showed significant weight loss which led to 
clinical investigation of the drug for having antiobes-
ity effects. In vivo studies have explored thermogenesis 
boosting and neuro-stabilizing repertoire of TPM [13, 
14]. Several studies also discovered that TPM ampli-
fied the phosphorylation of crucial lipolytic enzymes, 
thereby inducing lipolysis in 3T3-L1 preadipocytes. 
It further suggested TPM might directly inhibit adi-
pogenesis by targeting white adipocytes bypassing its 
CNS (central nervous system) effect [15].

Phenolic acids are abundantly available from natural 
sources and are categorized as hydroxy-cinnamic acid 
derivatives such as caffeic acid (CF), ferulic acid, para-
coumaric acid, or hydroxy-benzoic acid derivatives such 
as gallic acid, chlorogenic acid, protocatechuic acid, 
or vanillic acid. The phenolic acids basically modulate 
the gut microbiota in exerting their antiobesity effects 
[16]. Inhibition of white adipose tissue differentiation, 
fat browning, pancreatic lipase, and pancreatic amyl-
ase inhibition, suppression of inflammatory cytokine 
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expression, and downregulation of obesity-inducing 
genes are other pharmacological actions of phenolic 
acids [17].

The PPARs (peroxisome proliferator-activated recep-
tors) have emerged as promising therapeutic targets 
among all nuclear receptors for developing novel phar-
macotherapeutic candidates against insulin resistance, 
cancers, obesity, dyslipidemia, and cardiovascular dis-
orders [18]. PPARγ are primarily distributed in adipose 
tissues and are considered master regulators of adipo-
genesis [19, 20]. Preferential recruitment of co-repressor 
molecules over co-activators by PPARγ antagonists as 
well as close crosstalk with NFκB (nuclear factor kappa 
B) and AP-1 (activation protein 1) downregulates PPARγ-
mediated gene transcription [21, 22]. The medicinal rep-
ertoire of PPARγ  antagonists spreads more wider than 
diabetic therapy in promoting osteoblast formation and 
depressing differentiation of adipose tissue [23]. As a 
result, PPARγ inhibitors can be  well thought out to be 
potential aspirants for osteoporosis and obesity ther-
apy [24]. Additionally, PPARγ  inhibitors embody broad 
anticancer activity as well [25]. For that reason, explor-
ing PPARγ  inhibitors is of prodigious importance in the 
quest for novel drug candidates for pharmacotherapy of 
PPARγ-associated metabolic disorders.

Drug-drug conjugates or often called as molecular 
hybrids comprise of two different pharmacophores inter-
connected directly or by a spacer (cleavable/non-cleava-
ble). The conjugates usually exert simultaneous action at 
specific targets with increased potency or efficacy. The 
high efficacy can be due to improved pharmacokinetic 
properties. For instance, atorvastatin–curcumin conju-
gate nanocrystals exhibited enhanced biopharmaceuti-
cal and anti-inflammatory properties in comparison to 
individual drugs [26]. Another striking example is mesa-
lamine–coumarin conjugate with diazo linker displayed 
an increased anti-inflammatory response by reducing 
acetic acid-induced ulcerative colitis in rat models [27]. 
Similarly, nanoparticle of camptothecin–floxuridine 
conjugate exhibited profound and synergistic anticancer 
activity with improved cytotoxicity, apoptosis, and inhi-
bition of malignant proliferation [28].

Our present work aims to design and synthesize novel 
TPAC (topiramate–phenolic acid conjugates). Through 
robust 2D-QSAR (two-dimensional quantitative struc-
ture–activity relationship) models, the biological activ-
ity of the designed conjugates was predicted. In silico 
molecular docking was done for gaining insights of the 
interaction nature of designed conjugates with the recep-
tor. The MD (molecular dynamic) simulation study 
revealed good dynamic behavior of PPARγ–T3 complex. 
Among all the three complexes, PPARγ–T3 had mini-
mum RMSD, RMSF, Rg, and potential energy indicating 

good attractive and stable interactions between protein 
and ligand molecules over the total MD simulation time. 
Lantha Screen TR-FRET assay was performed to evaluate 
the PPARγ inhibition potency of the designed conjugates. 
The antiobesity effects of the T3 (topiramate–caffeic acid 
conjugate) were demonstrated via differentiation inhibi-
tion and lipid accumulation in the 3T3-L1 preadipocytes.

Methods
Computational study
QSAR studies
Dataset preparation In the current study, an experi-
mental dataset of 100 compounds was retrieved from the 
Binding dB database [29]. The biological activities of the 
compounds were expressed in terms of  IC50 (nM, half 
maximal inhibitory concentration) and were converted 
to their corresponding  pIC50 values (negative logarithm 
of  IC50 values). For building the 2D-QSAR model,  pIC50 
was considered as the dependent variable. The raw data-
set compounds and their corresponding  IC50 values are 
provided in supplementary files for reference (Additional 
file 1: Table S1).

Descriptors computation Before the computation of the 
molecular descriptors, geometry optimization was car-
ried out for each dataset molecule employing molecular 
mechanics force field and semi-empirical AMI methods 
using SPARTAN 10.0 software tools. The energy-min-
imized structures were further used to generate molec-
ular descriptors using two software tools PaDEL and 
CORAL. PaDEL version 2.21 [30] was used to generate 
about 1444 2D molecular descriptors. More than 50% of 
descriptors with zero, missing, and constant values were 
excluded. Also using pairwise correlation, the descriptors 
were filtered. The CORAL (http:// www. insil ico. eu/ coral) 
software generated single optimal descriptor (DCW) 
[31] basing on SMILES (simplified molecular input line 
system) [32, 33]. The descriptor is calculated using the 
Index of ideality of correlation (IIC) formalism which was 
carried out for the Monte Carlo optimization taking the 
IIC weight = 0.2000. The details of the calculation of the 
DCW by IIC are described elsewhere [34, 35]. The PCA 
(principal component analysis) was applied to determine 
the best descriptor (variables) combination. The dataset 
molecules were sorted according to PC1 scores. As a final 
point, 20 molecular descriptors were utilized for deriving 
models from the whole data set. The computed molecular 
descriptors for the 100 dataset compounds are provided 
in supplementary files for reference (Additional file  1: 
Table S2).

QSAR modeling The 100 molecules of dataset were split 
into training set (87 molecules) and validation set (13 mol-

http://www.insilico.eu/coral
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ecules). GA (genetic algorithm) and MLR (multiple linear 
regression) techniques were employed for building robust 
QSAR models using QSARINS software [36]. 2D-QSAR 
models were built using combinations of selected 20 
descriptors, including the one optimal descriptor DCW.

QSAR model validation All the developed models were 
validated according to OECD (Organization for Eco-
nomic Cooperation and Development) principles using 
the QSARINS software package. The validation aimed 
at ensuring that the built models have definite endpoints 
represented using unambiguous algorithms, have domain 
of applicability, and have appropriate measures for pre-
dictability, goodness of fit, and robustness. Leverage val-
ues below critical leverage with ± 3 standard deviations 
were considered to ensure good predictive capability of 
designed QSAR models. The compounds remaining out-
side these leverage values were treated as outliers. Wil-
liams’s plots were employed to describe QSAR model 
applicability domain. To minimize the discrepancies 
between experimental and predicted values of the end-
point, goodness of fit was computed employing R2 (coef-
ficient of determination) and R2adj (coefficient of deter-
mination adjusted for degrees of freedom). Internal 
validation methods like LOO (leave one out) and LMO 
(leave many out) were used to verify and measure the 
strength of models generated. To ascertain the predictive 
capability of the designed models, various external vali-
dation parameters were analyzed and computed such as 
RMSE ext, Q2–F1, Q2–F2, Q2–F3, R2 m, R2 m delta, CCC, 
MAE ext and PRESS ext. Finally, Y-scrambling method 
confirmed that built models are not outcomes of chance 
correlation.

Prediction of IC50 values of novel topiramate–phenolic acid 
conjugates Ten novel TPAC (T1-T10) were designed 
using Chemdraw Ultra 12.0 software. Geometry optimi-
zation was done for each designed molecule employing 
molecular mechanics force field and semi-empirical AMI 
methods using SPARTAN 10.0 software tools (http:// 
www. wavef un. com/ produ cts/ spart an. html). Further 2D 
molecular descriptors for the newly designed conjugates 
were computed using PaDEL software. The single opti-
mal descriptor was also calculated for the designed com-
pounds using CORAL software. The leverage values of all 
the designed compounds were calculated and compared 
with the threshold leverage value h* (0.138). Using the 
best generated QSAR equation, the  pIC50 values of the 
designed molecules were predicted.

Molecular docking
Among the designed conjugates, highest PPARγ inhibi-
tory activity was predicted for the topiramate–caffeic 

acid conjugate (T3). Accordingly, T3 was selected for 
molecular docking and molecular dynamic simulation 
analysis.

Ligand preparation The structure of CF, TPM, and T3 
conjugate was drawn in Chemdraw Ultra 12.0 software 
and stored in standard format (SDF). All the ligands were 
subjected to energy minimization UCSF Chimera 1.16 
[37] prior to docking.

Protein preparation 3-D crystal structure of PPARƴ 
(PDB ID: 3VSO) was retrieved from the RCSB protein 
bank using Energy minimization and geometry optimiza-
tion was performed using UCSF Chimera 1.16 by adding 
hydrogen atoms and charges to the receptor. Finally, the 
protein was saved in pdbqt format for docking.

Docking AutoDock Vina [38] was used for docking of 
the ligands with the selected protein. After energy mini-
mizing, a grid box resolution with three dimension co-
ordinates 17.762, 71.66, and 13.333 was set. Grid box 
with 60 × 60 × 60 Å point spacing of 0.375 Å was used to 
reformate structure files into pdbqt format.  The flexible 
ligand docking studies were performed using Lamarckian 
genetic algorithm.

Molecular dynamic simulation
To compare the interaction of individual pharmacoph-
oric ligands CF and TPM with conjugate ligand T3, all 
the protein–ligand complexes (PPARγ-CF, PPARγ-TPM, 
and PPARγ-T3) were directed for 100 ns MD (molecular 
dynamic) simulation using Gromacs 4.5.6 [39]. For gen-
erating the topology of a protein–ligand complex system, 
initially, protein and ligand were separated as a single 
entity, followed by the generation of individual topology 
or protein and ligand and finally merging back to com-
plex form. With the help of CHARMM-36 parameters, 
here we created the topology for proteins (X, Y, Z coor-
dinate system) using TIP 3P water model, and for each 
ligand we have used Swiss-Param online server to gener-
ate the topology. The protein.gro and ligand.gro files were 
manually fit, and complex.gro was generated for each of 
the three complexes. Further, the complex file is solvated 
using SPC216 water model in dodecahedron form with 
system size as follows: PPARγ-CF complex = X: 5.099, 
Y: 6.095, and Z: 5.654 (nm). PPARγ-TPM complex = X: 
5.099, Y: 6.095, and Z: 5654 (nm). PPARγ-T3 com-
plex = X: 5.099, Y: 6.095 and Z: 5654 (nm). Solvent mol-
ecules and sodium ions were added for neutralization of 
the system.

Further energy of neutralized system was minimized 
by employing steepest descent minimization method for 
50,000 steps. The stability of the complex post energy 

http://www.wavefun.com/products/spartan.html
http://www.wavefun.com/products/spartan.html
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minimization is carried out by assessment of potential 
energy, bond energy, proper dihedral, and improper dihe-
dral. Going beyond the energy minimization, .itp file of 
restrained ligand position was generated and incorpo-
rated into complex topology file using leap-frog integra-
tor algorithm. MD simulation was run for 50,000,000 
steps. The system was restrained on covalent bond by 
employing LINCS algorithm [40]. Following 100 ns MD 
simulation, the RMSD (root mean square deviation), 
RMSF (root mean square fluctuation), Rg (radius of gyra-
tion), H-bond, and SASA (solvent accessible surface area) 
were calculated. The graphs were created by XM Grace 
Linux application, while the two-dimensional interac-
tions were studied in BIOVIA Discovery studio visualizer.

Chemistry
General
3T3-L1 preadipocytes were obtained from NCCS 
(National Centre for Cell Science), Pune, India. DMEM 
(Dulbecco’s Modified Eagle’s Medium), BCS (bovine calf 
serum), antibiotic solutions, and antibodies for enzyme 
assay as well as western blot were purchased from 
Thermo Fisher Scientific, (Waltham, MA, USA). Topira-
mate was procured from Yucca Chem Products, Mum-
bai. Other reagents/chemicals (high purity) used were 
purchased from Sigma-Aldrich (St Louis, USA) and used 
as received.

Synthesis of topiramate–caffeic acid conjugate, T3
T3 (topiramate–caffeic acid conjugate) was synthesized 
using DCC-DMAP coupling [41–43]. CF (2), 1 equivalent 
and DCC (N,N’-dicyclohexyl carbodimide, 1.1 equiv), 
and DMAP (4-dimethylaminopyridine, catalytic amount, 
10  mol%) were added with 20  ml of DMF (dimethyl-
formamide) with continuous stirring for 60  min. After 
60 min of stirring, TPM (1), 2 equivalents in excess DMF 
was added to the above reaction mixture and allowed to 
stir at room temperature for 48 h (Scheme 1).

The reaction was monitored by TLC (aluminum sheets 
with Silica-Gel 60 F254 (Merck) employing ethyl acetate/
pet ether (7:3) as mobile phase till completion. Following 
reaction completion, crude reaction mixture was water 
washed (10 ml) and filtered to remove dicyclohexyl urea 

(by-product). The filtrate was transferred to a separating 
funnel and extracted with ethyl acetate (20 ml × 3 times). 
The organic fraction was further collected and dried 
over anhydrous  Na2SO4,  and the solvent was removed 
under reduced pressure. The residue was recrystallized 
from ethyl acetate. Melting point was determined by 
open capillary tubes in a melting point apparatus and 
presented uncorrected. Spectral characterization was 
further performed (IR using JASCO FTIR-4100 series; 
1HNMR and 13CNMR using Bruker 400  MHz NMR 
spectrophotometer).

Biological screening
In vitro enzyme inhibition assay
PPARγ inhibition was studied using TR-FRET co-activa-
tor assay [43]. Concisely, the human recombinant PPARγ‐
LBD (GST tagged, 1  nmol/L) was incubated with a 
Europium-labeled anti-GST antibody (2 nmol/L), testing 
samples, and DMSO (control). Following incubation, SRC 
(steroid receptor co-activator, XL665 labeled streptavidin) 
was added. The SRC co-activator peptide (20 nmol/L) was 
prepared in Tris–HCl (pH 7.4) The fluorescent signals 
were measured by microplate reader (BMG Labtech, Ger-
many) at an excitation wavelength of 337  nm and emis-
sion wavelengths of 620 and 665 nm. The emission ratio 
was computed using the equation given below:

Agonist mode Fluorescent signals generated from 
rosiglitazone (positive control, 10  μmol/L) were consid-
ered 100% activation control. 1% DMSO was considered 
as blank/0% activation control. The activation percentage 
was computed by the below mentioned formula.

where ER 1 is the emission ratio of the sample, ER2 is the 
emission ratio of the blank, and ER3 is the emission ratio 
of 100% activation control (10 μmol/L rosiglitazone).

Emission ration (ER) = fluorescein emission at 665

/fluorescein emission at 620 nm

%Activation (Agonistmode) ={ER 1− ER 2/ER 3− ER 2}∗

100%

Scheme 1 DCC-DMAP mediated coupling of caffeic acid and topiramate. Reagents and conditions: a DMAP b DCC c DMF



Page 6 of 22Padhy et al. Future Journal of Pharmaceutical Sciences           (2024) 10:44 

Antagonist mode To the human recombinant PPARγ 
and co-activator peptide previously incubated with test 
samples, 1  µM rosiglitazone was incorporated as  EC80 
control. The percentage inhibition of T3 was computed 
using the below mentioned formula. GW9662, irrevers-
ible PPARγ antagonist, was used as positive control.

where ER 1 is the emission ratio of sample, ER 2 is the 
emission ratio of blank, and ER 3 is the emission ratio of 
 EC80 (1 μmol/L rosiglitazone).

Inhibition of adipogenesis in 3T3‑l1 preadipocytes
Cell culture, differentiation, and maturation The pread-
ipocytes were sub-cultured in DMEM complemented 
with 10% (v/v) BCS 1% penicillin–streptomycin antibiotic 
mixture antibiotic in an atmosphere of 5%  CO2 at 37 °C. 
After 70–80% cell confluency, harvesting was done using 
25 mm tissue culture flask containing trypsin and seeding 
in 96 well plate. After 100% confluency of cells, differen-
tiation was performed by adding insulin (1 μg/mL), isobu-
tyl-1-methylxanthine (0.5  mM/L), and dexamethasone 
(0.25 μM/L). Post confluency, by careful pipetting the dif-
ferentiation media was discarded and maturation media 
(insulin, 1 mg/L) was added and changed every 2 days. The 
control group remain untreated. The test groups received 
1, 5, and 10 μM of T3, respectively. The positive control 
group was treated with 10 μM of GW9662. Post 10 days, 
lipid droplets were clearly visible inside the differentiated 
cells and hence subjected to further assays [44].

MTT assay Cytotoxic effect of T3 on adipocyte pre-
cursor cells was investigated through MTT assay [44]. 
The 3T3-L1 preadipocytes were seeded in 96-well plate 
(3 × 104  cells per well) and cultured in DMEM contain-
ing 10% BCS for 24 h. After 24 h the cells were treated 
with 0.001, 0.01, 0.1, 1, and 10 µg/mL of T3, respectively, 
and kept for next 72 h. Post 72 h, MTT (3-(4,5-dimethyl-
thiazol-2-yl)-2,5-diphenyltetrazolium bromide) solution 
(20 µL, 5 mg   mL−1) was added to each well and further 
incubated for 4 h at 37 °C. The dark blue formazan prod-
uct formed by the cells was carefully dissolved in DMSO 
within a dark cabinet, and absorbance was measured at 
495 nm in a microplate reader (Bio-Rad Lab, California).

Oil Red O staining To observe lipid droplets within dif-
ferentiated adipocytes, the Oil O Red stain method was 
employed. The differentiated cells were initially washed 
with PBS and then fixed with 4% formaldehyde for 
30 min. Further, the cells were stained with freshly pre-
pared (in 60% isopropyl alcohol) Oil O Red solution for 

% Inhibition (Antagonistmode) ={ER 1− ER 2/ER 4 − ER 2}∗

100%

10  min at room temperature. After 10  min the stained 
cells were rinsed with isopropyl alcohol for extraction of 
accumulated lipids and their quantification (absorbance 
measured at 495  nm) in terms of percentage relative to 
the control. The untreated cells were taken as control. The 
cells stained were observed under a phase contrast micro-
scope (Axiovert 40 CFL, Carl Zeiss, Jena, Germany) and 
photographed [44]

Western blot In brief, the cells were rinsed with PBS, 
lysed using Laemmli buffer (comprising of 62.5  mM 
Tris–HCl, 10% glycerol, and 2% SDS) and sonicated. 
10  µg of protein was separated by gel electrophore-
sis (10% SDS-PAGE), transferred on to nitrocellulose 
membrane, and blocked using 5% PBS-T milk (45 min). 
Anti PPARγ and β-actin antibodies were added to 1% 
BSA in PBS-T milk and incubated with membrane pre-
viously blocked containing protein lysates at room tem-
perature for 1  h. Following incubation, the membrane 
was washed with PBS-T milk and treated with second-
ary antibody (HRP-conjugated) following incubation 
for next 30  min. Then the membranes were washed 
with PBS-T milk twice for 10 min in room temperature. 
Chemiluminescence was detected using the ChemiDoc 
Touch imaging system (Bio-Rad) [45]. β-actin was used 
as internal control.

Statistical analysis
All the experiments were performed in triplicate. The 
data from each independent experiment are expressed 
as mean ± standard deviation. The presented data were 
statistically analyzed employing one-way ANOVA with 
t-test for defining differences. Values of  (*p < 0.05 and 
**p < 0.01) were considered statistically significant.

Result
Computational studies
Variable selection by PCA
Data redundancy was reduced employing PCA (princi-
ple component analysis). The eigen values were sorted 
in descending order. PC1 describes greatest data vari-
ance, while PC2 described data variance in an orthogonal 
direction to PC1. Principal component analysis (PCA) for 
the descriptors VE3_Dzp, nHBint6, and DCW was dem-
onstrated by loading and scoring plots. Figure  1A dis-
plays the scoring plot for dataset compounds. Likewise, 
Fig.  1B displays the loading plot for M-1 descriptors. 
PCA score plot describes the type of co-relation between 
dataset components. The loading plot on the other hand 
describes the influential power of descriptors on dataset 
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components. As evident from the score plot (Fig.  1A), 
very few dataset compounds were observed as outliers. 
The descriptor having maximum influence was observed 
to be nHBint6 followed by VE3_Dzp and DCW (Fig. 1B).

QSAR modeling and validation
Amazingly, a significant improvement (Fig.  2) in the 
values of R2 and Q2 for the training set was observed by 
including DCW. On that note, different 2D-QSAR mod-
els were built by including the single optimal descrip-
tor. Models with best R2 values for validation set were 
preferred for activity prediction. The QSAR equations 
of one-, two-, and three-descriptor models for best 
one-, two-, and three-descriptor models are reported in 
Table  1. The validated internal and external parameters 
for the best three models are represented in Tables 2 and 
3, respectively. Table  4 represents statistical parameters 
for models M-1, M-2, and M-3.

All the models have higher R2m values (˃ 0.5) and lower 
R2m delta values (< 0.2) indicating stability and robust-
ness. The values of the LOF and Friedman lack of fit 
(0.0001) [46] and s (0.007 to 0.0087) are very low which 
ensures that no over fitting is there in the models. Lower 
values for delta K and Kxx for model M-1 show good co-
relation between descriptors and predicted responses 
with limited errors in computation [47, 48]. High R2 adj 
values suggest convenient addition of a new descriptor to 
the model.

Model ID-1 with highest R2 (coefficient of deter-
mination) has been evaluated as the best model sat-
isfying the goodness-of-fit criteria and internal 
validation parameters. The scatter plot (Fig.  3A, B) 

Fig. 1 PCA for QSAR model M-1; A Score plot for the M-1 descriptors; B Loading plot for the M-1 descriptors

Fig. 2 Impact of inclusion of DCW on R2 and Q2 for M-1 training set
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clearly indicates a linearity in relationship among 
experimental and predicted values. The correlation 
between descriptors (x) and activity (y) were plotted 
with Kxy versus Q2 LMO of the final model (model 
1) (Fig. 4) displaying LMO parameter values are close 
enough to model parameters. It clearly states that the 
model is robust and stable. Y-scrambling tested the 
external validation parameters (Fig.  5). As the values 

of R2Yscr and Q2Yscr are very small, the models are 
believed to be good models and not the outcome of 
casual correlations.

Figure  6A, B shows the William’s plots deciphering 
applicability domain of generated model (M-1).

Lower leverage values than threshold (h* of 0.135) indi-
cated that the training and test set molecules remained 
in the applicability domain of selected model as evident 
from the William’s plot with 6 outliers only. Noticeably 
graph of insurbia (Fig.  7) resembled William’s plot with 
same six outliers. This suggested that the selected model 
was best in terms of predicting experimental response. 
Additional file 1: Table S3 gives a comparative display of 
experimental and predicted  IC50 values for the dataset 
compounds.

It clearly indicates that the descriptors (VE3_Dzp, 
nHBint6, and DCW) used to generate the best predic-
tive model equation are not overfitting with the lowest 
LOF (0.0001) and high predictivity (Q2LOO = 0.9894). It 
was also observed that the performance of model 3 build 
using a single optimal descriptor DCW was also impres-
sive when compared with model 1. The performance 
of the models was evaluated by plotting the values of 
Q2LOO and LOF (Fig. 8).

Table 1 Best 2D-QSAR models for PPARϒ receptor inhibitors

Model ID Descriptor combination QSAR equation

1 VE3_Dzp, nHBint6, DCW pIC50 = 0.0063 * nHBint6 − 0.0009 * VE3_
Dzp − 0.0084 * DCW + 7.7233

11 GATS5v, DCW pIC50 = 0.0460 * GATS5v − 0.0086 * DCW + 7.6900

21 DCW pIC50 = − 0.0087 * DCW + 7.7442

Table 2 Parameters for internal validation of best three models

Model ID Q2 LOO R2–Q2 LOO RMSE cv MAE cv PRESS cv CCC cv Q2 LMO R2Yscr Q2Yscr RMSE AV Yscr

1 0.9894 0.0018 0.0081 0.0060 0.0057 0.9947 0.9886 0.0355 − 0.0683 0.0771

11 0.9881 0.0014 0.0086 0.0064 0.0064 0.9940 0.9878 0.0231 − 0.0483 0.0776

21 0.9868 0.0012 0.0090 0.0069 0.0071 0.9933 0.9865 0.0111 − 0.0361 0.0781

Table 3 Parameters of external validation for the best three models

Model ID RMSE ext: MAE ext PRESS ext R2ext Q2-F1 Q2-F2 Q2-F3 CCC ext R2m avg R2m delta

1 0.0053 0.0048 0.0004 0.9950 0.9927 0.9927 0.9955 0.9965 0.9500 0.0070

11 0.0051 0.0046 0.0003 0.9951 0.9932 0.9932 0.9958 0.9967 0.9593 0.0062

21 0.0063 0.0058 0.0005 0.9951 0.9894 0.9893 0.9935 0.9950 0.9307 0.0090

Table 4 Training set statistical parameters for best three models

Fitting criteria Model1 Model 11 Model 21

R2 0.9912 0.9895 0.9879

R2adj 0.9909 0.9893 0.9878

R2–R2adj 0.0003 0.0002 0.0001

LOF 0.0001 0.0001 0.0001

Kxx 0.2541 0.3521 0.0000

Delta K 0.2064 0.2570 0.9940

RMSE tr 0.0074 0.0080 0.0086

MAE tr 0.0056 0.0061 0.0066

RSS tr 0.0047 0.0056 0.0065

CCC tr 0.9956 0.9947 0.9939

S 0.0076 0.0082 0.0087

F 3108.9384 3966.4605 6968.4382
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Predicted IC50 of topiramate–phenolic acid conjugates 
(TPAC)
The leverage values of all the designed molecules 
were observed to be below threshold leverage value 
(h* = 0.138) suggesting the good applicability domain of 

the developed QSAR models. The predicted  IC50 values 
of the designed compounds are displayed in Table  5. 
The highest inhibitory activity against PPARϒ was 
obtained for T3. The inhibitory activity reduced with 
the addition of (–OCH3) groups as evident from the 
 pIC50 values of T4 and T10.

Fig. 3 Scatter plot of experimental pIC50 values versus predicted activity; A correlation between values predicted by model equation B correlation 
between the values calculated by LOO

Fig. 4 Plot of Kxy versus Q2 LMO depicting correlation 
between computed variables (x) and predicted activity (y)

Fig. 5 Y-scramble plot depicting internal validation parameters
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Fig. 6 William’s plot for model (M-1) A HAT values vs standard residuals calculated from QSAR model equation; B HAT values versus standard 
residuals predicted by LOO

Fig. 7 The graph of insurbia

Fig. 8 Plot of Q2 LOO versus LOF
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Mechanistic Interpretation
The designed 2D-QSAR model 1 was used for predict-
ing the biological activity of the designed TPAC. Accord-
ing to the equation, the PPARϒ inhibitory activities are 
explained by three descriptors of the model equation 

which positively or negatively contribute to  pIC50 val-
ues with respect to their regression coefficient values. 
The first descriptor VE3_Dzp is the logarithmic Randic-
like eigenvector-based index from the Barysz matrix/
weighted by  polarizabilities and represents heteroatoms 
and multiple bonds in the molecules. The descriptor pos-
itively contributed toward the PPARϒ inhibitory potency 
[49]. In the designed conjugates, the presence of differ-
ent  electronegative  atoms increases the polarization of 
carbon atoms that might increase the inhibition potency.

The next descriptor is nHBint6 which is an E-state 
descriptor and associated with electro-topological state 
of hydrogens establishing hydrogen bonds within a path 
length of six. The descriptor may also define intermo-
lecular interactions having impact on biological and 
physic-chemical properties. The descriptor has a positive 
correlation with the  pIC50 values [50]. We decipher that 
the presence of hydroxyl groups in the designed conju-
gates contributes positively toward the inhibition poten-
cies. Interestingly, the inclusion of DCW (single optimal 
descriptor) generated best fitting models.

Molecular Docking Analysis
The open conformation of helix-12 is a prime require-
ment for co-repressor recruitment. The binding of an 
agonist to LBD within orthosteric pocket leads to a 
closed conformation, therefore recruiting co-activators 
and inducing transcription of PPARγ genes. The impor-
tant amino acid residues present within the orthosteric 
pocket are CYS285, SER289, HIS323, TYR327, LYS367, 
HIS449, and TYR 473, which play a major role in helix-12 
folding [51]. Conclusively, it can be suggested that mol-
ecules interfering with proper folding of helix 12 around 
PPARγ-LBD can be defined as PPARγ antagonists [52]. 
Further, ligands binding to the allosteric site within the 
PPARγ-LBD do not display any competition with classi-
cal agonistic ligands for binding at orthosteric site The 
amino acid residues present within allosteric acid are 
GLU259, LYS265, HIS266, ARG288, SER289, GLU295, 
SER342, GLU343, and LYS367 which significantly inter-
fere with helix-12 folding [21]. Therefore, PPARγ antag-
onists can be designed according to the helix12-folding 
inhibition hypothesis.

The binding interactions of the designed conju-
gates (T1–T10) along with CF, TPM, and GW9662 
with crystal structure of PPARƴ (PDB ID: 3VSO) are 
displayed in Table  6. Among the 10 designed conju-
gates, T3 shows stable and strong interactions with 
the receptor. The designed ligand binds to an alternate 
site/allosteric site within the ligand binding domain 
of the crystal structure of PPARγ. The intramolecular 
hydrogen bonding interactions between the allosteric 

Table 5 Predicted pIC50 values of designed conjugates

Compound code R Predicted  pIC50

T1 7.005003569

T2 7.038592667

T3
OH

OH

7.08435656

T4
O

OH

6.991701765

T5 OH

OH

OH

7.019504227

T6
OH

7.003357836

T7

OH

7.066946934

T8 OH

OH

7.030767462

T9 OH 7.019279445

T10
O

OH

6.988112667
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pocket residues (ARG288, CYS285, MET364, and 
PHE360) and T3 might destabilize the helix-12.

It is evident that there are no interactions of T3 
with residues that are involved in proper folding of 
helix-12 (SER289, HIS323, TYR327, LYS367, HIS449, 
and TYR473) within the orthosteric pocket of PPARγ 
ligand binding domain. Also, hydrophobic interac-
tions (MET329, ILE326, LEU330, LEU333, TYR327, 
and CYS285) might displace the helix-12 from position 
thereby disfavoring transcriptional process (Fig.  10). 
Moreover, it was interesting to see that the designed 
conjugate T3 showed stronger interactions with the 
allosteric pocket residues than the parent pharmaco-
phores (Fig.  9), CF (binding affinity, − 6.1  kcal/mol) 
and TPM (binding affinity, − 6.9  kcal/mol) respec-
tively. Similarly, T3 formed stronger interactions with 
the allosteric pocket residues when compared to the 
irreversible PPARγ antagonist, GW9662 (binding 
affinity, − 9.0 kcal/mol) (Fig. 9).

For designing potential PPARγ antagonists, it might 
be imperative to sustain H-bond interactions with 
ARG288, SER342, LYS367 and HIS449 within allosteric 
pocket in the LBD [53]. Moreover, hydrophobic inter-
actions with allosteric site residues PHE282, ILE281, 
LEU356, TYR327, ILE326, LEU330 and MET348 
that can destabilize the H12 contribute to inhibition 
potency of ligands [44, 54, 55].

Molecular dynamic simulation
The molecular dynamics-based studies revealed the 
deep understanding of protein ligand interactions over 
a period of time. The interaction energies of PPARγ-CF 
complex, PPARγ-TPM complex and PPARγ-T3 complex 
in a neutralized system are given in Table 7.

From the above data (Table 7), it was clear that all the 
protein–ligand complexes were quite stable within the 
solvent medium. Of all the three PPARγ-ligand com-
plexes, PPARγ-T3 complex exhibited lowest potential 
energy (Fig.  10). Lower the potential energy, higher are 
the attractive force between the protein and ligand mole-
cule. It was therefore confirmed that PPARγ-T3 complex 
was most stable with strong intermolecular attractions 
(also refer Additional file 1: supplementary data Figs. 1S, 
2S, and 3S).

The complex revealed high fluctuation rate during 
the MD simulation study as total 0 to 100  ns RMSD 
(Fig.  11A). Initially at 0  ns the starting point the pro-
tein ligand deflected to ~ 4  Å. From 5 nanoseconds 
onward, the ligand was observed to be high in fluctua-
tion reaching upto a ~ 9  Å with respect to the protein 
movement. The protein structure was almost a con-
stant at around ~ 3  Å. From 35 nanoseconds to 60  ns 
and from 61 to nearly 85 nanoseconds, the ligand 
fluctuation trend was almost similar in a span of 25 
nanoseconds where the ligand aroused from ~ 1  Å 

Table 6 Binding affinities and interactions of TPAC with amino acid residues

Conjugates Binding 
energies 
(Kcal/mol)

Interactions with amino acids

Hydrogen bonds Hydrophobic interactions

T1 − 9.0 ARG288, GLU343 SER342, ILE281, LEU330, CYS285, ARG288

T2 − 10.84 SER289, CYS285 HIS449, TYR327, LEU469, HIS323, ARG288, ALA292, ILE326, LEU330, ILE281, LEU336, 
MET364

T3 − 11.27 ARG288, CYS285, MET364, PHE360 MET329, ILE326, LEU330, LEU333, TYR327, CYS285

T4 − 11.14 ARG288, CYS285, PHE360, PHE363 MET329, ILE326, LEU330, LEU333, TYR327, CYS285, ARG288, LEU356, PHE363, 
MET364, ILE281, LEU353

T5 − 9.34 SER342, LEU340 LEU255, ARG280, ILE281, MET348, CYS285, GLY284, ARG288, VAL339, ILE341, PHE264

T6 − 9.13 ARG288, GLY284, GLU343 ILE341, MET348, LEU330, ILE281, CYS285, ARG288

T7 − 10.56 ARG288, CYS285, PHE360 ALA292, MET329, ILE326, LEU330, LEU333, TYR327, ILE281, LEU353, MET364, CYS285

T8 − 10.36 ARG288, CYS285, PHE360 ALA292, MET364, ILE326, LEU330, LEU333, TYR327, LYS367, ILE281, LEU353, MET364, 
CYS285

T9 − 9.37 ARG288, GLU343 MET364, ILE326, LEU330, LEU353, PHE287

T10 − 10.40 CYS285, PHE360, PHE363 ILE326, MET329, LEU330, LEU333, ARG288, TYR327, MET364, CYS285, LYS367, ILE281, 
LEU353

TPM − 6.9 ARG280 CYS285, ARG288, PHE264, PHE287, LEU330, VAL339, LEU340, MET364

CF − 6.1 CYS285 ARG288, SER289, ALA292, ILE326, MET329, LEU330, LEU333

GW9662 − 9.0 ARG288, ILE326, TYR327 CYS285, SER289, ALA292, ILE296, HIS323, MET329, LEU330, LEU333, MET364, LYS367, 
HIS449
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and going upto ~ 9  Å. Finally, from 85th nanosecond 
onward the ligand bounded within the protein fluctua-
tion within the range of ~ 0.7  Å to ~ 2.5  Å (Fig.  11A). 
The PPARγ-TPM complex revealed an acceptable fluc-
tuation rate during the MD simulation study as total 
0 to 100  ns RMSD (Refer Additional file  1:   Fig. S5 ). 
Initially, at 0  ns the starting point the protein ligand 
deflected to ~ 0.35 Å. From 5 nanoseconds onward, the 
ligand was observed to be high in fluctuation reach-
ing upto a ~ 9  Å with respect to the protein move-
ment. The protein structure was almost a constant at 
around ~ 0.3  Å. From 0 to 15  ns, it went to ascending 
order upto ~ 0.3  Å, and 15  ns onward it is constant 

upto 100 nanoseconds with ~ 0.3  Å. The ligand ini-
tially aroused ~ 0. ~ 45  Å by 20 nanoseconds and later 
constant fluctuation is observed in a range of ~ 0.3 to 
0.325  Å till 100 nanoseconds. At the 100 nanosecond, 
the binding affinity of TPM and PPAR-γ was found out 
to be − 4.98299e + 05 kJ/mol (Fig. 11B).

Similarly, the PPARγ-T3 complex revealed an accept-
able fluctuation rate during the MD simulation study as 
total 0 to 100 ns RMSD. Initially, at 0 ns the starting point 
the protein deflected from 0.18  Å to max ~ 0.28  Å and 
finally settled at ~ 0.25  Å to 100 nanoseconds, whereas 
the ligand from 0 nanosecond deflected to ~ 0.32  Å and 
reached upto ~ 0.57 Å at 100 nanoseconds (Fig. 11C).

Fig. 9 Binding interactions at allosteric site of PPARγ LBD (PDB ID: 3VSO) with A T3 B CF C TPM D GW9662 (irreversible PPARγ antagonist)

Table 7 Dynamic properties of PPARγ-caffeic acid complex, PPARγ-topiramate complex, and PPARγ-T3 complex

Type of energy PPARγ-caffeic acid complex PPARγ-topiramate complex PPARγ-T3 complex

Bond average energy 1283.25 kJ/mol 1385.02 kJ/mol 1312.6 kJ/mol

Potential energy − 7.3257912e + 05 kJ/mol − 7.2699112e + 05 kJ/mol − 7.3615656e + 05 kJ/mol

Proper-Dihedral average energy 10,561.9 kJ/mol 10,664.8 kJ/mol 10,716.3 kJ/mol

Improper-Dihedral average energy 179.937 kJ/mol 189.107 kJ/mol 185.199 kJ/mol
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Fig. 10 Decrease in potential energy with respect to time; A PPARγ-CF complex B PPARγ-TPM complex C PPARγ-T3 complex

Fig. 11 RMSD analysis of PPARγ-ligand complex; A PPARγ-CF complex B PPARγ-TPM complex C PPARγ-T3 complex
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The root mean square fluctuation (RMSF) calculates 
mean fluctuations atoms or amino acid residues during 
the entire MD simulation period. For PPARγ-CF com-
plex, the calculated RMSF for the protein region is a 
maximum 0.5 Å and the ligand (CF) reached up to 0.15 Å 
(Fig.  12A). For PPARγ-TPM complex, the calculated 
RMSF for the protein region is a maximum 0.75  Å and 
the ligand (TPM) reached up to 0.17  Å (Fig.  12B). Also 
the calculated RMSF for the protein region (PPARγ-T3 
complex) is a maximum 0.75  Å and the ligand (T3) 
reached up to Å 0.18 (Fig.  12C). The calculated RMSF 
values below 1 Å reveal no higher fluctuations within the 
atoms of the complexes, suggesting that all the PPARγ-
ligand complexes were stable.

Rg (radius of gyration) analysis explains the extent 
of unfolding and folding of the protein–ligand com-
plex during entire MD simulation. The compactness of 
protein and bound ligand can be defined by Rg. High 
Rg values indicate lower compactness of proteins and 
ligand thereby suggesting poorly bound complex and 
vice versa. Here in PPARγ-CF complex, the protein 

PPAR-γ exhibited a maximum of 2  nm and ligand CF 
exhibited at very low nearly 0.3  nm of fluctuation in 
Rg (Fig.  13A). In case of PPARγ-TPM complex, the 
protein PPAR-γ exhibited a maximum 2 nm and TPM 
exhibited at very low nearly 0.47  nm of fluctuation in 
Rg (Fig. 13B), while in case of the PPARγ-T3 complex, 
protein PPAR-γ exhibits a maximum 2  nm and ligand 
(T3) exhibited at very low as started with 0.5  nm and 
reduced to 0.2 nm of fluctuation in Rg revealing a high-
est stability in contrast to the complex (Fig. 13C).

In the process of drug design, h-bonds play a vital role 
in absorption, metabolism, and transportation too. The 
PPAR-γ and CF complex revealed significant change 
in the bonding parameter, where initially the ligand 
was interacting within the binding site region 3 and 
maximum 4 h-bonds. Finally, from the 90 ns to 100 ns 
the number of h-bonds is only 1 with an energy of 
− 4.98780e + 05 kJ/mol (Fig. 14 A). TPM was observed 
to interact within the binding site region with maxi-
mum 7 h-bonds at nearly ~ 30 and ~ 70 ns. Finally, from 
the 80 ns to 100 ns the number of h-bonds is acquainted 

Fig. 12 RMSF analysis of PPARγ-ligand complex; A PPARγ-CF complex B PPARγ-TPM complex C PPARγ-T3 complex
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Fig. 13 Radius of gyration data for PPARγ-ligand complex; A PPARγ-CF complex B PPARγ-TPM complex C PPARγ-T3 complex

Fig. 14 Hydrogen bond interactions in PPARγ-ligand complex; A PPARγ-CF complex B PPARγ-TPM complex C PPARγ-T3 complex
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to 2 and 3 (Fig.  14B). T3 was observed to interact 
within the with maximum 8  h-bonds at between ~ 20 
and ~ 30 ns at 50 ns, and between 75 to 80 ns. At nearly 
100 ns, the number of h-bonds is acquainted to 5 and 
6 with an energy of − 4.99215e + 05 kJ/mol (Fig. 14 C).

SASA (solvent of accessible surface area) detects 
changes in conformations in the protein–ligand complex 
that can be assessed by water or solvent during entire 
MD simulation. In our study, the black line/graph indi-
cates the protein in solvent system and red lines graph 
indicates the protein and ligand complex for the entire 
length of time period of MD simulation. The overlapping 
exhibits that there are no or very minor fluctuations and 
the entire system is stable. However, lower deviation (by 
155   nm2) was observed for PPARγ-T3 complex in com-
parison to PPARγ-CF and PPARγ-TPM complexes with a 
deviation by 160  nm2 and 165  nm2, respectively (Fig. 16), 
indicating higher stability of PPARγ-T3 complex (Fig. 15).

The molecular docking and MD simulations clearly 
suggested that in contrast to individual pharmacoph-
ores the conjugate T3 would strongly bind to allos-
teric site within the LBD of PPARγ, thereby acting as an 
antagonist.

Chemistry
Synthesis of T3 [3‑(3,4‑Dihydroxy‑phenyl)‑acryloyl]‑sulfamic 
acid 2,2,7,7‑tetramethyl‑tetrahydro‑bis[1,3]
dioxolo[4,5‑b;4′,5′‑d]pyran‑3a‑ylmethyl ester
Buff yellowish crystalline solid; Yield (53%); mp (175 °C); 
IR (KBr,  cm−1): 3700 (NH, amide) 3400 (–OH, phenolic) 
1353, 1252 (–CH3) 1645–1630 (C=O, amide), 1600–1445 
(C–C), 1070 (C–O),1379, 1342 (S=O), 978 (trans alk-
ene); 1H NMR (400 MHz, DMSO-d 6): δ 1.29–1.47 (12H, 
1.29(s), 1.34 (s), 1.37 (s), 1.47 (s)), 3.63 (1H, d, J = 7.6 Hz), 
3.74 (1H, d, J = 7.6, Hz), 3.98 (2H, d, J = 2.6 Hz)), 4.03 (1H, 
dd, J = 12.9, 2.6 Hz), 4.25 (1H, dd, J = 12.9, 3.0 Hz), 4.77–
4.87 (2H, 4.60 (s), 4.62 (s)), 6.186 (1H, d,  J = 15.7  Hz), 
6.78 (1H, d, J = 8.4 Hz)), 6.95 (1H, d, J = 1.9 Hz), 7.08 (2H, 
(dd, J = 8.4, 1.9 Hz), 7.43 (IH, d, J = 15.7 Hz), 7.61 (1H, s). 
13 C NMR (100 MHz, DMSO-d 6): δ 26.3–26.4 (4C, 26.3 
(s), 26.1 (s), 25.1 (s), 24.2 (s)), 65.4 (1C, s), 60.7 (1C, s), 
69.17 (1C, s), 69.9 (1C, s), 70.1 (1C, s), 70.41 (1C, s ), 100.9 
(1C, s ), 108.0 (1C, s ), 115.05 (1C, s ), 115.8 (1C, s ), 116.0 
(1C, s ), 121.4 (1C, s ), 125.7 (1C, s ), 145.7 (1C, s ), 146.8 
(1C, s ), 148.5 (1C, s ), 168.47 (1C, s ).

As depicted in Scheme  1, T3 was synthesized by 
coupling of topiramate to caffeic acid using DCC and 

Fig. 15 SASA analysis for PPARγ-ligand complexes A Black line—SASA (PPAR-γ) and Redline—SASA for Protein and Ligand (PPARγ-CF); B Black 
line—SASA (PPAR-γ) and Redline—SASA for Protein and Ligand (PPARγ-TPM); C Black line—SASA (PPAR-γ) and Redline—SASA for Protein 
and Ligand (PPARγ-T3)
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catalytic amount of DMAP. Initially caffeic acid (1 
equivalent) and DCC (1.1 equivalent) were dissolved in 
sufficient of ice cold DMF and stirred for one hour on a 
magnetic stirrer. The reaction proceeds with formation 
of acylimminium ion intermediate. DMAP acts as a acyl 
transfer reagent. After one hour of stirring, topiramate 
(2 equivalent) dissolved in excess DMF was added to the 
above reaction mixture and stirred continuously for 48 h. 
Structure of the synthesized conjugate was character-
ized using IR, NMR (1H and  13C). In  IR spectra charac-
teristic peaks 3700 (NH amide), 3400 (–OH, phenolic) 
1353, 1252 (–CH3) 1645–1630 (C=O, amide carbonyl), 
1600–1445 (C–C), 1379, 1342 (S=O), and 978 (trans alk-
ene) were confirmed. Further, in  13C NMR spectra car-
bons of amide carbonyl functionality were confirmed at 
167–170 ppm (please refer Additional file 1: Figs. S4 and 
S5) [56].

Pharmacological studies
Enzyme inhibition assay
For evaluating T3 as a PPARγ inhibitor, TR‐FRET co-
activator assay was conducted. Binding of an agonist like 
rosiglitazone to PPARγ, causes a conformational change 
around helix 12 in LBD that increases the affinity of 

co-activator peptide. Upon excitation at 337 nM, energy 
is transferred to the fluorescein label on co-activator 
peptide from the europium label, therefore detected as 
emission. In agonistic mode, the T3 did not display any 
significant increase in fluorescence emission even at 
10 μmol/L. On the other hand, in the antagonist mode, 
T3 antagonized agonist (rosiglitazone) induced fluores-
cence responses. From Fig. 16 it is quite evident that both 
GW9662  (IC50 = 4.49 µM) and T3  (IC50 = 7.45 µM) exhib-
ited dose-dependent inhibition of PPARγ.

Fig. 16 i Dose-dependent inhibitions of PPARγ by GW9662 and T3 ii % PPARγ inhibition T3 relative to GW9662 [data given in terms 
of mean ± standard deviation (*p < 0.05) at n = 3 experiments]

Fig. 17 Effect of T3 on 3T3-L1 preadipocytes [Values presented 
as mean ± standard deviation (*p < 0.05) at n = 3 experimental repeats]
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Effect of T3 on 3T3‑L1 preadipocytes viability
For examining the cell level toxicity, the 3T3-L1 preadi-
pocytes were treated with range of T3 concentrations 
(0.001, 0.01, 0.1, 1 and 10  µM) for 72  h and cell viabil-
ity was assessed by MTT assay. Up to 0.1 µM of T3, no 
significant reduction in viability with respect to control 
(untreated) of 3T3-L1 preadipocytes were observed. 
A reduction in cell viability of about 10% and 20% 
was observed (Fig.  17) for 1 and 10  µM of T3 (p < 0.05, 
ANOVA with t-test). Based on the above observations, 
concentrations below 10 µM (1, 3, 5. 7 and 10) of T3 were 
selected to evaluate the percentage lipid accumulation. 
The values for percentage viability of 3T3-L1 preadipo-
cytes are provided (mean ± standard deviation) corre-
sponding to triplicate experiments.

Effect of T3 on 3T3‑L1 lipid accumulation and adipocyte 
differentiation
Oil Red O staining method explored the percentage of 
intracellular lipid accumulation in adipocyte stem cells. 
A dose-dependent inhibition of 3T3-L1 cells by T3 was 
observed. From the microscopic examinations it was 
pretty evident that there is reduction in size and number 
of 3T3-L1 cells containing larger lipid droplets (indicated 
in yellow colored arrows) with respect to control group 
(Fig. 18i). The percentage of fat accumulation was consid-
erably reduced in T3 5–7 µM and highest at 10 µM con-
centrations (Fig. 18ii), with  IC50 calculated as 7.98 µM.

Effect of T3 on 3T3‑L1 on PPARγ expression
It was very evident that reduction in lipid accumula-
tion was very significant in the cell groups treated with 
10  µM. For evaluating T3 as downregulator of PPARγ 
expression (master regulator of adipogenesis and differ-
entiation), western blot was performed. T3 (10 µM) sig-
nificantly decreased PPARγ expression in 3T3-L1 cells 
in comparison normal control (untreated) and GW9662 
(10  µM) as positive control. These results were specific 
because β-actin levels were not affected (Fig. 19).

Conclusion
Drug conjugates display better pharmacological proper-
ties than their individual pharmacophores. We synthe-
sized novel drug conjugate TPAC as PPARγ inhibitors. 
PPARγ majorly orchestrates adipose tissue differentiation 
[57]. The development of new antiobesity medications 
has now centered around targeting adipogenesis and 
thereby associated signaling molecules and transcrip-
tion factors. On this context, PPARγ becomes a prom-
ising target for antiobesity molecules. Topiramate, a 
marketed anticonvulsant drug, has been successfully 
repurposed and used as an antiobesity drug. Essentially, 
topiramate is a carbonic anhydrase inhibitor that tends to 
control obesity through enhancing satiety and regulating 
lipid metabolism. The antiobesity potential of the phe-
nolic acids is attributed to controlling gut microbiome, 
energy metabolism, and control of adipogenic signaling 

Fig. 18 Effect of T3 on lipid accumulation on 3T3-L1 preadipocytes i (A) control; (B) T3 (5 µM); (B) T3 (10 µM). ii Percentage fat accumulation. All 
the values are expressed as mean ± SD, at n = 3 biological repeats
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pathways. On such grounds, it was interesting to design a 
new conjugate with two distinct pharmacophores exhib-
iting antiobesity potential via targeting adipogenesis and 
subsequently PPARγ.

To summarize, 10 topiramate–phenolic acid conju-
gates were designed and their PPARγ inhibitory activities 
were predicted by robust 2D QSAR model with excel-
lent goodness of fit. Highest PPARγ inhibitory activity 
was predicted for T3 and accordingly was synthesized. 
The successful synthesis of the compound was confirmed 
by TLC, IR, and NMR analysis. T3 inhibited PPARγ 
 (IC50 = 7.459  µM) which was also supported by the 
molecular docking study. The docking study also revealed 
that T3 binds efficiently within the allosteric pocket of 
the PPARγ rather than the binding pocket and possess 
stronger interactions than the irreversible antagonist 
GW9662. Finally, T3 significantly inhibited adipocyte 
differentiation and lipid accumulation the differentiated 
adipocytes by downregulating the protein level expres-
sion of PPARγ  (IC50 = 7.8  µM). The in silico prediction 
for PPARγ inhibitory activity of T3 was well corroborated 
by the in  vitro experimental results. From the enzyme 
inhibition assay, it was noticeable that GW9662 (positive 
control) had better inhibition. But interestingly at the cel-
lular level T3 exhibited higher antiadipogenic character-
istics by downregulating PPARγ protein level expressions 

than GW9662. Further investigations of effect of T3 on 
protein and gene level expressions of other adipogenic 
factors can strongly establish the antiadipogenic potency 
of T3. To conclude our study, we strongly suggest T3 as 
a potential PPARγ inhibitor that significantly downregu-
lates adipogenesis and differentiation, thereby conferring 
antiobesity potency to the newly synthesized conjugate.
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