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Abstract 

Background Artificial intelligence (AI) revolutionized the formulation and development of modern pharmaceuticals. 
With the help of AI, researchers can now optimize drug design, develop formulations, and streamline clinical trials 
in a much accurate and efficient way. Drug development might be greatly expedited and time-consuming proce-
dure; however, with the help of AI this are significantly reduced.

Main body of abstract The main advantages of AI in pharmaceutical formulation are its capacity to analyse vast 
amounts of data and spot patterns and connections that human researchers would miss. Various tools and technolo-
gies, such as ANN, fuzzy logic, neuro-fuzzy logic, and genetic algorithm are used for analysing the date, of which 
ANN is popular and mostly used. AI enables the discovery of novel pharmacological targets and the creation of more 
potent medications. AI may also be used to improve medication formulations by forecasting the solubility, stability, 
and bioavailability of drug candidates, increasing the likelihood that clinical trials will be successful.

AI is also applied in designing clinical trials, reducing the time and cost of the process by identifying patient popula-
tions that are most likely to benefit from the treatment. Additionally, AI can monitor patients during clinical trials, 
detecting real-time adverse effects and adjusting dosages to improve patient outcomes.

Conclusion AI is a potent pharmaceutical formulation and development tool, allowing researchers to analyse vast 
amounts of data, optimize drug formulations, and streamline clinical trials. As technology develops, experts anticipate 
that AI will increasingly show a crucial part in drug development, enabling faster, more efficient, and more effective 
treatments for various diseases.

Keywords Artificial intelligence, Machine learning, Nano medicine, Nano robots, Pharmaceutical formulation, Drug 
development

Background
The phrase "Artificial Intelligence" (AI) is a general term 
that describes the least amount of human interven-
tion possible when utilizing a computer to imitate intel-
ligent behaviour. AI is the subfield of computer science 

that deals with programming to solve issues [1]. It has 
developed into a discipline that addresses problems in 
business, engineering, and healthcare. The creation of 
expert systems is one use for AI. An inference engine, an 
information base, and a user interface make up an expert 
system. AI possesses distinctive characteristics that 
enable it to reason and execute actions with the high-
est probability of accomplishing a specific objective. AI 
accomplishes this through a combination of algorithms 
that simulate even the most fundamental human intel-
lectual capabilities. Nowadays, AI is gaining momentum 
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across multiple sectors, and the pharmaceutical industry 
is at the forefront of this trend. In the past, formulators 
have favoured statistical methods, for example response 
surface approach, for analysing design space. However, 
optimization using this approach has the potential to 
be deceptive, especially when dealing with a complex 
formulation. Two methods that can tackle the issue at 
hand have been developed as a result of recent develop-
ments in mathematics and computer science. The first 
technique involves using neural networks to replicate 
how the human brain processes information. The second 
technique is genetic algorithms, which mimic biological 
systems’ self-organizing and adaptive natures through an 
evolutionary method. The practical requests of AI in the 
pharmaceutical production house are highlighted in this 
paper, including drug research and development (R&D), 
drug repurposing, increasing pharmaceutical output, 
clinical testing, etc. These applications reduce the need 
for human labour and accelerate the drug development 
process [2]. Over the past few years, the pharmaceutical 
manufacturing company has significantly improved its 
data digitalization. To answer challenging clinical prob-
lems, acquiring, examining, and applying this knowledge 
is difficult due to this digitization. AI is used to address 
this since it can manage enormous volumes of data with 
increased automation. However, it does not endanger 
the physical existence of humans. AI uses hardware and 
software to analyse input data and learn from it in order 
to accomplish specified goals. This review explains that 
its services in the pharmaceutical sector are constantly 
growing. The rapid advancement of AI-guided automa-
tion, according to the McKinsey Global Institute, will 
fundamentally alter how society views labour. Every stage 
of the pharmaceutical product life cycle, including drug 
discovery, optimization, formulation development, char-
acterization, quality testing, marketing, and post-market-
ing surveillance, can integrate AI to improve its efficacy 
[3].

Tools, technology, and networks
Artificial neural networks (ANN)
Machine learning (ML) is an essential subdivision of AI. 
A big part of ML is deep learning, which involves ANN. 
The ANN is made up of multilayer functional units that 
mimic how electrical impulses are transmitted in the 
human brain, i.e. it mimics a human brain. They are 
mainly biologically motivated systems. It takes input and 
learns directly from input data; primarily, neurons work 
mainly on the summation of all information and express 
an output [4].

The fundamental component of biological neural sys-
tems is the neuron. Neurons are electrochemical cells; 
they receive signals from one neuron and transmit signals 

to other neurons [4]. Like humans, the ANN system has 
a primary component known as a "perceptron" or node. 
Nodes are arranged into layers, and artificial neurons 
analyse input to create an output that is sent to the fol-
lowing perceptron. It is categorized into two states, 
supervised learning (SL) and unsupervised learning. In 
unsupervised learning, the network receives input data 
and identifies patterns or structures within the data 
thereby condensing the data into a more compact form 
[5].

In SL, the network is "taught" by receiving guidance 
during the learning process. In this SL, the network is 
given the relevant input and output data. The connection 
between the input and output data is established via the 
network. SL is considered the most popular and valuable 
network for formulation purposes [4, 5].

The arrangement of interconnected neurons in a neural 
network is called network architecture. There are various 
types of network architecture; among them, a multilayer 
perceptron (MLP) network is one of the best suitable 
examples.

X1, X2 & X3 are input variables, and Y is the output. 
The number of input, output, and hidden layers depends 
on the condition and the researcher’s plan depicted in 
Fig. 1 [6].

Fuzzy logic
Another tool of AI is fuzzy logic. People extensively use 
fuzzy logic in problem-solving. When ANN accompanies 
it, it cooperates to understand the formulation and opti-
mization process [4]. Conventional sense relies on either 
’true’ or ’false.’ So, this hypothesis falls between either in 
actual or wholly false part. Since the premise is true, the 
membership function in the true set is 1; otherwise, it is 0 
in the false set [4].

Neuro‑fuzzy logic
The main motto of fuzzy logic is to give in simple forms. 
Neural network modelling is necessary to form it. Neuro-
fuzzy logic, by its name, is understood that neuro-fuzzy 
logic is composed of neural networks and fuzzy logic. It 

Fig. 1 Schematic diagram of artificial neural network
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combines ANN’s learning capacity with generality and 
fuzzy logic’s ability to explore complex concepts. Neuro-
fuzzy logic is tightly well suited to process data mining. It 
can develop good models from data and express the lin-
guistic IF_THEN rules [4, 5].

Genetic algorithm
John Holland introduced genetic algorithms (GA) in the 
1970s [5]. Like ANN, GA is also a biologically motivated 
system. Natural selection, the primary tenet of its genetic 
variation, imitates the fundamental principles of evolu-
tion over a generation. We create a genetic algorithm to 
select the best and most effective solution. They provide 
a ’search’ strategy that is excellent for optimisation. An 
iterative procedure would be used to advance the trial 
population. As part of this procedure, we form a starting 
population and evaluate each member’s fitness [4]. The 
fittest solutions change into ’parents’ of the subsequent 
generations. It becomes a more ideal answer by includ-
ing some introduction of recombination and mutation, 
which produces a larger degree of new stuff in the pop-
ulation. The genetic algorithm needs a criterion of "fit-
ness." It is variable from problem to problem [5].

The best solution is found by creating a number of 
potential solutions when an ANN and a genetic algo-
rithm are combined. These candidates are selected based 
on their fitness according to predefined criteria. Gener-
ating a new population of solutions is accomplished by 
utilizing the most effective solution and incorporating 
crossover and mutation techniques. The process persists 
until it fulfils the desired requirements, at which juncture 
the repetition is terminated [4].

An optimization technique is needed to develop a 
pharmaceutical product to find the best combination of 
ingredients and techniques. Researchers have proven that 
the combination of ANN and GA possesses the requisite 
solutions for developing dosage forms.

Evolutionary computing
It is just a definition of a computational technique that 
uses heredity, recombination, mutation, and selection to 
solve a problem. One particular branch of evolutionary 
algorithms has been used in formulation research [5].

Life cycle of pharmaceutical products
AI can support decision-making, enable rational drug 
design, determine the best course of a patient’s treatment 
with personalized medications, accomplish the clinical 
data produced, and utilised that data to create new drugs 
in the future [7]. From the lab to the bedside, it is logi-
cal to assume that AI will contribute to creating pharma-
ceutical products. Eularis created the E-VAI analytical 
and decision-making AI platform, which employs ML 

algorithms and a user-friendly interface to create ana-
lytical roadmaps based on rivals, crucial stakeholders, 
and the market share currently held to forecast critical 
factors in pharmaceutical sales [8]. This boosts sluggish 
sales and gives marketing directors the ability to foresee 
where to make expenditures. It also helps them allocate 
resources for optimum market share growth. Figure  2 
presents an overview of several AI uses in drug discovery 
and development.

AI in drug discovery
The research and development of new drugs is a chal-
lenging, expensive, and lengthy task. On average, the 
R&D cycle spans around 10–15 years. Despite the sig-
nificant financial investment made by the pharmaceuti-
cal industry, pursuing the next blockbuster drug persists. 
This R&D is since only one in every ten potential drug 
candidates completes phase I clinical trials and attains 
regulatory approval [9, 10]. The cost and time constraints 
associated with developing newer therapeutic com-
pounds may be a contributing factor in the pharmaceuti-
cal industry’s acceptance of AI [11].

The tools and technologies employed by AI are valu-
able in rapidly identifying hit and lead materials, validat-
ing drug targets, and optimizing drug structure design, 
potentially benefiting the healthcare industry by reducing 
the cost and timeline associated with discovering novel 
molecules. However, despite these advantages, AI must 
still overcome significant data hurdles, including the 
data’s complexity, growth, diversity, and ambiguity [12, 
13].

The chemical structure that would elicit the desired 
reaction at the target location may be predicted using a 
variety of in silico approaches. This structure can then be 
improved to meet a variety of criteria, such as potency, 
safety, solubility, permeability, and synthetic tractability. 
These methods also make it possible to plan the produc-
tion of the compound and anticipate the molecule’s phys-
icochemical characteristics [13, 14].

By utilizing both structure- and ligand-based methods, 
along with all available data, it is feasible to hasten the 
elimination of non-lead compounds. Recently, research-
ers have employed the quantitative structure–activ-
ity relationship (QSAR) modelling device for screening 
potential pharmacologically active compounds from a 
pool of one million candidates. Moreover, the deep learn-
ing approach, an evolution of the earlier ML approach, 
can now handle the massive amount of data gathered 
throughout the drug discovery and development proce-
dure [15, 16].

Using a computer model based on the QSAR, large 
quantities of compounds or certain physicochemi-
cal qualities, such  as log P or log D, may be swiftly 
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predicted. These models, however, are far from being 
able to forecast with any degree of accuracy complex 
biological traits like a compound’s efficacy and unde-
sirable side effects. Additionally, QSAR-based models 
have issues with limited exercise groups, erroneous 
investigational facts, and a need for more trial vali-
dations. To address these problems, researchers can 
employ newly developed AI methodologies, such as 
Deep Learning (DL) and pertinent modelling lessons, 
to assess the safety and effectiveness of pharmaceutical 
molecules through extensive data showing and study 
[17, 18].

DL models beat traditional ML techniques in 15 drugs 
candidate-related absorption, distribution, metabo-
lism, excretion, and toxicity (ADMET) data sets regard-
ing predictability. Drug metabolism sites are identified 
using artificial intelligence (AI) techniques like XenoSite, 
FAME, and SMARTCyp. By displaying molecule distri-
butions and properties, the huge virtual chemical space 
suggests the existence of a molecular topographic map. 
Chemical space visualization’s idea is to collect posi-
tional information on nearby molecules to hunt for bio-
active compounds; thus, virtual screening (VS) helps 
choose appropriate molecules for future investigation. 
PubChem, ChemBank, DrugBank, and ChemDB are a 
few open-access chemical databases.

For the purpose of locating prospective novel drugs, 
AI-based QSAR approaches, such as decision trees, sup-
port vector machines, random forests, and linear dis-
criminant analysis (LDA), have evolved from QSAR 
modelling tools [15, 19, 20].

We have included a list of a few AI technologies used 
throughout the drug development phase in Table  1 to 
help readers understand. Figure  3 summarizes the vari-
ous AI models used during drug development methods. 
Physicochemical characteristics, bioactivity, toxicity, 
target proteins, drug interactions, drug-protein binding 
interactions, and de novo synthesis of certain organic 
synthetic compounds are all predicted by these models 
[21].

AI in drug development
An acceptable dosage form with the essential delivery 
qualities must then include a unique medicinal compo-
nent. In this case, AI can take the place of the conven-
tional approach of trial and error [22]. With the use of 
QSPR, a variety of computational techniques may resolve 
issues in the formulation design area, such as instability 
issues, dissolving, porosity, and many more [23]. Deci-
sion-support technologies use rule-based algorithms to 
choose the kind, nature, and amount of the excipients 
depending on the physicochemical properties of the 

Fig. 2 Applications of AI in various pharmaceutical business subfields, including pharmaceutical product management and drug development



Page 5 of 15Ali et al. Future Journal of Pharmaceutical Sciences           (2024) 10:53  

drug. They also use a feedback loop to keep an eye on and 
occasionally tweak the entire process [24].

Piroxicam direct-filling hard gelatin capsules were 
designed using a hybrid method that combines expert 
systems (ES) and ANN in order to achieve the neces-
sary dissolving profile. Based on the input parameters, 
the Model Expert System (MES) delivers judgements and 
recommendations for formulation development. Con-
trarily, ANN make use of backpropagation learning to 
link the formulation parameters to the desired outcome, 
enabling trouble-free formulation creation. The control 
module collaboratively manages this process [22].

Using a variety of mathematical methods, including 
computational fluid dynamics (CFD), discrete element 

modelling (DEM), and the finite element method (FEM), 
researchers have investigated the effects of the powder’s 
flow property on the die-filling and tablet compression 
processes [25, 26]. CFD may also be used to examine how 
tablet shape affects the profile of the tablet’s disintegra-
tion [27]. Integrating these mathematical models with AI 
may have a huge positive impact on the rapid manufac-
turing of pharmaceutical products. Technologies incor-
porating AI have evolved into versatile tools that find 
wide application in various stages of drug development. 
These stages include identifying and validating drug tar-
gets, designing new drugs, repurposing existing drugs, 
enhancing R&D efficiency, aggregating and analysing bio-
medicine data, and making informed decisions regarding 

Table 1 The AI techniques/tools used in the drug discovery process

Name of tools Application

Reinforcement learning Used to optimize drug combinations and dosages by considering multiple interacting variables and maxi-
mizing desired outcomes

DeepChem Open-source library for deep learning in chemistry and drug discovery

DeepTox Open-source deep learning framework specifically designed for toxicity prediction and assessment

Neural graph fingerprints Method for encoding molecular structures as fixed-length feature vectors using neural networks, suitable 
for various applications in drug discovery, such as virtual screening, lead optimization, and property predic-
tion

PotentialNet Ligand-binding affinity prediction based on a graph convolutional neural network (CNN)

Predictive ADME/Tox modelling Tools employ ML techniques to model and predict the absorption, distribution, metabolism, excretion, 
and potential toxicity of drug candidates

Natural language processing (NLP) tools Assist in extracting and analysing information from scientific literature, patents, and clinical trial data

Cheminformatics tools Tools enable the analysis and manipulation of chemical structures and properties

QSAR/QSPR modelling Correlate molecular properties and structures with biological activities or properties, enabling the prediction 
of compound behaviour

Deep learning (DL) Applied in tasks like virtual screening, de novo drug design, and predicting drug properties

Machine learning (ML) Help predict drug-target interactions, analyse biological activity, and optimize lead compounds

Fig. 3 Different applications of AI in drug discovery
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patient enrolment in clinical trials [17, 28, 29]. These pro-
spective applications of AI offer the chance to mitigate 
bias and human interference while addressing the ineffi-
ciencies and uncertainties resulting from traditional drug 
development approaches [30].

Drug repurposing [31], pharmacological features [32], 
protein characteristics and efficacy [33], drug combi-
nation, drug-target interaction [34], and prediction of 
potential synthetic methods for drug-like molecules [35] 
are other uses of AI in the pharmaceutical industry. In 
addition, the identification of associations between drugs 
and illnesses and the development of novel biomarkers 
and therapeutic targets allow for the identification of new 
pathways and targets utilizing omics analysis [36, 37].

AI in drug formulation
Pharmaceutical sciences have seen various formula-
tions, for example solid dispersions, extrudates, pellets, 
nanoparticles, and liposomes, arise in addition to stand-
ard dosage forms. The name "formulation techniques" 
is given to these techniques because they empower 
the development of formulations or incorporate func-
tionality into common dosage forms such as tablets. AI 
applications in formulation techniques are even more 
worthwhile to investigate in order to create next-gener-
ation drug products with desired efficacy and health out-
comes because these methods can successfully address a 
variety of API issues, such as low solubility, stability, bio-
availability, and production capability [6].

Controlled‑release tablet formulation
Researchers utilize pharmacokinetic simulations and 
ANN to develop controlled-release formulations [5]. The 
ANN model learns sophisticated and specialized abili-
ties from the input and output data units with the use 
of Chem software. In order to anticipate the best tablet 
formulations based on two ideal in vitro dissolution-
time profiles and two desirable in vivo release profiles, 
researchers use a sophisticated ANN model. Dissolution 
is the rate-limiting step in the in vivo absorption of the 
drug since it is linearly proportional to the amount of 
the drug taken in vivo. In vitro release patterns are often 
detected using the difference factors  (f1),  and similarity 
factor  (f2) [38].

Immediate‑release tablets formulation
To boost tablet strength, Turkoglu developed a direct 
compression tablet formulation utilizing hydrochlorothi-
azide [39]. In a different study, Kesavan and Peck devel-
oped a model of a caffeine tablet formulation to describe 
the diluting agent and binder content in each formula-
tion, processing variables (type of granulator, method 
of adding binder), and granule and tablet properties 

(disintegration time, hardness, and friability). These two 
analyses demonstrated that neural networks performed 
better than traditional statistical methods. Kesavan and 
Peck’s findings have so been re-evaluated by academ-
ics employing a variety of genetic algorithms and neural 
networks [40]. This presentation illustrated how the rela-
tive relevance of the output attributes and the restrictions 
placed on the several tiers of components and processing 
factors determined the ideal formulation [41]. Research-
ers used neuro-fuzzy computing to analyse the same data 
and frequently created helpful rules that highlighted the 
most important aspects of any item [5].

Hard gelatin capsule shell formulation
Developing hard gelatin capsule formulations involves 
using executive tools like ANN and expert systems (ES). 
ANN stimulate human mental processes, such as gen-
eralization, learning, prediction, and abstraction from 
domain knowledge. With ANNs, the data and statistics 
collected during investigative work may be transformed 
into knowledge very quickly, enabling the manufacturer 
to generate few domain-specific strategies for forthcom-
ing occurrences or forecast the theoretical preparation’s 
characteristics [22]. By extending the Expert Network 
and conducting analysis, Wendy I. Wilson in 2005, cre-
ated a capsule shell manufacturing of Biopharmaceutical 
Classification System II drugs, such as carbamazepine, 
ketoprofen, naproxen, and ibuprofen. Capsugel’s expert 
system, for the formulation of powders in hard gelatin 
capsules, was used all over the world despite the draw-
back of just providing a proposed composition. During 
the initial test, researchers discovered that the system 
exhibited low prediction accuracy and a significant error 
rate. Researchers retrained the ANN using a new dataset, 
resulting in models with an R2 of less than 70%. Lastly, 
for the model drugs, the smart hybrid system predicted 
the quantity of drug soluble around 5%. By using only 
10% of the newly generated data for cross-validation, the 
researchers showed that the system was capable of creat-
ing a formulation that satisfied its performance require-
ments. Researchers presented the system’s ability to 
analyse several BCS class II drugs by considering wetta-
bility and intrinsic dissolving properties [42].

Solid dispersions (SD)
One or more APIs dispersed in a solid matrix describe 
solid dispersions [43, 44]. They are currently a practical 
and affordable approach for enhancing solubility and bio-
availability [45]. They have been extensively employed in 
academics and industry to overcome concerns with API 
poor solubility. Many AI-based SD studies have used 
ANNs to optimize the formulations [46–48]. Researchers 
utilized ANNs to enhance the floating and drug release 
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characteristics of SD of Nimodipine prepared with PEG 
and effervescent mixtures [46]. ANNs were employed 
to elucidate the relationship between variables such as 
API concentration, the molar mass of PEG, and tem-
perature in a SD formulated with PVP [49]. Research-
ers recently developed a model using ML approaches to 
expect the stability of SD. They employed twenty molec-
ular descriptors to compare eight ML methods. Among 
these methods, the RF model exhibited the highest esti-
mate precision and provided insights into every input. 
The top five contributing parameters among the twenty 
descriptors they picked were the drug loading ratio, rela-
tive ambient humidity, storage temperature, preparation 
temperature, and molecular weight of polymers [50].

Emulsions, microemulsions, and nanoemulsions
Emulsions are biphasic systems with water and oil phases 
spread over each other and stabilized by an emulsifier 
[51]. The utilization of micro- and nanoemulsions has 
the potential to provide a variety of advantages, includ-
ing increased API bioavailability, superb optical clarity, 
and improved long-term stability [52–55]. Researchers 
have published studies on these systems that utilize AI 
approaches. Kumar et  al. regulated the fatty alcohol 
content with the use of ANNs to produce a steady o/w 
emulsion. Particle size, zeta potential, conductance, and 
viscosity were among the emulsion product proper-
ties that the ANNs could accurately predict. They also 
made it possible to quantify the relative significance of 
the inputs [56]. Gasperlin et  al. successfully predicted 
the structures of microemulsions by creating two ANNs 
that can determine the kind of microemulsion from the 
desired composition or a differential scanning calorim-
etry (DSC) curve, respectively [57]. Additionally, Aga-
tonovic-Kustrin et al. developed a stable microemulsion 
formulation for the oral administration of rifampicin and 
isoniazid using ANN model data for treating the ongo-
ing stage of TB [58]. Amani et  al. used ANNs to study 
potential influences on nanoemulsion particle size and 
discovered that the final particle size’s most important 
factor was the total energy provided during preparation 
[59]. In addition, Seyed et al. looked into the component 
concentrations of nanoemulsion to catch the most stabi-
lized structure with minimum cytotoxicity. They found 
that emulsifier concentration, which was shown to be the 
primary determinant of nanoemulsion stability, had no 
effect on cytotoxicity [60].

Self‑emulsifying drug delivery systems (SEDDS)
Drugs, oils, surfactants, and occasionally cosolvents 
are combined in isotropic ways to create SEDDS [61]. 
SEDDS offer several advantages due to their physical sta-
bility, ease of production, and ability to address concerns 

regarding low drug bioavailability [62]. SEDDS can effec-
tively tackle various API concerns, including enzymatic 
degradation, gut wall efflux, solubilization, and bioavail-
ability [63]. Fatouros et  al. utilized AI techniques such 
as neuro-fuzzy networks to create a dynamic lipolysis 
model that simulates medication absorption and pre-
dicts the IVIVC. Without requiring complex settings, the 
model showed significant prediction skills, indicating its 
potential for application in forecasting the in vivo behav-
iour of formulations made of lipids [64]. Utilizing ANNs 
coupled with I-optimal design, Parikh and Sawant opti-
mized the crucial elements that determine the droplet 
size of SEDDS. When compared to the quadratic model 
based on I-optimal design, the ANN-coupled replicas 
showed the comparative contributions of every factor 
and were more accurate [65]. Li et al. used multiple linear 
regression (MLR) and ANN approaches to create quan-
titative structure-property relationship (QSPR) models 
that relate the molecular structures of the surfactant, co-
surfactant, oil, and drug used in SEDDS with the drug 
solubility. The researchers found that key factors influ-
encing drug solubility were the ratios of surfactant and 
oil, as well as the dipole moment and energy of the high-
est occupied molecular orbital [66].

Other formulation techniques
In addition to these formulation techniques, researchers 
have applied AI methods to beads and pellets [67–71], 
microparticles and nanoparticles [72–85], microspheres 
and nanospheres [86–88], liposomes and nanoliposomes 
[89], colloidal systems [90], micelles [91, 92], and liquid, 
solid dosage forms [93].

Scaling up AI across the pharmaceutical value chain
AI and ML are operating revolutions through several 
manufacturing company. Nevertheless, industries reli-
ant on research, such as pharmaceuticals, are witnessing 
rapid advancements in these technologies. To speed up 
the delivery of life-saving medications, AI is re-designing 
the value chain and extracting insights from diverse data 
sets to make it highly interoperable [94].

Drug discovery
AI can aid labour and resource-intensive manual drug 
discovery. Biopharmaceutical companies have the oppor-
tunity to employ AI models to identify and validate 
various methods, leveraging the acquired knowledge 
to improve their predictive capabilities. AI could have a 
significant impact on generative modelling for molecule 
design and protein engineering in the field of molecu-
lar design. Although manual data entry remains essen-
tial for clinical trials, the utilization of AI-powered data 
flows allows for the integration of trial data from diverse 
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sources, enabling the delivery of standardized digital data 
that seamlessly and automatically transfers to the rel-
evant systems downstream [94].

Manufacturing
AI in biopharma manufacturing might stream cru-
cial data, anticipate process bottlenecks, evaluate cur-
rent quality control issues, and recommend necessary 
improvements without the need for time-consuming 
manual involvement [94].

It could lower operationally expenses and manual over-
sight in manufacturing operations by permitting tighter 
control with:

• Quality control
• AI in robotic process automation (RPA)
• AI mock-ups to augment produce & output
• AI-coupled prognostic maintenance to lessen appli-

ance interruption.

Pharmaceutical market of AI
Pharmaceutical companies are turning to AI to reduce 
financial costs and failure risks. The AI market witnessed 
growth from US$200 million in 2015 to US$700 million 
in 2018, and it is expected to reach $5 billion by 2024 
[95]. Experts predict that the pharmaceutical and medi-
cal industries will experience a 40% growth rate from 
2017 to 2024 due to the impact of AI. Numerous pharma-
ceutical firms have invested in AI and are continuing to 
do so. They have also worked with AI firms to build cru-
cial healthcare solutions. An example is the partnership 
between DeepMind Technologies, a Google company, 
and the Royal Free London NHS Foundation Trust for 
treating critical renal damage. Figure 4 lists critical phar-
maceutical businesses and AI players [12].

Application of AI
Poly‑pharmacology
In disease-related molecular networking, poly-pharma-
cology is the strategic creation of a therapeutic molecule 
with the innate capacity to interact with numerous tar-
gets or pathways (put, "one disease-multiple target"). 
One can use this method to create a more effective and 
less hazardous therapy than the currently available one. 
Several well-known databases that offer details on bio-
chemical pathways, binding strengths, pharmacological 
goals, and physiological effects are PubChem, CheMBL, 
Drug Bank, and Binding DB [96, 97]. The AI system can 
use this data to probe and discover potential poly-phar-
macological drugs selectively. One can use the range of 
available applications, improved computer capacity, and 

developments in AI technology to change the drug devel-
opment process.

Quality control and quality assurance
Developing a pharmaceutical formulation within the 
given timeframe while ensuring quality necessitates a 
meticulous and scientifically-driven approach to navigate 
the intricate process successfully. Gathering information 
involves capturing data about the characteristics of drug 
compounds and excipients, their interactions, unit opera-
tions, and equipment. Various knowledge applications 
are utilized, such as heuristics, decision trees, correlation, 
and first-principal models. This information and knowl-
edge inform the decision-making process for production, 
selection of excipients, and determination of equipment 
size [98]. Consequently, AI and its networks, technolo-
gies, and tools ensure higher product quality, less waste, 
and increased profit for manufacturing company. Qual-
ity-by-Design (QbD) method ensures the improved qual-
ity of the generated goods. This approach makes it easy 
to comprehend the crucial elements in the pharmaceuti-
cal production process that might have an impact on the 
final product’s quality.

Product development
The pharmaceutical sector focuses on accelerating phar-
maceutical product development, cutting production 
costs, and enhancing process design for confirming an 
active medication. Various expert systems can serve as 
valuable tools for prompt decision-making in the rapid 
development of pharmaceutical products. An example of 
a decision-support tool is the rule-based expert system, 
which represents domain knowledge as a collection of 
rules structured as IF-THEN statements. These rules uti-
lize input data to assist in addressing specific problems. 
Each rule consists of two components: the IF part, which 
establishes an assumption (such as medication insolubil-
ity), and the THEN part, which defines the correspond-
ing action to be taken (such as using a soluble filler to 
address the solubility issue). This type of system, known 
as a production system or an expert system, represents 
the fundamental form of artificial intelligence. It func-
tions based on pre-established rules that are provided 
as knowledge inputs to guide its operations. The choice 
of excipients for preparing tablets and capsules can be 
made using these expert systems. Such a system’s regula-
tions detail the system’s mechanical, chemical, and physi-
cal characteristics and the requirements for the finished 
item. The system’s inference engine uses this information 
to forecast the kind and number of excipients needed to 
achieve the requirements. This formula is used to create 
the product, which is then examined to see if it complies 
with the necessary standards. This information is then 
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fed into the system, which aids with formula optimiza-
tion (Fig. 5) [24].

The creation of Logica’s product formulation expert 
system (PFES), anticipated to direct the manufactur-
ing technique using an order of duties, was motivated 
by the need for quick manufacture of generic formula-
tions. PFES provides a framework for new formulation 
system development. The specification object, which 

encompasses the current understanding of the formula-
tion problem, and the formulation object, which rep-
resents the current composition of the formulation, are 
taken into account. This knowledge is subsequently 
applied to facilitate the development of the formulation. 
The design of later iterations of PFES involves three lev-
els: physical, task, and control. The control level conducts 
the studies, while the physical level receives domain 

Fig. 4 Leading pharmaceutical firms and their connections to AI companies working in oncology, cardiovascular illness, and CNS disorders. 
[Pharmaceutical firm’s brand name and logo are subject to individual copyright]
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information and can be accessed from the task level 
through a query interface. Expert systems in formula-
tion development have several benefits, such as ensuring 
a consistent process for regulatory compliance, aiding in 
novice and professional training, reducing product devel-
opment time and cost, and freeing up experts to focus on 
innovation [99].

Developing innovative drug delivery methods with an 
eye on optimizing efficacy and avoiding adverse effects 
has generally taken up most of the last ten years. AI has 
the potential to address certain challenges associated 
with controlled and conventional drug delivery systems, 
including issues such as systemic toxicity, narrow thera-
peutic ranges, and dose adjustments during long-term 
therapy. To illustrate how AI is utilized in medicines, an 
example can be given where microchips are employed 
to manage medication administration, lower systemic 
toxicity, narrow the therapeutic window, and reduce 
adverse effects. AI has made significant advancements in 
enhancing the efficacy, safety, and adherence of patients 
by innovating implanted drug delivery devices capable of 
regulating drug release timing and concentration. This 
strategy of using AI in managing chronic diseases like 
diabetes, which require prompt treatment and continu-
ous monitoring, is very advantageous. Neural networks, 
fuzzy logic, integrators, and differentiators have all been 
used to develop control systems. It is crucial to monitor 
glucose levels in diabetic patients and provide insulin 
regularly to treat the condition. As mentioned earlier, the 
utilization of microchips can assist in the effective man-
agement of regular blood glucose level monitoring and 
insulin administration. The combination of glucose sen-
sors, mathematical models, and control algorithms holds 
promise for facilitating this objective. Conventional ther-
apeutic methods that have been utilized over time face 
certain limitations, which can be overcome by integrating 

information technology, wireless communication, and 
ANNs into standard therapeutic procedures. As an illus-
tration, wireless connections can be utilized to transmit 
orders from outside sources to units. The data from these 
communications are gathered and tracked to control the 
drug’s distribution [100, 101].

Pharmaceutical manufacturing
Continual production is a valuable strategy for reducing 
lot-to-lot variances. The FDA recommends a non-stop 
processing strategy to limit the variation of final products 
and patient outcomes. One can use various process ana-
lytical technology (PAT) tools, efficient and cost-effective 
to control uninterrupted production. Through automated 
ML, using AI in conjunction with PAT can improve the 
process overall and help regulate the production process 
[102].

Companies that produce biopharmaceutical products 
can benefit from data science by integrating logistics into 
their processing operations. Ensuring the proper upkeep 
of these variables is considered a crucial regulatory con-
sideration due to the utilization of engineered living cells 
in the production of biopharmaceuticals. Managing and 
monitoring multiple factors are necessary to maintain the 
purity and consistency of the manufactured product. As 
a result, most of the world’s leading chemical businesses 
frequently employ big data to improve vaccine produc-
tion output and keep an eye on product quality [34].

Drug synergism and antagonism prediction
When treating someone over time, studying how differ-
ent drugs interact is essential. This can reduce the dose 
needed and prevent harmful side effects from taking 
multiple medications together. SnuGen utilises the mas-
ter regulator inference algorithm (MARINA) to forecast 
synergism and antagonism. The MARINA method was 
established to have the ability to predict synergism with 
an approximate accuracy of 56%. This method clarifies 
the "Mater Regulator" genes which may be applied to 
selecting beneficial descriptors for ML techniques. One 
can use network-based Laplacian regularized least square 
methods to predict synergism and antagonistic drug 
interactions. As was covered in the preceding section, 
various AI techniques combined with medication ther-
apy can be advantageous in multiple ways. For proper 
prediction, a level of confidence percentage in the range 
of 0.7–0.9 has been attained, comparable to the perfor-
mance of the most automatic prediction system. The pre-
diction scores obtained using the various ML techniques 
do not significantly differ. While ANNs, Random Forest, 
and SVM all have benefits and drawbacks, choosing the 
correct input parameters is the main issue when utiliz-
ing AI for combo therapy. One must use the parameters 

Fig. 5 Formulation of tablets and capsules uses rule-based systems
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that determine the quality of the prediction model when 
developing prediction algorithms [18].

Nanorobots for drug delivery
Integrated circuits, sensors, a power source, and a 
secure data backup constitute the primary components 
of nanorobots, which are maintained by computational 
technologies like AI [101]. They are designed with pro-
gramming to prevent collisions, detect targets, locate and 
engage with them, and subsequently eliminate them from 
the body. Advancements in nano/microrobot technology 
empower them to navigate to specific locations within 
the body by leveraging physiological indicators like pH. 
This progress enhances their efficacy and reduces the 
occurrence of systemic side effects [103]. When creating 
implantable nanorobots for the controlled administration 
of drugs and genes, factors such as dosage customization, 
sustained release, and regulated release must be carefully 
considered. The automation of drug release necessitates 
the utilization of AI tools, such as neural networks (NNs), 
fuzzy logic, and integrators [104]. Microchip implants 
serve dual purposes, enabling both scheduled release of 
substances and precise localization within the body.

Nanomedicine
Nanomedicines merge nanotechnology and drugs to 
diagnose, treat, and monitor complex ailments like HIV, 
cancer, malaria, asthma, and various inflammatory con-
ditions. Due to their enhanced treatment efficacy, the 
utilization of nanoparticle-modified drug delivery sys-
tems has experienced substantial growth in both the 
therapeutic and diagnostic domains [105, 106]. Com-
bining AI with nanotechnology could solve numerous 
issues in product development [107, 108]. Through com-
putational analysis, a nanosuspension of methotrexate 
was developed by examining the energy generated dur-
ing the interaction between drug molecules and closely 
monitoring any conditions that could lead to formulation 
aggregation. Coarse-grained simulation and chemical 
computation can be employed to evaluate the interac-
tions between drugs and dendrimers, as well as to analyse 
the encapsulation of drugs within the dendrimer struc-
ture [23].

Furthermore, researchers can investigate the impact of 
surface chemistry on the internalization of nanoparticles 
into cells using tools such as LAMMPS and GROMACS 
4. The utilization of AI facilitated the development of 
silicasomes, which are a combination of multifunctional 
mesoporous silica nanoparticles loaded with irinotecan 
and the tumour-penetrating peptide iRGD. The inclu-
sion of iRGD enhances the transcytosis of silicasomes, 
resulting in improved treatment outcomes and increased 
overall survival. As a result, there has been a significant 

three- to fourfold increase in the absorption of silicas-
omes [106].

Predicting the mode‑of‑action of compounds using AI
The prospect of an AI platform that can predict drugs’ 
on- and off-target effects as well as in vivo safety profiles 
prior to synthesizing has medicinal chemists, in par-
ticular, thrilled. The existence of such platforms reduces 
the amount of time, money, and attrition rates needed 
to create new medications. Among these platforms are 
DeepTox, which predicts the toxicity of new drugs, and 
PrOCTOR, which assesses the probability of toxicity 
during clinical trials [109, 110]. If a comprehensive and 
precise dataset containing information on the toxic-
ity and therapeutic characteristics of a wide range of 
drugs becomes available, the industry has the potential 
to enhance the predictive accuracy of these platforms by 
sharing and exchanging data.

As a substitute for chemo-proteomics, SPiDER, a novel 
AI tool, was recently created [111] to promote natural 
products for drug development. As a proof-of-concept, 
SPiDER was utilized to predict the molecular target of 
lapachone, a natural naphthoquinone with promising 
antitumour properties currently in clinical development. 
The platform expected that 5-lipoxygenase (5-LO) would 
be modulated allosterically and reversibly by lapachone. 
Through the use of a 5-LO functional test, the predic-
tion is verified. An alternative AI methodology, known 
as read-across structure-activity relationships (RASAR) 
[112], has demonstrated the ability to effectively fore-
cast the toxicity of unfamiliar compounds. By leverag-
ing a vast chemical library and establishing connections 
between molecular structures and hazardous traits, 
RASAR proves valuable in this prediction process.

Conclusion and future prospect
In conclusion, the function of AI in pharmaceutical for-
mulation and development is rapidly expanding, bringing 
a host of benefits to the industry. AI has already demon-
strated its ability to analyse large data sets, optimize drug 
formulations, and streamline clinical trials. By doing so, 
the duration and expenses associated with drug develop-
ment have been diminished, concurrently heightening 
the precision and efficacy of the complete process.

The prospects for AI in pharmaceutical formulation 
and development are up-and-coming. As AI continues 
to evolve and improve, it is predictable to show an even 
more significant function in drug development, aiding 
researchers in identifying new drug targets, drug interac-
tions, and patient populations most likely to benefit from 
treatment.

Furthermore, as AI systems become more advanced, 
they can simulate biological systems more accurately, 
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allowing researchers to develop more personalized and 
effective treatments. This, in turn, will lead to more effi-
cient and targeted drug development and personalized 
medicine.

So, the role of AI in pharmaceutical formulation and 
development has already proven to be transformative 
and is expected to continue to revolutionize the indus-
try in the coming years. By leveraging the power of AI, 
researchers can unlock new insights into complex dis-
eases, create more effective treatments, and improve 
patient outcomes on a global scale.
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