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Abstract 

Background  The study of plant-based medications, or phytomedicine, involves a wide spectrum of biological activi-
ties. Due to the existence of secondary metabolites, herbal medicine has been used and practiced throughout history 
for the treatment of both acute and chronic conditions. Over the past century or so, numerous novel compounds 
with medicinal potential have been derived from plants. In the age of growing super infections and the emergence 
of resistant strains, natural medicines are inspiring optimism.

Main body of the abstract  The review discusses the role of herbal medicine as antibacterial agents and their use 
in wound care and management of wounds and the critical role of secondary metabolites of herbal plants in fight-
ing bacterial infections. Some medicinal plants such as St. John’s wort (SJW) (Hypericum perforatum), Rosemary 
(Rosmarinus officinalis), Ginger (Zingiber officinale), and nopal cactus (Opuntia ficusindica (L.)) also possess wide range 
of biological activities and can give a synergistic effect if combined with antibiotics. In addition, natural biopolymers 
play an important role in the management of wounds as well as the physiological processes of the skin (hemostasis, 
inflammation, proliferation, and remodelling).

Method  A narrative review of papers relevant to the use of phytomedicine in treating infections was conducted 
by using electronic databases PubMed, CrossREF, and Google Scholar.

Short conclusion  Phytomedicine is one of the top options for the treatment of chronic illnesses for millions of peo-
ple around the world. To learn about the bioactive components of medicinal plants, their medical benefits, and their 
synergistic or additive effects to enhance the action of medications, substantial new studies are still needed.
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Highlights 

•	 Phytomedicine involves a wide spectrum of biological activities.
•	 Bioactive compounds extracted from plants are used for the treatment of both acute and chronic conditions.
•	 Natural plant & secondary metabolites play a significant role in the treatment of bacterial infections.
•	 Natural biopolymers are used in wound care and restoring physiological processes of the skin.
•	 Substantial new studies are needed to learn about bioactive components medical benefits, and their synergistic 

or additive effects.
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Bioactive 
compounds

Treatment of Skin 
disorders

Application of natural biopolymers (cellulose, hyaluronic 
acid, collagen, alginate, and chitosan) and extracellular 

matrix (ECM)

Mangment of atopic dermatitis (AD) and diabetic foot 
ulcers (DFUs). 

Antibacterial 
activity

Phenolics and polyphenol, terpenoids and essential oils, 
alkaloids, lectins and polypeptides, and polyacetylenes, 

Medical uses  of some 
medicinal plants 

St. John’s wort (SJW) (Hypericum perforatum) Rosemary 
(Rosmarinus officinalis), Ginger (Zingiber officinale) and 

nopal cactus (Opuntia ficus-indica (L.))

Background
An herbal remedy known as phytomedicine is utilized 
all over the world to treat or prevent physical and men-
tal illnesses [1]. Herbal medicine or a phytopharmaceu-
tical preparation is a type of medication that is made in 
a crude form solely from whole plants or specific plant 
parts [2]. Herbal medicine, which has a history span-
ning more than 3000 years and was enumerated in Sheng 
Nong’s herbal book “The Devine Farmer’s Classic of 
Herbalism” [3], is the foundation of traditional Chinese 
medicine (TCM). Herbal medicine is one of the most 
sought-after treatments by 3.5–4 billion people world-
wide, mainly in Africa, India, and China, according to the 
World Health Organization (WHO) [4]. Products made 
from medicinal plants have greatly increased over the 
past 10 years, which has revolutionized and improved 
phytomedicine. There are about 35,000 plant species 
that are utilized as medicines, but only 20% of them go 
through the phytochemical analysis stage and only 10% 
make it to the biological screening stage, leaving the rest 

in need of further study [5]. As herbal medicine becomes 
more and more popular, it is important to maintain qual-
ity, safety, and to prevent potential toxicity [6–8]. In addi-
tion to long-term boiled extract and cold infusion of 
plants, plants can be extracted using alcoholic, vinegar, 
and hot water as well as other solvents, times, and tem-
peratures [1]. Due to the existence of secondary metabo-
lites, which are abundant in bioactive substances, herbs 
are used to treat both acute and chronic illnesses, includ-
ing depression, cardiovascular disease, inflammation, and 
others [9, 10]. Plant constitutes are used directly as thera-
peutic agents or as models for pharmacologically active 
compounds or as starting materials for the synthesis of 
drugs (Table  1) such as morphine which was produced 
from opium extracted from Papaver somniferum, digoxin 
from Digitalis purpurea, antimalarials such as quinine 
from  Cinchona  bark, and over 60% of cancer therapeu-
tics are based on natural products such as paclitaxel from 
the Pacific yew tree [11–15]. Due to inadequate research 
methodologies, time-consuming, and expensive isolation 
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Table 1  List of drugs derived from plant origin and their clinical use

Drug Plant origin Clinical uses References

Aescin
(Fig. 1)

Aesculus hippocastanum Aescin has potent anti-inflammatory, antioxidant, antiedema-
tous, and vaso-protective effects. It is used in the management 
of haemorrhoids and hematoma

[16]

Aesculetin
(Fig. 1)

Fraxinus rhynchophylla Aesculetin is a phenolic coumarin derivative compound 
that has anti-inflammatory, antinociceptive, antioxida-
tive, and anticancer effects, in addition to its effectiveness 
against allergic asthma

[17]

Agrimophol
(Fig. 1)

Agrimonia Pilosa Agrimophol is a phloroglucinol compound identified by high-
throughput screening (HTS) method. It acts by disturbing 
pHIB homeostasis of Mycobacterium tuberculosis

[18, 19]

Allyl isothiocyanate (Fig. 1) Brassica nigra A black mustard volatile oil responsible for the bitter taste 
and pungent odour. It has the potential to be used as antibacte-
rial, anticancer, antifungal, and antihelminthic, in addition to its 
antifermentative and antibrowning in food industry

[20, 21]

Anisodamine
(Fig. 1)

Anisodus tanguticus An atropine derivative with nonspecific cholinergic antagonist 
activity. It has a cardiovascular properties that include depression 
of cardiac conduction and protection against arrhythmia

[22, 23]

Artemisinin
(Fig. 1)

Artemisia annua L A sesquiterpene lactone with potent antimalarial activity 
in addition to its ability to treat some viral infections and various 
neoplasms

[24]

Aspirin
(Fig. 1)

Willow tree bark Anti-inflammatory and antiplatelet agent [25, 26]

Atropine
(Fig. 1)

Atropa belladonna An Anticholinergic and Cholinergic Muscarinic Antagonist [27]

Berberine
(Fig. 1)

Berberis vulgaris A nonbasic and quaternary benzylisoquinoline alkaloid used 
for the treatment of skin diseases, inflammatory disorders, respir-
atory diseases affections of eyes, tumours, microbial pathologies 
and for wound healing

[28]

Bromelain
(Fig. 1)

Ananas comosus Anti-inflammatory, antiedematous, antithrombotic, fibrinolytic, 
anticancerous, and facilitate the death of apoptotic cells

[29]

Camphor
(Fig. 1)

Cinnamomum camphora Camphor used for the treatment of various symptoms such 
as infection, inflammation, muscle pain, congestion, and irrita-
tion in various regions

[30]

Camptothecin
(Fig. 1)

Camptotheca acuminata A natural alkaloid acts as a DNA topoisomerase 1 poison 
with antitumour activity

[31]

Catechin
(Fig. 1)

Camellia sinensis Catechins are polyphenol compounds from tea leaves and have 
a strong antioxidants activity. They can prevent or reduce skin 
damage

[32]

Cocaine
(Fig. 1)

Erythroxylum coca Topical anaesthesia of the mucous membranes of the nasal, oral, 
and laryngeal cavities in addition to off-label use as vasoconstric-
tive in the treatment of epistaxis before cauterization or packing

[33, 34]

Codeine
(Fig. 1)

Papaver somniferum Codeine is an alkaloid from opium or morphine used as a seda-
tive, hypnotic, central analgesic, antinociceptive and is also used 
in insomnia and tuberculosis due to incessant coughing

[35]

Colchicine
(Fig. 1)

Colchicum autumnale Treatment of gout [36]

Convallatoxin
(Fig. 1)

Convallaria majalis A cardiac glycosides used to treat atrial fibrillation and cardiac 
failure through inhibition of Na+/K+-ATPase

[37, 38]

Curcumin
(Fig. 1)

Curcuma longa Curcumin prevents carcinogenesis by affecting angiogenesis, 
cancer cell growth, in addition to the suppression of cancer cell 
metastasis and induction of cancer cell apoptosis

[39]

Deslanoside
(Fig. 1)

Digitalis lanata A cardiac glycoside used to treat supraventricular arrhythmias 
congestive heart failure and chronic atrial fibrillation. Moreover, 
studies showed its ability to inhibit the tumour growth of human 
prostate cancer cells

[40, 41]

Digoxin
(Fig. 1)

Digitalis purpurea A cardiac glycoside that has inotropic effects and is used to man-
age systolic dysfunction in congestive heart failure (CHF) patients 
and also work as atrioventricular nodal blocking agent to man-
age atrial tachydysrhythmias

[42]
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Table 1  (continued)

Drug Plant origin Clinical uses References

Emetine
(Fig. 1)

Cephaelis ipecacuanha An alkaloid used to treat amoebiasis [43]

Ephedrine
(Fig. 1)

Ephedra sinica A sympathomimetic drug prescribed as a nasal decongestant. 
Furthermore, it used as antipyretic and diaphoretic effects

[44, 45]

Etoposide
(Fig. 1)

Podophyllum peltatum Podophyllotoxin used as chemotherapeutic drug against various 
cancers due to its anticancer activity

[46, 47]

Galantamine
(Fig. 1)

Amaryllidaceae family (Galanthus 
nivalis and Galanthus woronowii)

An oral acetylcholinesterase inhibitor used for therapy of Alzhei-
mer disease

[48, 49]

Glaucarubin
(Fig. 2)

Simarouba glauca An antimalarial and anticancer drug [50]

Glaucine
(Fig. 2)

Glaucium flavum Isoquinoline alkaloid used as a cough suppressant [51]

Glycyrrhizin
(Fig. 2)

Glycyrrhiza glabra It is used as a remedy for gastrointestinal problems, cough, bron-
chitis, arthritis and widely used to treat gastritis and peptic ulcers

[52]

Gossypol
(Fig. 2)

Gossypium species A lipid-soluble polyphenol that exhibits significant antineoplastic 
effects against various cancer types

[53]

Hesperidin
(Fig. 2)

Citrus species A bioflavonoid compound with antioxidant, antibacterial, antimi-
crobial, anti-inflammatory, and anticarcinogenic properties

[54]

Hyoscyamine
(Fig. 2)

Hyoscyamus niger An alkaloid used as mild antispasmodic, analgesic, sedative, 
and mydriatic

[55]

Irinotecan
(Fig. 2)

Camptotheca acuminata A topoisomerase I inhibitors used to treat various types of cancer [56]

L-Dopa (Levodopa) (Fig. 2) Mucuna pruriens A drug used in the management of Parkinson’s disease [57]

Morphine
(Fig. 2)

Papaver somniferum A natural alkaloid with potent and analgesic effects used 
for severe pain, control of pain from angina pectoris, or acute 
myocardial infarction and other medical uses

[58, 59]

Ouabain
(Fig. 2)

Strophanthus gratus Cardenolide compound used for the treatment of congestive 
heart failure by inhibiting Na+/K+-ATPase. It also has a potential 
use in the treatment of cancer

[60, 61]

Paclitaxel
(Fig. 2)

Taxus brevifolia Nutt A broad-spectrum anticancer compound [62]

Papain
(Fig. 2)

Carica papaya A cysteine protease known for its antibacterial activity, wound 
healing properties, inhibition of platelet, and inhibition of ath-
erosclerosis

[63, 64]

Papaverine
(Fig. 2)

Papaver somniferum An alkaloid used as a vasodilator and direct‐acting smooth 
muscle relaxant

[65]

Physostigmine
(Fig. 2)

Physostigma venenosum A reversible acetylcholine esterase inhibitor in both the periph-
ery and central nervous system. It is used to treat glaucoma 
and anticholinergic toxicity

[66, 67]

Pilocarpine
(Fig. 2)

Pilocarpus jaborandi An alkaloid used to treat glaucoma and xerostomia [68]

Pseudoephedrine
(Fig. 2)

Ephedra sinica A sympathomimetic used to treat the symptoms of paranasal 
sinuses and obstruction in the nasal cavity, in addition to vaso-
motor rhinitis, allergic rhinitis, and otitis media

[69]

Quinine
(Fig. 2)

Cinchona ledgeriana Prevention and therapy of malaria [70]

Reserpine
(Fig. 2)

Rauvolfia serpentina An alkaloid extract used to treat hypertension [71]

Scopolamine
(Fig. 2)

Hyoscyamus niger A natural alkaloid with potent anticholinergic effects 
that used for the treatment of nausea, vomiting, and motion 
sickness

[72]

Sennosides A, B
(Fig. 3)

Cassia species Anthraquinone glycosides used as Laxative by relaxing and loos-
ening the bowels

[73]

Tetrahydrocannabinol (THC) (Fig. 3) cannabis A potent psychoactive compound used as an antiemetic 
anti-inflammatory and has the ability to reduce neuropathic 
and chronic pain

[74]

Theophylline
(Fig. 3)

Theobroma cacao Used as second-line treatment of asthma and chronic obstruc-
tive pulmonary disease (COPD)

[75, 76]
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techniques, there is little information available regarding 
the composition of the majority of herbal medications. 
As a result, this page discusses the crucial role of medici-
nal plant extract in the battle against bacterial infec-
tions and the management of skin wounds and disorders 
such as atopic dermatitis (AD) and diabetic foot ulcers 
(DFUs). Additionally, extracellular matrix (ECM) and 
biopolymers derived from microorganisms, animals, and 
plants (cellulose, hyaluronic acid, collagen, alginate, and 
chitosan) all have bioactive qualities that make them use-
ful in the treatment of wounds and the healing process.  

Method
We evaluated the scientific literature collected from Pub-
Med, CrossREF, and Google Scholar databases, consid-
ering all the articles published between 1975 and 2023. 
The keywords used were “herbal plants”, “phytomedicine”, 
“secondary metabolites”, “synergistic”, “antibacterial”, and 
“wound healing”. Article titles and abstracts were manu-
ally screened, and studies not related to the topic were 
excluded.

Main text
Antibacterial activities of medicinal plants
Globally high rates of morbidity and mortality are 
mostly caused by infectious diseases. Millions of people 
per year die as a result of the advent of bacterial strains 
that are resistant [81]. Antibiotic resistance in bacte-
ria evolves through intrinsic or acquired resistance, by 
chromosomal mutation, or by horizontal gene trans-
fer (HGT) [82, 83]. Several mechanism can lead to the 
development of antibiotic resistance such as alteration 
in cell membrane permeability either by reducing anti-
biotic penetration or increasing its elimination by efflux 
pumps; moreover, bacteria can deactivate the antibi-
otic itself or modify the antibiotic targets, in addition 
to other alternative pathways which were described in 
literature and are illustrated in Fig. 4 [83–88]. The most 
harmful microorganisms for human health have been 
recognized by the World Health Organization (WHO) 
and are categorized into three priority groups: criti-
cal pathogens (Acinetobacter,  Enterobacteriaceae,  and 

Pseudomonas), high-priority pathogens (Campylobac-
ter, Enterococcus faecium,  Helicobacter pylori,  Nisseria 
gonorrhoeae, Staphylococcus aureus,  Salmonella  spp.), 
and medium-priority pathogens (Streptococcus pneumo-
niae, Shigella spp.) [83, 89–91]. Pathogenic plant bacteria 
can cause diseases on susceptible plant hosts which starts 
usually with low numbers of pathogen cells and then col-
onize and multiply to large amounts in living plant tissue. 
This results in the alteration of plant’s developmental sys-
tem which eventually leads to reduction of plant growth 
and yield. Disease severity depends on the host genetic 
constitute, environmental conditions, and the pathogen 
[92]. Herbal plants produce unlimited wide variety of 
secondary metabolites which are mostly aromatic and 
phenol derivatives that gives them the ability to safeguard 
plants against pathogens [9, 93, 94]. Plants use oxygen for 
their growth and development but in stress like patho-
gen attack; the usage of oxygen causes the production 
of reactive oxygen species (ROS) in the plant and results 
in photo-oxidative damage [95–97]. In stress conditions 
plants induce excessive biochemical changes to activate 
defence pathways such as changing cell wall composi-
tion, detoxification of several ROS species, induction of 
enzymatic and nonenzymatic components, and altera-
tion of pathogen activates [98–101]. Numerous studies 
have demonstrated that various chemicals components 
of herbal plants possess antibacterial properties that can 
protect the human body against diseases without being 
damaging to cells [102]. Herbal or synthetic antimicrobial 
agents are both possible. The main negative effect of syn-
thetic substances including antibiotics, metals, and metal 
oxide nanoparticles is the production of ROS, which is 
extremely hazardous and can lead to cancer [103]. On 
the other hand, herbal antimicrobial compounds includ-
ing cinnamon, thyme, chamomile, eucalyptus, lemon 
balm, garlic, ginger, and others are free scavengers that 
can prevent ROS generation [102]. Antimicrobial phyto-
chemicals can be divided into several categories such as 
phenolics and polyphenol (e.g. catechol and caffeic acids 
(Fig. 5)) [104]; terpenoids and essential oils (e.g. camphor, 
farnesol and artemisinin (Fig.  5)) [104, 105]; alkaloids 
(e.g. morphine (Fig.  5)) [104]; lectins and polypeptides 

Table 1  (continued)

Drug Plant origin Clinical uses References

Thymol
(Fig. 3)

Thymus vulgaris A phenolic monoterpene used mainly for the treatment 
of the upper respiratory system. It is used as expectorant, anti-
inflammatory, antibacterial, antiseptic, and antiviral

[77]

Tubocurarine
(Fig. 3)

Chondodendron tomentosum A competitive blocker of nicotinic acetylcholine receptors used 
for the relaxation of skeletal muscles

[78, 79]

Yohimbine
(Fig. 3)

Pausinystalia yohimbe A monoterpenoid, indole alkaloid act by selective inhibition of 
presynaptic α2-adrenergic receptors (ARs) and used as a stimu-
lant and aphrodisiac to improve erectile function

[80]
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Fig. 1  Chemical structure of drugs derived from plant origin; Aescin, aesculetin, agrimophol, allyl isothiocyanate, anisodamine, artemisinin, aspirin, 
atropine, berberine, bromelain, camphor, camptothecin, catechin, cocaine, codeine, colchicine. Convallatoxin, curcumin, deslanoside, digoxin, 
emetine, ephedrine, etoposide, and Galantamine
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(e.g. Thionins (Fig.  5)) [106–108]; polyacetylenes (e.g. 
8S-heptadeca-2(Z),9(Z)-diene-4,6-diyne-1,8-diol (Fig. 5)) 
[109], and many others.

Antibacterial phytochemicals
Phenolics and polyphenol  Polyphenols are a wide class 
of chemical substances found in plants that have a vari-
ety of biological functions [110]. Flavonoids (such as 
luteolin (Fig. 5), quercetin (Fig. 5), catechin (Fig. 2), and 
epicatechin (Fig. 5)) and nonflavonoids (such as benzoic, 
cinnamic acids, tyrosol, and hydroxytyrosol (Fig. 5)) are 
two categories of polyphenols that can be simple, large, 
or complex compounds[111]. Phenolic compounds have 
been used in traditional medicine, and although their 
mode of action as antibacterial agents is still not com-
pletely understood, it does appear to be distinct from 
that of antibiotics, reducing the risk of cross-resistance 
and making them a promising agent against resistant 
pathogens [112–114]. Inhibiting the growth of Helicobac-
ter pylori is one of the potential benefits of polyphenols, 
which are powerful antioxidant and anti-inflammatory 
compounds found in foods like broccoli, garlic, liquorice, 
cranberries, and curcumin [115, 116]. Due to antibiotic 
resistance and issues with patient compliance, H. pylori 
eradication rates with triple therapy, which includes 
clarithromycin, metronidazole, or amoxicillin in com-
bination with a proton pump inhibitor, are lower than 
50–70%. The bismuth-containing quadruple therapy, as 
well as sequential and hybrid regimens, is now advised for 
treating H. pylori infection. There is not currently a ther-
apy with > 90% eradication rates, though [117–121]. To 
determine the impact of polyphenol components (garlic, 
liquorice, cranberry, curcumin, and broccoli) on the elim-
ination of H. pylori infection, Wang et al. [122] conducted 
a meta-analysis study. The study discovered that polyphe-
nol compounds may have a positive impact on the elimi-
nation of H. pylori, since the total elimination rate of the 
bacteria was higher in the polyphenol compounds group 
than in the control group. The research backs the adju-
vant use of polyphenolic substances in the treatment of H. 
pylori. The polyphenol content of garlic makes it a potent 
alternative to conventional H. pylori treatment, accord-
ing to in  vitro studies [123–125]. Additionally, liquorice 
has anti-H. pylori properties [126]. Studies conducted 
in  vitro revealed that Glycyrrhiza glabra and its aque-
ous extract have anti-H. pylori activity. Possible mecha-
nisms of action include blocking dihydrofolate reductase, 
DNA gyrase, protein synthesis, and H. pylori adherence 
to human stomach tissue. Additionally, the components 
of cranberry juice prevent the adherence of a number 
of pathogenic infections, including the influenza virus, 
E. coli, and H. pylori [127–129]. According to in  vitro 
research, H. pylori was prevented from proliferating and 

was caused to produce a coccoid form by the polyphenols 
in cranberry extract [130–132]. Turmeric root contains 
the poly-phenolic compound curcumin (diferuloylmeth-
ane) (Fig. 5) [133]. Curcumin administration significantly 
reduced inflammation in gastric mucosa infected with 
H. pylori, according to animal studies [134]. Addition-
ally, in  vivo administration of sulphoraphane-rich fresh 
broccoli (Fig.  5) sprouts to mouse models reduced H. 
pylori colonization and prevented lipid peroxidation in 
the stomach mucosa [135, 136]. Żurek et al. [137] investi-
gated the biological potential of polyphenolic substances 
isolated from walnut (Juglans regia L.). The edible ker-
nels of walnuts, which also include polyunsaturated fatty 
acids (PUFA), tocopherols, phytosterols, and vitamins in 
addition to a number of other bioactive chemicals, are a 
rich source of polyphenols [138–141]. In addition, other 
parts of walnuts such as leaves are valuable products as 
well and their content was assessed spectrophotometri-
cally by UPLC-PDA-MS/MS method. Several phenolic 
compounds were identified and expressed as total phe-
nolic (TPC), proanthocyanidin (TPA) (Fig.  5), and total 
flavonoid contents (TFC) with quercetin 3-O-glucoside 
(Fig.  5) and quercetin pentosides (Fig.  5) dominating. 
Aqueous walnut leaf extracts antibacterial and antifungal 
activities were tested against Gram-negative bacteria (E. 
coli, Klebsiella pneumoniae,  Pseudomonas aeruginosa), 
Gram-positive bacteria (Staphylococcus aureus,  Ente-
rococcus faecalis, Streptococcus pyogenes), and fungus. 
(C. albicans). Result showed highest susceptibility (at 
10 mg/ml concentration) against K. pneumoniae, and S. 
pyogenes,  less bactericidal activity against gram-positive 
and without any antifungal effect. These findings may be 
explained by the fact that gram-negative bacteria’s cell 
walls contain lipopolysaccharide (LPS), which creates a 
hydrophilic environment and shields it from hydropho-
bic molecules. The aqueous and ethanol extracts of wal-
nut leaves may contain more hydrophilic compounds as a 
result, leading to higher inhibitory activity against gram-
negative bacteria [137]. In similar context, Bouslamti 
et  al. [142] tested antioxidant and antibacterial activity 
of Solanum elaeagnifolium leaf and fruit extracts against 
Gram-positive (Staphylococcus aureus and Bacillus subti-
lis), Gram-negative bacteria (Escherichia coli and Proteus 
mirabilis), and Candida albicans. HPLC and colorimetric 
methods were used to determine the chemical compo-
sition of S. elaeagnifolium  fruits and leaf extracts which 
are quercetin (Fig. 5), luteolin (Fig. 5), gallic acid (Fig. 5), 
and naringenin (Fig.  5). Result showed that the extracts 
generated good antioxidant activity and potent antifungal 
activity. Nonetheless, further studies are needed to assess 
potential adverse effects. Meadowsweet plant (Filipen-
dula ulmaria  (L.) Maxim.) has been also used in tradi-
tional medicine due to its wide range of pharmacological 
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Fig. 2  Chemical structure of drugs derived from plant origin cont., glaucarubin, glaucine, glycyrrhizin, gossypol, hesperidin, hyoscyamine, 
irinotecan, L-Dopa (Levodopa), morphine, ouabain, paclitaxel, papain, papaverine, physostigmine, pilocarpine, pseudoephedrine, quinine, reserpine, 
and scopolamine
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effects [143, 144]. For the biological activity of meadow-
sweet, phenolic secondary metabolites are thought to be 
responsible, including phenolic acids and their derivatives 
(such as gallic acid and salicylic acid in Fig. 5), flavonoids 
and flavonoid glycosides (such as kaempferol and astraga-
lin in Fig. 5), and tannins (such as tellimagrandin I, II, and 
rugosin D) [145, 146]. Meadowsweet extracts from dif-
ferent organs and parts (leaves, flowers, fruits, and roots) 
have been studied for their antioxidant and antibacterial 
properties by Savina et al. [147] Gram-negative bacteria 
P. aeruginosa and Gram-positive bacteria B. subtilis were 
used to investigate the antibacterial activity of flower and 
fruit extracts. All portions of the meadowsweet plant had 
a high overall phenol level, whereas the flowers had a high 
flavonoid concentration. The primary flavonoids in mead-
owsweet include luteolin, kaempferol derivatives, and 
spiraeoside (Fig.  5), which all have potent antibacterial 
properties. Meadowsweet plants were also found to have 
significant amounts of salicylic acid and its derivatives, 
which are thought to have anti-inflammatory effects. 
Furthermore, it was shown that meadowsweet roots had 
greater total catechin and proanthocyanidin contents 
than other sections, while the fruits had higher total tan-
nin contents, particularly tellimagrandins I and II and 
rugosin D. All of the components had anti-inflammatory 
and antibacterial effects.

Terpenoids and  essential oils (EOs)  More than 17,500 
plant species can produce essential oils (EOs), which are 
volatile secondary metabolites with a particular flavour or 
scent [148]. The cytoplasm and plastid of plant cells pro-
duce EOs compounds, which are then stored in intricate 
secretory structures including glands and secretory cavi-
ties before being present as liquid drops in the flowers, 
leaves, stems, fruits, bark, and roots of plants. In addition 
to many other substances like fatty acids, oxides, and 
derivatives of sulphur, the primary constituents of EOs 
include terpenes, terpenoids, and phenylpropanoids [149, 
150]. EOs are produced through mechanical cold pressing 
of plants, steam distillation, dry distillation, hydrodistilla-
tion, and more recent techniques including microwaves 
and supercritical fluid extraction. Depending on the 
method used, different chemical compositions of EO were 
obtained [150–152]. Due to their biological characteris-
tics, including their antibacterial qualities, EOs have been 
utilized as perfumes, food spices, and in folk medicine 
[153]. Terpenes, which make up the majority of essential 
oils (EOs), are generated from the isoprenoid pathway and 
are made up of isoprene units (C5). On the basis of this, 
terpenes are classified as monoterpenes (C10), sesquiter-
penes (C15), diterpenes (C20), triterpenes (C30), and 
carotenoids (C40). Terpenes have a variety of chemical 
properties, including alcohol (terpineol, menthol, carveol, 
linalool, and citronellol; Fig. 6), aldehyde (citral and cit-
ronellal; Fig.  6), ketone (carvone; Fig.  6 and camphor; 

Fig. 3  Chemical structure of drugs derived from plants cont. sennosides A, B, tetrahydrocannabinol (THC), theophylline, thymol, tubocurarine, 
and yohimbine
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Fig. 5), phenol (thymol; Fig. 3; and carvacrol; Fig. 6); ether 
(eucalyptol; Fig.  6), and hydrocarbon (pinene, and 
limonene; Fig. 6) groups [154, 155]. An antibacterial, anti-
fungal, antioxidant, anti-inflammatory, analgesic, anti-
mutagenic, and wound-healing compound, thymol is a 

phenolic monoterpene. Due to its strong antibacterial 
characteristics, it also enhances digestion, lessens respira-
tory issues, and is used in dentistry to treat infections of 
the oral cavity [156]. Majorana syriaca, sometimes known 
as thyme, is a widespread east Mediterranean aromatic 

Fig. 4  Structure of a gram-negative bacteria and its mechanism of resistance and b gram-positive bacteria and its resistance mechanism
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Fig. 5  Chemical structure of antimicrobial phytochemicals including catechol, caffeic acids, camphor, farnesol, artemisinin, morphine, thionins, 
8S-heptadeca-2(Z),9(Z)-diene-4,6-diyne-1,8-diol, luteolin, quercetin, epicatechin, benzoic, cinnamic acids, tyrosol, hydroxytyrosol, sulphoraphane, 
proanthocyanidin (TPA), quercetin 3-O-glucoside, quercetin pentosides, gallic acid, naringenin, salicylic acid, kaempferol, astragalin, tellimagrandin I, 
II, rugosin D, and spiraeoside
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species with a high content of essential oils that give the 
plants their distinct flavour and perfume as well as anti-
bacterial and antifungal properties. Due to its high vola-
tile oil content, M. syriaca is used in traditional medicine 
to cure the flu, colds, and cough. The primary essential oil 
in thyme is thymol, which is used in mouthwashes as an 

antibacterial. Additionally, thyme extracts are added to 
cough syrups to treat coughs and other respiratory issues 
like bronchial issues. Thyme essential oils’ high phenol 
concentration is what gives them their potent antibacte-
rial properties, allowing for usage as a potent disinfectant, 
in oral medicinal preparations, and as a flavouring ingre-

Fig. 6  Chemical structure of essential oils (EOs) and terpenoids including terpineol, menthol, carveol, linalool, citronellol, citral, carvone, carvacrol, 
eucalyptol, a-pinene,limonene, a-phellandrene, c-terpinene, o-cymene, p-cymene, b-myrcene , camphene, eugenol, 1,8-cineole, terpinen-4-ol, 
nerol, caryophyllene, methyl estragole, methyl cinnamate, methyl chavicol, and rosmarinic acid
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dient in numerous food products [157–161]. Abu-Lafi 
et  al. [162] used static headspace-gas chromatography/
mass spectrometry (SD-GCMS) analysis to determine 
essential oils in thyme leaves and identified 29 monoter-
penes (oxygenated and hydrocarbons) such as thymol, 
carvacrol, a-phellandrene, a-pinene, c-terpinene, 
o-cymene, p-cymene, and b-myrcene (Fig. 6). The primary 
components of oxygenated monoterpenes in thyme leaves 
were the phenolic substances thymol and its geometric 
isomer carvacrol. The investigation also revealed the pres-
ence of thymoquinone, which is known to play a protec-
tive function against oxidative damage brought on by 
chemicals that produce free radicals, such as carbon tetra-
chloride. Free terpenes present in EOs were investigated 
for their antibacterial activity by Guimares AC et al. [154]. 
Results showed that hydrocarbons such terpinene, cam-
phene, R-(-)-limonene, and (+)-α-pinene have inferior 
antibacterial action to oxygenated terpenes like phenolics 
(Fig.  6), which is consistent with the findings of earlier 
studies [163–167]. Eugenol and terpineol showed rapid 
and excellent bactericidal action against  Salmonella 
enterica and S. aureus strains, respectively. Moreover, car-
veol, citronellol, and geraniol exhibited rapid bactericidal 
effect against E. coli. Therefore, hydroxyl groups in phe-
nolic and alcohol compounds resulted in higher antimi-
crobial activity than hydrocarbons [154]. The antibacte-
rial properties of EOs from Cinnamomum cassia bark and 
Eucalyptus globulus leaves are well established. These 
EOs’ main secondary metabolites, 1,8-cineole (Fig. 6) and 
trans-cinnamaldehyde (Fig.  6), are what provide these 
compounds their therapeutic properties. However, ethno-
botanical physicians prefer the use of entire EOs over 
purified components to treat bacterial infections [168–
170]. Therefore, a set of 6 g-positive and -negative bacteria 
were used by Nguyen HTT et al. [171] to evaluate the anti-
bacterial activity of plant EOs to their separated main 
components. According to the findings, entire oils of 
eucalyptus and cinnamon with low concentrations of 
1,8-cineole (61.2%) and trans-cinnamaldehyde (89.1%) 
have more favorable effects than the active components 
that have been refined to less than 99%. Additionally, CC 
crude extract had greater and stronger effects on both 
gram-positive and gram-negative bacteria compared to 
EG. The study’s findings support the use of complete 
essential oils for bacterial infections in traditional medi-
cine since they offer advantages over isolated constituents 
that might not have the same effects when used as medi-
cations. To combat foodborne infections, EOs can also 
stop bacterial growth [172]. Another study by Trinh et al. 
[173] looked at the antibacterial properties of trans-cin-
namaldehyde, the major component of Cinnamomum 
cassia essential oil, in relation to the Listeria innocua 
strain. The accumulation of trans-cinnamaldehyde in the 

hydrophobic core of the cytoplasmic membrane of L. 
innocua, which results in membrane disruption, was 
found to be the cause of the antibacterial action of trans-
cinnamaldehyde as well as other minor C. cassia essential 
oil. Although there was no evidence of large hole creation 
or cell lysis, viable but nonculturable (VBNC) cells did 
start to appear. To use C. cassia EO and trans-cinnamal-
dehyde rationally in food preservation, a better under-
standing of their modes of action is required. Kolozsváriné 
Nagy J et  al. [174] tested EOs of cinnamon, eucalyptus, 
thyme, clove, tea tree, rosemary, lemon grass, lemon balm, 
and citronella grass against Xanthomonas arbori-
cola pv. pruni (Xap) which is responsible for water-soaked 
spots on the surface of leaves, and fruits that may lead to 
severe infections and complete destruction of the plant. 
High-performance thin-layer chromatography (HPTLC)-
Xap  combined with solid-phase microextraction-gas 
chromatography/mass spectrometry (SPME-GC/MS) 
was used to identify active EOs’ components. All EOs 
inhibited bacterium isolates with superiority to cinnamon 
with MIC values of 31.25 µg/mL and 62.5 µg/mL, while 
the tea tree EO was the least effective with the highest 
MIC values. Compounds that are identified to have anti-
bacterial activity by HPTLC zones are trans-cinnamalde-
hyde in cinnamon, thymol in thyme,  eugenol in clove, 
terpinen-4-ol (Fig.  6) in tea tree, borneol in rosemary 
(Fig. 6), citral in lemon grass and lemon balm, and citron-
ellal and nerol in citronella grass (Fig.  6). Biofilms pro-
duced by bacteria are one of the reasons for the resistance 
of bacteria and can act as reservoirs for spoilage bacteria 
in food such as Shewanella putrefaciens which is the chief 
spoilage bacteria in fish [175, 176]. Therefore, Xie et  al. 
[177] studied antibacterial effectiveness of  Ocimum 
gratissimum L. essential oil (OGEO) in vitro against She-
wanella putrefaciens to be used as natural preservative. 
The main active ingredients of OGEO are eugenol and 
caryophyllene (Fig.  6) which have antibacterial activity 
according to previous studies. The study demonstrated 
that OGEO had a positive inhibitory effect on the growth 
of S. putrefaciens and act by disrupting the formation of 
biofilms and cell membranes of the bacteria with mini-
mum inhibitory concentration and minimum bactericidal 
concentration of 0.1%. inhibiting S. putrefaciens by EOs 
provide a new method of inhibiting the spoilage of food. 
Ocimum basilicum (Great basil or Saint-Joseph’s wort) 
from Lamiaceae family contains many bioactive second-
ary metabolites such as polyphenols, flavonoids, and ter-
penes. Main EOs included in the plan are linalool, methyl 
estragole, methyl cinnamate, and methyl chavicol (Fig. 6) 
[178–181]. Ocimum basilicum has many pharmacological 
activities and has been used in traditional medicine as 
antioxidant, anticancer, antiviral, antiaging, and antimi-
crobial properties [182–184]. Studies showed that the bio-
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logical activity of O. basilicum is related to cinnamic acid 
(Fig.  5) derivative of the polyphenoid rosmarinic acid 
(Fig. 6) [185]. Eid et al. [186] studied O. basilicum seeds 
essential oil biological activity and showed that it had a 
broad-spectrum antibacterial activity. The oil suppressed 
the development of all tested microbial strains (minimum 
inhibitory concentrations (MICs) between 1 and 2.3 µg/
mL) and fungus strain C. albicans (MICs of 1.3 µg/ml for 
fungus). Antibacterial activity may refer to the presence of 
phenolic components in the essential oil which trigger 
intracellular ATP and potassium ion leakage and lead to 
cell death. Yaldiz et al. [187] also investigated antibacte-
rial, antiquorum sensing, and antibiofilm capabilities of 
the ethanol extract and essential oil derived from O. 
basilicum. Results revealed that in addition to having anti-
fungal effects on C. albicans, basil essential oil also dem-
onstrated antibacterial activity and antiquorum sensing 
activity against some Gram-positive and -negative bacte-
rial species.

Alkaloids  Alkaloids are a wide and diverse group of sec-
ondary metabolites found in 300 plant families and can be 
found as well in bacteria, fungi, and animals. Alkaloid name 
came from their basic nature and is characterized by the 
presence of a basic nitrogen atom in the form of a primary 
(RNH2), secondary (R2NH), or tertiary amine (R3N). Alka-
loids can be monomers or oligomers and can be classified 
into three major categories: true-alkaloids with N-atom 
in the heterocycle, proto-alkaloids without N-atom, and 
pseudo-alkaloids with a basic carbon skeleton [112, 188–
192]. Heterocyclic alkaloids can be divided into 14 sub-
groups that include, pyrrolizidines, pyrrolidines, indoles, 
isoquinolines, quinolizidines, purines, piperidines, tro-
panes, and imidazoles [193]. A rich source of bioactive 
compounds is Marine invertebrates which developed 
a defence chemical system to protect themselves from 
predation. Marine sponges are a rich source of second-
ary metabolites which are responsible for their numerous 
biological activities such as anti-inflammatory,anticancer, 
antiviral, antibacterial, and anticoagulant activities [194–
196]. The sponge  Luffariella variabilis exhibit antibac-
terial activity against gram-positive bacteria due to the 
presence of sesterterpenes manoalide, secomanoalide,and 
trans- and cis-neomanoalide (Fig. 7) [197]. Moreover, the 
sponges Poecillastra sp. and Jaspis sp., contain psamma-
plin A (Fig. 7), a bromotyrosine-derived natural product, 
while the sponge  Siliquaria  sp. contain the motualevic 
acids (A–F) (Fig. 7) a halogenated glycyl-lipid conjugates 
which all inhibit gram positive-bacteria only and are inac-
tive against gram-negative bacteria [198, 199]. Antibacte-
rial and antibiofilm activity of another group called the 
pyrrole-imidazole alkaloids was studied and tested against 
gram-positive and -negative bacteria. Bromoageliferin 

(Fig.  7) is a member from pyrrole-imidazole alkaloids 
family isolated from marine sponges with other members 
such as oroidin and sceptrin (Fig. 7). Reports documented 
the inhibition of Rhodospirillum salexigens  SCRC 113 
biofilms formation a marine bacterium by oroidin and 
bromoageliferin which resulted in using them as tem-
plates to develop numerous analogues and study their 
antibiofilm activity [200–209]. Melander et al. [210] stud-
ied pyrrole-imidazole alkaloids (monomeric and dimeric 
alkaloids) ability to inhibit biofilm formation and suppress 
antibiotic resistance against gram-negative  Acinetobac-
ter baumannii and gram-positive methicillin-resistant S. 
aureus (MRSA). Result showed that monomeric alkaloid 
oroidin exhibited modest activity against both strains, 
while stevensine (monomeric oroidin analogue) (Fig.  7) 
was inactive. On the other hand, the dimeric alkaloids 
Sceptrin was slightly more active against  A. baumannii, 
while dibromosceptrin (Fig. 7) and bromoageliferein were 
both more active against MRSA with bromoageliferin as 
the most potent compound. Result indicated that both 
monomeric and dimeric alkaloids can inhibit phenotypic 
and genotypic bacterial resistance mechanisms; there-
fore, a high-throughput screening is needed to identify 
marine natural compounds to be used as adjuvants with 
antibiotics to restore FDA-approved antibiotics efficacy 
and to find alternative approaches to combating MDR 
bacteria. Tuberculosis (TB) is a widespread infectious 
disease, and due to the increase of multidrug-resistant 
(MDR) and extensively drug-resistant (XDR) strains new 
antiTB agents are needed. Arai et al. [211] isolated several 
compounds from marine sponge of Haliclona sp. such as 
tetracyclic alkylpiperidine alkaloid, 22-hydroxyhaliclona-
cyclamine B, and haliclonacyclamine A and B alkaloids 
(Fig.  7) to be used as antidormant mycobacterial com-
pounds. Result showed strong antimycobacterial activity 
under both aerobic and hypoxic condition against Myco-
bacterium smegmatis and M. bovis Bacille de Calmette et 
Guérin (BCG) from both haliclonacyclamine. Haliclona-
cyclamine B exhibited bactericidal activity against M. 
bovis(BCG), while hydroxyhaliclonacyclamine B showed 
weaker antimicrobial activities against Mycobacterium 
bacilli and reduced antimycobacterial activity which may 
be due to the presence of the 22-hydroxy group. Wijaya 
et  al. [212] studied  Dicranostigma franchetianum  plant 
from Papaveraceae family and isolated a wide spectrum of 
isoquinoline alkaloids (IAs) such as berberine, cheleryth-
rine, protopine, and sanguinarine (Fig. 7). Alkaloids were 
tested against Mycobacterium tuberculosis  H37Ra and 
four other mycobacterial strains. Most isolated alkaloids 
exhibited weak or no antimycobacterial activity; however, 
benzophenanthridine (6-ethoxydihydrochelerythrine) 
and bisbenzophenanthridine (bis-(6-(5,6-dihydrocheler-
ythrinyl))ether) alkaloid derivatives (Fig. 7) showed mod-



Page 15 of 45Breijyeh and Karaman ﻿Future Journal of Pharmaceutical Sciences           (2024) 10:68 	

Fig. 7  Chemical structure of alkaloids compounds including secomanoalide, neomanoalide, psammaplin A, motualevic acids (A–F), 
bromoageliferin, oroidin, sceptrin, stevensine, dibromosceptrin, 22-hydroxyhaliclonacyclamine B, haliclonacyclamine A and B, berberine, 
chelerythrine, protopine, sanguinarine, 6-ethoxydihydrochelerythrine, bis-(6-(5,6-dihydrochelerythrinyl))ether, oliveridine, and pachypodanthine
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erate antimycobacterial activity against all tested strains. 
Moreover, semisynthetic berberine derivatives resulted in 
a significant increase in antimycobacterial activity against 
all tested strains. Further studies are needed to develop 
more potent berberine derivatives with low cytotoxic pro-
file. On the other hand, Dong et al. [213] conducted a bio-
assay-guided phytochemical study on the semi-mangrove 
plant  Myoporum bontioides  A. Gray, which belong to 
Myoporaceae family and tested its activity against methi-
cillin-resistant  S. aureus  (MRSA). New sesquiterpene 
alkaloids and furanosesquiterpenes were isolated from 
the plant, and result showed that sesquiterpene alkaloids 
displayed potent anti-MRSA activity. Alkaloids also can 
be used in food system to prevent or treat foodborne dis-
eases such as oliveridine and pachypodanthine (Fig. 7) an 
aporphinoid alkaloids. Marco Di et al. [214] tested these 
alkaloids against Yersinia enterocolitica  an important 
foodborne pathogen that cause a gastrointestinal disease 
in humans called yersiniosis. Result showed that both oli-
veridine and pachypodanthine inhibited the growth of Y. 
enterocolitica with superiority for oliveridine with lower 
MIC values which open an opportunity to develop poten-
tial antimicrobial agents to prevent or treat foodborne 
diseases.

Lectins and  polypeptides  Naturally antimicrobial pro-
teins and peptides can be found in humans, animals, 
plants, and microorganisms. Plants include proteins 
called lectins that attach to certain carbohydrates on the 
surfaces of microbes, aiding in the defensive mechanisms 
against pathogens. Plant lectins are classified according to 
their affinity for monosaccharides and complex glycans, 
but they do not interact with endogenous cellular glycans. 
Instead, they have a strong affinity for the sugars on bac-
teria, fungi, and other organisms, which suggests that they 
serve as a plant defence molecule [215–218]. Lectins have 
different types including C-type lectins (e.g. endocytic lec-
tins), S-type lectins (e.g. galectins), L-type lectins, P-type 
lectins, M-type lectins, Jacalin-related lectin (JRL),siglecs, 
Oscillatoria agardhii  agglutinin homolog (OAAH), 
Cyanovirin-N homologs (CVNHs),  Galanthus niva-
lis  agglutinin-like (GNA-like) lectins, and others [219]. 
Lectins have been used in medicine as immunomodula-
tors against tumour cells and microbial infections. More-
over, lectins showed to be able to disrupt quorum sensing 
(QS) signal transduction and interfere with nonessential 
functions for cell viability [220, 221]. Lectins purified 
from Moringa oleifera  leaf (SLL-1, SLL-2, and SLL-3) 
showed variable antibacterial potency against E. coli, Shi-
gella dysenteriae, and S. aureus, while water-soluble lectin 
purified from Moringa oleifera seeds significantly reduced 
S. aureus but not E. coli [222, 223]. On the other hand, 
mannose-glucose-binding lectin isolated from Calliandra 

surinamensis leaf did not kill S. aureus nor Staphylococcus 
saprophyticus but reduced their growth and their biofilm 
formation with no activity against E. coli  [224]. In addi-
tion, a rich source of lectins is Marine species that include 
green algae (22%), red algae (61%), and cyanobacteria 
(17%) [225]. Few literature studies discussed the poten-
tial usefulness of algal or cyanobacterial lectins as anti-
bacterial agents [226–228]. Purified lectins isolated from 
two red algal species,  Eucheuma serra  (ESA) and  Gal-
axaura marginate  (GMA), showed strong inhibitory 
action against marine gram-negative Vibrio vulnificus, 
while no action recorded for other two Vibrio species, V. 
peagius and V. neresis according to Liao et al. [229] study. 
Selectivity in the inhibition is referred to the differences in 
bacterial surface carbohydrates. Furthermore, Hung et al. 
[230] isolated lectins from Eucheuma denitculatum (EDA) 
red algae which also exhibited activity selectivity against 
V. alginolyticus, but not against V. parahaemolyticus or V. 
harveyi due to the binding of lectins to high-mannose 
N-glycans. Moreover, Holanda et  al. [231] isolated lec-
tins from Solieria filiformis red alga and tested its activ-
ity against gram-negative and -positive bacteria. Result 
showed that lectins inhibited the growth of the gram-
negative species; Salmonella typhi, Serratia marcescens, 
Klebsiella pneumoniae, Pseudomonas aeruginosa, Entero-
bacter aerogenes, and Proteus sp., while it stimulated the 
growth of the gram-positive species Bacillus cereus. No 
activity was noticed against S. aureus, B. subtilis, E. coli, 
and Salmonella typhimurium. The interaction between 
the S. filiformis lectin and the gram-negative bacteria’s 
cell surface receptors, which encouraged changes in the 
flow of nutrients, may be the cause of the activity against 
gram-negative bacteria. These findings raised the pos-
sibility of using marine lectins as organic substitutes for 
antibiotics in the treatment of gram-negative pathogens 
[232]. As mediators of innate immunity in all living things, 
antimicrobial peptides (AMPs) or host defence peptides 
are also recognized to play a significant role in biological 
processes. Because AMPs are cationic and amphipathic, 
they can more easily pass through microbial cytoplas-
mic membranes and cause cell lysis. The usage of AMPs 
is constrained for a variety of reasons, including their 
undesirable cell toxicity, restricted availability, high cost 
during synthesis, sensitivity to protease degradation, and 
others [233, 234]. Compared to other species, plants have 
more AMPs, which typically have 20–50 amino acid resi-
dues and are abundant in glycine, cysteine, and positively 
charged residues [234, 235]. Plant AMPs are divided into 
thionins, defensins, α-hairpinins, nonspecific lipid trans-
fer proteins (nsLTPs), hevein- and knottin-like peptides 
based on their 3D structure and cysteine signature [236]. 
A study of cysteine-rich peptides (CRPs) revealed that 
they all had a structural component in common called 
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the γ-core that is responsible for their antibacterial activ-
ity. This structural element has an antiparallel β-hairpin 
conformation [237]. Thionins are poisonous to yeast, fun-
gus, and bacteria. Antifungal activity was defined as the 
development of pores or a specific contact with a particu-
lar lipid domain as a result of direct protein-membrane 
interactions between positively charged thionin and the 
negatively charged phospholipids in fungal membranes 
[238, 239]. The antibacterial, antifungal, proteinase, and 
insect amylase inhibitory properties of plant defensins 
also classify them as γ-thionins [240, 241]. Although the 
exact mechanism of action of defensins is yet unknown, 
and not all plant defensins work in the same way, they 
almost certainly use glucosylceramides as receptors for 
fungal cell membrane entry. Ion outflow and membrane 
rupture are caused by defensins’ positive charges repelling 
one another into the cell membrane [242]. Similar behav-
iour has been seen with nsLTPs, which interfere with the 
biological membrane permeability and integrity of patho-
gens [243]. Gram-positive bacteria (Bacillus megaterium 
and Sarcina lutea) and a number of fungi were able to halt 
the formation of powerful nsLTPs that were isolated from 
onion seeds [244, 245]. Sunflower (Helianthus annuus) 
seed-derived nsLTP also demonstrated antifungal activ-
ity [246]. The α-hairpinins are a different small family of 
AMPs that includes peptides with a wide range of bio-
logical activities, including antifungal and antibacterial 
activity [247]. The rubber tree (Hevea brasiliensis) (which 
produces latex that is similar to hevein) gave its name to 
the family of AMPs that resembles hevein. Hevein-like 
peptides are extremely stable, cysteine-rich substances 
that withstand heat and protease activity. They are active 
against a variety of phytopathogens, including bacteria 
and fungus, due to their capacity to interact with path-
ogens’ cell wall chitin, which is missing in plants [248]. 
Tk-AMP-K210-23, a knottin-like peptide isolated from T. 
kiharae seeds, was also discovered to have antibacterial 
action. According to the results of flow cytometry, there 
were less Cr. neoformans cells, which suggest that the pep-
tide caused cell lysis by interfering with the integrity of 
the membrane [249–251]. More research and focus are 
required on peptides that are particularly effective against 
specific infections in order to create new antimicrobial 
agents.

Polyacetylenes  A wide variety of biomasses, including 
plants (particularly species of the Apiaceae family and 
carrot), marine organisms, fungi, insects, and people, 
include polyacetylenes, which are naturally occurring 
molecules characterized by the presence of two or more 
carbon–carbon triple bonds. There are just a few papers 
on the antibacterial potential of polyacetylenes, which 
are renowned for their anti-inflammatory and anticancer 

properties [252, 253]. A large number of natural polyacet-
ylenes have been isolated such as 8S-heptadeca-2(Z),9(Z)-
diene-4,6-diyne-1,8-diol (Fig.  5) from Bupleurum salici-
folium Soland (Umbelliferae). This polyacetylene showed 
antibiotic activity against gram-positive bacteria S. aureus 
and Bacillus subtilis with no activity against gram-neg-
ative bacteria (E. coli, Salmonella sp., Pseuknas aeurigi-
nosa) and the yeast Candida albicans [109]. Falcarinol-
type polyynes (Fig. 8) showed to have antifungal activity 
that protects carrots from fungi as Botrytis cinerea Pers, 
while panaxydol and panaxytriol (Fig. 8) from Panax gin-
seng found to have cytotoxic effect against numerous can-
cer cell lines [254–256]. Exocarpos latifolius Kuntze stems 
were used to extract exocarpic acid derivatives (Fig.  8); 
some derivatives exhibited antimycobacterial activity 
against M. tuberculosis, while others exhibited no activity 
[253, 257]. Amadaldehyde, a C63 polyacetylenic aldehyde 
that was isolated from mango ginger (the rhizomes of Cur-
cuma amada Roxb.), was shown to have antibacterial and 
antioxidant activity against microorganisms in addition 
to cytotoxicity and platelet aggregation inhibitory effect 
[258]. Several polyynes such as epoxide-ketone are found 
in one of the most important oriental medicinal plants P. 
ginseng C.A. Meyer. These compounds exhibited antimi-
crobial activity against several bacteria such as Bacillus 
subtilis, S. aureus, Cryptococcus neoformans, and Asper-
gillus fumigatus which conclude that P. ginseng releases 
antimicrobial polyacetylenes into the surrounding soil 
from roots to defend the plant[259]. Moreover, triyne car-
boxylic acid compound (octadeca-9,11,13-triynoic acid) 
(Fig.  8) isolated from the roots of Polyalthia cerasoides 
(Roxb.), showed antimalarial and antimycobacterial activ-
ity against Plasmodium falciparum and M. tuberculosis, 
respectively. Furthermore, 13,14-dihydrooropheic acid 
(Fig.  8) from the extract of Mitrephora celebica Scheff, 
and debilisones A–F (Fig.  8) from the Thai herbal plan 
Polyalthia debilis (Pierre) exhibited antibacterial activity 
against Mycobacterium smegmatis and M. tuberculosis, 
respectively [260–262].

Medicinal plants with antimicrobial activities
St. John’s wort (SJW) (Hypericum perforatum)  There are 
500 species in the Hypericum (Hypericaceae) family, and 
they are all found worldwide. The most prevalent species 
is Hypericum perforatum, also known as St. John’s wort 
(SJW), which is one of the most well-known and widely 
used herbs in the world. The herb has been widely used 
for therapeutic purposes across the globe [263, 264] and 
has been included into traditional medicine. The aerial 
parts or flowering tops make up the crude form of SJW 
medicine, which is employed in multi-ingredient formula-
tions or as a monopreparation (either as is or as an extract) 
[265]. The upper stem leaves and flowering tops of H. per-
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Fig. 8  Chemical structure of polyacetylenes compounds including falcarinol, panaxydol, panaxytriol, amadaldehyde, octadeca-9,11,13-triynoic acid, 
13,14- dihydrooropheic acid, debilisones (A–F)
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foratum are used in dietary supplements to treat mild to 
severe depression [266]. The flowering tops are typically 
prepared and used for its hypnotic and tonic properties 
or to speed wound healing. Due to varying extraction 
techniques, individual plant extracts do not include the 
entire group of phytoconstituents but only some of them, 
which causes a number of issues that affect the usage of H. 
perforatum in pharmaceutical formulations. Additionally, 
some of the active ingredients may experience problems 
with stability with exposure to time or light[267]. Due to 
the plant’s synthesis of bioactive secondary metabolites 
like naphthodianthrones, flavonoids, bioflavonoids, phlo-
roglucinols, xanthones, proanthocyanidins, acid phenols, 
and essential oils [263, 268, 269], it has been the subject of 
phytochemical studies.

Antibacterial activity of SJW  Sherif et al. [270] investi-
gated the antibacterial activity of the Hypericum perfora-
tum plant. The plant extract and its fractions were evalu-
ated by Liquid Chromatography Electrospray Ionization 
Tandem Mass Spectrometric (LC–ESI–MS/MS) and 
tested against MRSA, Enterococcus faecalis, E. coli, and K. 
pneumonia MDR isolates. The results demonstrated that 
different extract from H. perforatum had a promising anti-
bacterial activity against tested pathogens, particularly 
MDR-K. pneumoniae, with inhibition zones ranging from 
17.9 to 27.9 mm and strong antioxidant effects, as opposed 
to sub-fractions extract, which demonstrated lesser inhi-
bition zones and higher MIC values. Bacterial cell mem-
branes are affected by extract of H. perforatum, which 
causes cell shrinkage and deformation that results in cell 
lysing. Additionally, the extract promoted cell elongation 
and thickness, which is similar to the actions of penicil-
lin and the antibiotic cefotaxime, according to published 
research [271–274]. These findings indicate that these 
herbal extracts can be used to treat resistant bacteria, but 
further research is required to clarify why the total extract 
showed the most potent antibacterial activity over the 
subfraction? Is it an additive effect of specific compounds 
that act together with different mechanism to inhibit 
resistance bacteria or something else?. Using H. perfora-
tum flower extracts, Okmen et al. [275] investigated the 
antibacterial activity of the bacteria that cause mastitis, 
a complicated condition characterized by inflammation 
of the parenchyma of the mammary glands and bacte-

rial alterations in milk. Along with coagulase-negative 
staphylococci (CNS), Staphylococcus, Streptococcus, and 
coliform bacteria are the pathogens that cause the disease 
[276]. Although this condition is frequently treated with 
antibiotics, new antibiotics are still needed to combat 
germs because of the emergence of antibiotic resistance. 
The study’s findings indicated that H. perforatum flower 
methanol extracts exhibit bactericidal action against 
gram-positive and gram-negative bacteria (S. aureus, Pro-
teus vulgaris, P. aeruginosa, and E. coli), with the highest 
inhibition zone against Coagulase-negative Staphylococci. 
The plant extract also demonstrated antimutagenic quali-
ties. However, additional tests are needed to know the 
extract constitutes and the bioactive compounds respon-
sible for the biological activities. Polyphenolic substances 
with pharmacological characteristics are called xan-
thones. Strong free radical scavengers, xanthones have 
been shown to have activity against a variety of bacteria, 
including vancomycin-resistant enterococci, methicillin- 
and multidrug-resistant S. aureus, and M. tuberculosis 
[277–283]. When H. perforatum was exposed to Colle-
totrichum gloeosporioides cell wall extracts, xanthone 
(Fig. 9) buildup was seen as a defence mechanism [284]. 
After elicitation with Agrobacteriumtumefaciens, Franklin 
et  al. [285] demonstrated that the antioxidant and anti-
bacterial properties in H. perforatum cells had dramati-
cally increased. The up-regulation of xanthone metabo-
lism, particularly paxanthone (Fig.  9), which increased 
12-fold within 24 h, was the cause of the enhanced activ-
ity. After 12 h of co-cultivation, the viability of A. tume-
faciens was reported to have dramatically decreased. As 
a result of the buildup of xanthones, H. perforatum cell 
antibacterial activity rose ten times. Numerous infectious 
illnesses are brought on by S. aureus. Due to its develop-
ment of resistance against practically all standard of care 
(SOC) antibiotics, Methicillin-resistant S. aureus (MRSA) 
has, regrettably, become a significant problem. Therefore, 
it is urgently necessary to create new tactics to combat 
MRSA [286–288]. Wang et al. [289] investigated the effect 
of hypericin (HYP) from H. perforatum on the susceptibil-
ity of β-lactam antibiotics (cefazolin, oxacillin, and nafcil-
lin) and their synergistic effect with oxacillin in a murine 
bacteremia model. Result showed that HYP significantly 
reduced the minimum inhibitory concentrations (MICs) 
of β-lactam antibiotics and SarA (RNA-binding protein) 

Fig. 9  Chemical structure of bioactive compounds found in St. John’s wort (SJW), rosemary, ginger which include, xanthone, paxanthone, 
hypericin, carnosol carnosic acid, p-cymene-7-ol, suberoylanilide hydroxamic acid, rosmanol, epirosmanol, isorosmanol, rosmaridiphenol, 
pyrogallol, ellagic acid, benzoic acid, butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), α-curcumene, α-farnesene, β-bisabolene, 
β-sesquiphellandrene, zingiberene, gingerol, paradol, shogaol, gingerenone-A, zingerone, 6-dehydrogingerdione, 10-gingerol, 12-gingerol, 
trans-anethole, and m-phenylphenol

(See figure on next page.)
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Fig. 9  (See legend on previous page.)
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which is a key regulator that bind on target promoters 
to control S. aureus virulence factors. Moreover, HYP 
enhanced the efficacy of oxacillin in MRSA bacteremia 
model; therefore, these results might be due to the syner-
gistic effect of HYP with oxacillin.

Rosemary (Rosmarinus officinalis, L.)
In addition to its use in food preservation to stop oxida-
tion and microbial contamination, Rosmarinus officinalis, 
L., a member of the Lamiaceae family that originated 
in the Mediterranean, is renowned for its antioxidant, 
hepatoprotective, antiangiogenic, and potential treat-
ment for Alzheimer’s disease properties [290–292]. 
Numerous polyphenolic substances, including ros-
marinic acid (Fig.  6), hesperidin (Fig.  2), carnosol, and 
carnosic acid, are found in rosemary (Fig. 9). According 
to various studies [293–295], rosemary essential oil con-
tains 1,8-cineole, camphor, and -pinene p-cymene-7-ol in 
addition to borneol (Fig. 9). Fresh or dried leaves, flow-
ers, fruits, roots, stems, seeds, and bark can all be used to 
make plant extracts, while dried samples were shown to 
contain higher quantities of flavonoids. Air, microwave, 
oven, and freeze drying are all acceptable drying tech-
niques [296–298].

Antibacterial activity of  rosemary  Rosmarinus offici-
nalis was found to have antibacterial properties in many 
research. In their research on the antibacterial properties 
of several natural extracts, including rosemary, Fernán-
dez-López et  al. [299] examined how long the shelf life 
of veal meatballs could be stored for. The results showed 
that all of the studied microorganisms were susceptible 
to rosemary extracts (oil extract, water miscible extract, 
oil, and water-miscible extract), with oil extract having 
the strongest inhibitory impact. The most vulnerable 
bacteria were Brochothrix spp., which might be a refer-
ence to the antibacterial action of nonpolar phenolic 
compounds against gram-positive bacteria. Govaris et al. 
[300], Gomez-Estaca et  al. [301], and both Camo et  al. 
[302] and Quattara et  al. [303] reported that rosemary 
EOs prevented food-spoileding bacteria from growing. 
Rosmarinus officinalis and Ocimum basilicum essential 
oils have been shown to have antibacterial action against 
multidrug-resistant clinical isolates of E. coli by Sienkie-
wicz et  al. [293]. Since both EOs were effective against 
every clinical strain of E. coli, it can be inferred that they 
can be used to treat and prevent the emergence of resist-
ance strains. Probuseenivasan et al. [304] and Mihajilov-
Kristev et al. [305] found similar results, confirming rose-
mary essential oil’s potent antibacterial action against E. 
coli. Carnosol, carnosic acid, rosmarinic acid, rosmanol, 
epirosmanol, isorosmanol, and rosmaridiphenol (Fig.  9) 
interact with the cell membrane and alter the production 

of nutrients, genetic material, and fatty acids to produce 
rosemary’s inhibitory effects. Additionally, they affect 
electron transport, result in cellular component leakage, 
interact with proteins in the membrane, and cause a loss 
of membrane functionality [306, 307]. To increase the 
effectiveness of antibiotics against multi-drug-resistant 
bacteria like MRSA, Ekambaram SP et  al. [308] looked 
into the antibacterial activity and synergistic effect of 
rosmarinic acid (dimer of caffeic acid) with conventional 
antibiotics. The agar well diffusion method was used to 
assess the antibacterial activity of rosmarinic acid against 
microorganisms. In comparison to using an antibiotic 
alone, the results demonstrated that rosmarinic acid had a 
synergistic impact with the medications ofloxacin, amoxi-
cillin, and vancomycin against S. aureus. However, only 
the vancomycin and rosmarinic acid combination was 
effective against MRSA. The activity of rosmarinic acid on 
surface proteins known as microbial surface components 
recognizing adhesive matrix molecules (MSCRAMM’s) 
present in S. aureus and MRSA was suggested to be the 
mechanism of action. Pomegranate, rosemary, and antibi-
otic were combined in a study by Abu El-Wafa et al. [309]. 
P. aeruginosa isolates with significant biofilm producers 
and antibiotic resistance were examined for the synergis-
tic effects of the combination. Pomegranate and rosemary 
plant extracts were the most successful at inhibiting bio-
film by lowering swimming and twitching motility, which 
in turn decreased bacterial cells adhering to surfaces and 
quorum-sensing (QS) signals. The presence of polyphe-
nol molecules such catechol, pyrogallol (Fig.  9), gallic, 
ellagic, rosmarinic acid, and benzoic acid may be referred 
to as these activities. There are, however, limited reports 
of plant extracts’ antibacterial and antibiofilm activity 
[114, 310–312]. As a result, combining plant extracts with 
antibiotics may be able to prevent and get rid of micro-
bial biofilms. Pomegranate and rosemary plant extracts 
combined with piperacillin, ceftazidime, imipenem, gen-
tamycin, or levofloxacin had synergistic effects against 
a P. aeruginosa isolate and dramatically reduced biofilm 
mass after 24 h compared to the use of the plant extracts 
separately or together. To investigate the effects of medic-
inal plants and commercial antibiotics against bacterial 
pathogens, additional in  vitro and in  vivo investigations 
are required. In vitro tests using butylated hydroxytoluene 
(BHT) and butylated hydroxyanisole (BHA), two antioxi-
dant food additives, and rosemary methanol extract were 
also conducted by Romano et al. [313] to examine the anti-
oxidant and antibacterial properties of the extract (Fig. 9). 
The outcomes demonstrated that rosemary extracts (ros-
marinic acid, carnosic acid, and carnosol) increased the 
antioxidant activity of BHT and BHA as well as the anti-
bacterial activity of BHA.
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Ginger (Zingiber officinale)
Zingiber officinale, a member of the Zingiberaceae fam-
ily, has been used as a spice and a herbal remedy since 
ancient times [314]. Due to the presence of numerous 
bioactive components like terpene (e.g. α-curcumene, 
α-farnesene, β-bisabolene, β-sesquiphellandrene, and 
zingiberene) (Fig.  9), and phenolic compounds (e.g. 
gingerols, paradols, shogaols, gingerenone-A (Fig.  9), 
quercetin (Fig.  5), zingerone, and 6-dehydrogingerdione 
(Fig.  9)) [315–319], the ginger root is the most signifi-
cant component that is used to cure a variety of illnesses 
including nausea, emesis, headaches, and colds. The 
majority of biological actions, including those that are 
antioxidant, anticancer, anti-inflammatory, and antibac-
terial, are caused by phenolic compounds [319–322]. 
Additionally, a number of studies [323–328] demon-
strated that ginger can prevent and treat a wide range 
of illnesses, including neurodegenerative diseases, dia-
betes mellitus, obesity, cardiovascular diseases, respira-
tory problems, and nausea and emesis brought on by 
chemotherapy.

Antibacterial activity of  ginger  Ginger essential oil is 
derived from the roots and has potential uses in a variety 
of industries, including pharmaceuticals, cosmetics, and 
food. Shewanella putrefaciens is a Gram-negative spoilage 
bacterium that can be found in aquatic products. Zhang et 
al. [329] studied the antibacterial activity of ginger essen-
tial oil against this bacterium. Result showed that ginger 
EO (Zingiberene, zingerone and α-curcumene) displayed 
significant antibacterial activity with MIC and MBC val-
ues of 2.0 and 4.0 μL/mL, respectively, against S. putrefa-
ciens by disturbing cell membrane integrity. Additionally, 
ginger essential oil (EO) has the power to alter biofilm 
metabolism and kill it, supporting its usage as a natural 
food preservative. By Wang et  al. [330], who extracted 
ginger essential oil using supercritical CO2 and steam 
distillation techniques, ginger was also demonstrated 
to be excellent for food preservation. The primary com-
ponents were identified by GC–MS as zingiberene and 
α-curcumene, and their antibacterial efficacy was evalu-
ated mostly against the pathogens that cause food deterio-
ration, E. coli and S. aureus. Through bacterial cell mem-
brane damage that resulting in protein and nucleic acid 
leaks, ginger EOs demonstrated remarkable bactericidal 
efficacy. This decreases bacterial metabolic activity, which 
ultimately leads to bacterial cell death. The expression of 
several genes encoding important enzymes, the tricarbo-
xylic acid cycle, DNA metabolism, and proteins involved 
in cell membranes is all inhibited by ginger EOs. Similar 
mechanisms of action were also observed by Zhang et al. 
[331] who found that ginger extract damaged the Ral-
stonia solanacearum cell membrane’s permeability and 

integrity, leading to the leakage of several cell compo-
nents, including nucleic acids, proteins, and others, as well 
as changes in the bacteria’s shape. Additionally, Atai et al. 
[332] showed that ethanol ginger extract can be utilized to 
treat oral candidiasis and suppress the growth of Candida 
albicans. In the same context, Park et al. [333] assessed the 
ginger’s ability to suppress mouth microorganisms linked 
to periodontitis. Result revealed that ginger extracts 
including 10-gingerol and 12-gingerol (Fig.  9) exhibited 
antibacterial activities against anaerobic Gram-negative 
bacteria, Porphyromonas endodontalis, Porphyromonas 
gingivalis, and Prevotella intermedia which causes perio-
dontal diseases. Chairgulprasert et al. [334] extracted gin-
ger EOs by steam distillation of fresh rhizomes and iden-
tified its chemical constituents by GC–MS which found 
the presence of trans-anethole, m-phenylphenol, (Fig. 9) 
estragol, and camphor in the extract. Results showed that 
petroleum ether and dichloromethane extracts in addi-
tion to the EOS were able to inhibit different bacterial 
pathogens such as E. coli, S. aureus, Bacillus substilis, and 
Sarcina sp.; on the other hand, no activity was recorded 
against P. aeruginosa. Research investigations are focus-
ing on the effectiveness of combining medicinal herbs 
with antibiotics for enhanced antibacterial action. Using 
antibiotics (Ceftazidime), Sagar PK et  al. [335] assessed 
the antibacterial activity of crude methanol extracts of 
medicinal plants like eucalyptus, clove, and ginger against 
P. aeruginosa. Isolates. With ceftazidime, all plant extracts 
had a synergistic impact on P. aeruginosa. When gin-
ger and eucalyptus extracts were mixed, their separate 
MICs were not reduced; however, when ginger and clove 
extracts were combined, a maximum twofold reduction in 
MIC was discovered. When ginger extract was used with 
aminoglycosides to treat vancomycin-resistant entero-
cocci (VRE), MIC values were also lowered. By increasing 
membrane permeability and improving the influx of ami-
noglycosides into enterococcal cells, 10-gingerol has been 
shown by Nagoshi et al. [336] to be able to lower MICs 
of many aminoglycosides, including arbekacin, bacitracin, 
and polymyxin B. The effectiveness of 6-gingerol alone 
and in combination with amphotericin B against Leish-
mania in  vivo murine models was evaluated by Alireza 
Keyhani et al. [337]. In addition to its capacity to create 
an apoptotic index, raise the expression of Th1-related 
cytokines, and decrease transcription factor levels, the 
combination demonstrated a strong antioxidant and 
extreme leishmanicidal activity. When combined with 
fluconazole, methanol ginger extract demonstrated anti-
fungal activity against drug-resistant vulvovaginal can-
didiasis (VVC) in a mouse model, according to Khan et al. 
[338]. As compared to fluconazole or ginger extract used 
alone, which did not entirely cure VVC, in  vitro results 
revealed better activity for the combination of fluconazole 
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and ginger extract against C. albicans. Azole-resistant 
candidiasis may therefore be treated by administering this 
combination.

Cactus (Opuntia ficus‑indica)
Opuntia ficus-indica (L.), sometimes known as the nopal 
cactus, is a tropical and subtropical plant found in South 
Africa, Mexico, Latin America, and Mediterranean 
nations [339]. All cactus portions contain high levels of 
polyphenols, which have anti-inflammatory and antioxi-
dant qualities. The most significant source of polyphenols 
and flavonoids, including gallic acid, is found in flower 
parts. These compounds have cytotoxic and antioxidant 
properties that lessen DNA damage [340–342]. Cac-
tus fruit, also known as cactus pear, also contains fibres, 
ascorbic acid, vitamin E, amino acids, and carotenoids, 
all of which have hypoglycemic and hypolipidemic effects 
[342–344]. Due to the abundance of fatty acids, it con-
tains, including oleic acid, palmitic acid, linolenic acid, 
and linoleic acid (Fig.  10); cactus cladodes can have a 
hypocholesterolemic impact [345, 346]. Therefore, Opun-
tia ficus indica  have been used in traditional medicine 
due to the abundance natural compounds and derivatives 
for treating burns, oedema, wounds obesity, and hyper-
lipidemia, in addition to its antiviral, anti-inflammatory, 
and hypoglycemic properties[347].

Antibacterial activity of  Cactus  The extensive use of 
cactus pears flowers in traditional medicine is a result 
of their abundance in natural bioactive substances. Pro-
tein, fibre, and minerals make up the chemical makeup 
of cactus hexane extracts, as demonstrated by Ennouri 
et al. [348]. In the plant extract, octadecadienoic acid and 
palmitic acid (Fig. 10) were the primary components and 
potassium was the leading mineral. Antibacterial activity 
against E. coli and S. aureus was highly effective which 
suggest using cactus as a food preservative. There are 
few studies available on the antibacterial activities of O. 
ficus-indica. The plant has proven to be effective in wound 
healing and skin conditions such as healing laser-induced 
skin burns. Khémiri et al. [349] demonstrated that cactus 
was able to inhibit cutaneous infections by showing anti-
microbial effect against Enterobacter cloacae, antifungal 
activity against Penicillium, Aspergillus, and Fusarium 
(opportunistic cutaneous moulds), and antiyeast effect 
against Candida sake and Candida parapsilosis. There-
fore, cactus-extracted oil is a good healing agent due to its 
antibacterial effect and the ability to reduce reepitheliali-
zation phase. Future investigations are needed to identify 
the active compounds in the oil extract and its mechanism 
of action involved in the healing process. Ammar et  al. 
[350] also evaluated cactus flowers extracts (mucilaginous 
and methanol) antioxidant and antibacterial activities for 

enhancing wound healing in excision wound model in 
rats. A beneficial effect was noticed on cutaneous repair 
which assessed by acceleration in wound contraction and 
remodelling phases. Both extract showed antibacterial 
activities against tested gram-negative and gram-positive 
bacterial strain, E. coli, S. aureus, Bacillus subtilis, and Lis-
teria monocytogenes, while no antibacterial activity was 
noticed against P.aeruginosa. The result supports the use 
of O. ficus-indica as therapeutic agent for dermal wound 
healing, but more research is needed to know the exact 
mechanism of action. Alqurashi et al. [351] explored bio-
logical activities of oil from Opuntia ficus-indica seed and 
showed that it possesses an inhibitory action against Sac-
charomyces cervisiae while no activity against Aspergillus 
niger. On the other hand, Elkady et al. [352] isolated endo-
phytic Aspergillus niger fungus from cactus fruit peels and 
tested the effect of endophytic ethyl acetate extract and 
its isolated compounds (dihydroauroglaucin, isotetrahy-
droauroglaucin, and cristatumin B) (Fig. 10) on resistant 
bacterial strains. Result showed excellent activity against 
Gram-negative and gram-positive resistant bacteria. 
Another study done by Elkady et al. [353] tested methanol 
extract of cactus against pneumonial pathogens (Strepto-
coccus pneumoniae, Klebsiella pneumoniae, P. aeruginosa, 
Legionella pneumophila, Moraxella catarrhalis, and Sten-
otrophomonas maltophilia). The isorhamentin3-O-gluco-
side and isorhamnetin (Fig. 10) compounds show moder-
ate antibacterial activity against all tested microorganisms, 
while quercetin5,4’-dimethyl ether, which was isolated 
from the cactus ethyl acetate fraction, demonstrated the 
most antibacterial activity. According to these findings, 
O. ficus-indica and the components that were extracted 
from it can work as new all-natural antibacterial agents 
for the treatment of infectious disorders. Further studies 
in vivo are needed to confirm the antibacterial activity of 
the extracts. Sánchez et al. [353] studied antibacterial and 
antibiofilm activity of several methanolic plant extracts 
against nosocomial microorganisms. Methanolic plant 
extracts were tested against specific clinical bacterial iso-
lates by using well diffusion method, and results showed 
that Prosopis laevigata extract was active against all the 
clinical isolates with highest inhibition diameter against 
S. aureus  strain compared to Gutierrezia microcephala 
and O. ficus-indica  that showed lesser inhibition diam-
eter and no activity for Nothoscordum bivalve extract. 
E. coli was less susceptible, while K. pneumoniae  and E. 
faecalis were more resistant to the extracts except for P. 
laevigata and O. ficus-indica. The major reduction on the 
specific biofilm formation index (SBF) in dose-dependent 
manner and on cytotoxic activity (using brine shrimp 
lethality test) was caused by O. ficus-indica. Unfortunately, 
there are no available studies and data on the synergistic 
effect of O. ficus-indica with antibiotics which highlights 
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Fig. 10  Chemical structure of bioactive compounds from nopal cactus including oleic acid, palmitic acid, linolenic acid, linoleic acid, 
octadecadienoic acid, dihydroauroglaucin, isotetrahydroauroglaucin, cristatumin B, quercetin5,4’-dimethyl ether, isorhamentin3-O-glucoside, 
isorhamnetin
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the need for researcher to focus on studying synergistic or 
additive effect of herbal plants, especially O. ficus-indica 
with antibiotic to discover new treatments.

Medicinal plants and wound healing
The epidermis, dermis, and hypodermis are the three 
layers of the skin, one of the biggest organs in the body. 
Additionally, it serves as the initial line of defence against 
aggressors like infections, chemicals, and physical con-
tact. Due to the function of the epidermis, which blocks 
the entry or exit of water- or water-soluble substances, 
and the hypodermis, which blocks heat loss due to the 
poor thermal conductivity of fat, it also has the capacity to 
prevent water loss and preserve temperature [354–357]. 
In order to maintain skin hemostasis during inflamma-
tion, immune cells and nonimmune cells form a structure 
known as skin-associated lymphoid tissue (SALT). Addi-
tionally, the skin’s microbiome, which includes bacteria, 
fungi, and viruses, is crucial for immune response, con-
cluding that the skin serves as more than just a physical 
barrier [354, 358, 359]. Over the years, natural product 
ingredients such polyphenols, fatty acids, probiotics, pol-
ysaccharides, and others have demonstrated their efficacy 
as immune system modulators. The secret to controlling 
or curing skin inflammatory problems may lie in using 
natural products [360–362]. Skin can react to infectious 
agents through innate and adaptive immune processes, 
just as other tissues like mucosal surfaces. To isolate the 
damaged area, stop bleeding, and initiate the coagulation 
cascade, a clot must first form in order for the wound 
healing process to begin. Then comes the inflammatory 
phase, where immune cells begin to infiltrate and high 
levels of pro-inflammatory mediators are discovered to 
stop pathogen entry and more serious problems. The next 
stage is the proliferative phase, which is characterized 
by a significant growth of skin-resident cells including 
fibroblasts and high levels of angiogenesis. The remodel-
ling phase, which may last for more than a year after the 
injury, is the longest and involves the skin regaining its 
natural structure. Any issue throughout these stages may 
hamper wound healing, which may then result in infec-
tions, excruciating pain, and occasionally neurological 
damage [363–366]. Several factors can cause impaired 
wound healing such as local factors that influence the 
characteristics of the wound like oxygenation and infec-
tions and systemic factors in which overall health or dis-
ease state affects the ability to heal like hormones and 
diabetes [367–370]. Impaired wound healing can result 
from a variety of factors, including local ones that alter 
the characteristics of the wound, such oxygenation and 
infections, as well as systemic ones, like hormones and 
diabetes, that have an impact on overall health or disease 
states and the capacity to heal. Numerous abnormalities, 

including fibrosis, scarring, and nonhealing wounds like 
persistent ulcers, can result from aberrant wound repair 
[371, 372]. New compounds with antioxidant, anti-
inflammatory, and anticarcinogenic properties are being 
researched to prevent skin damage. Natural substances 
have been employed as antitumoural, analgesic, anti-
inflammatory, and antioxidant agents [373, 374]. Table 2 
lists the top plants for healing wounds.

Biopolymers
Pathogenic microorganisms (bacteria, viruses, and uni-
cellular and multicellular eukaryotes) can cause several 
series diseases which are a public health concern [440]. 
Different pathogens accumulate in acute and chronic 
wounds such as Staphylococcus aureus, Staphylococ-
cus epidermidis, Streptococcus pyogenes, Pseudomonas 
aeruginosa, and others which can affect wound heal-
ing process and increase life-threatening problems [441, 
442]. Because they are naturally occurring biomolecules 
derived from bacteria, animals, and plants, biopolymers 
play a significant role in wound care. These bioactive 
features include antimicrobial, cell proliferative, angio-
genic, and immune-modulatory polymers. These quali-
ties, along with their biodegradability, renewability, and 
decreased antigenicity, rendered them more advanta-
geous for the healing process than synthetic materials, 
which have problems with biocompatibility because of 
their harmful effects [443–445]. Natural biomaterials like 
cellulose, hyaluronic acid, collagen, alginate, and chitosan 
(Table 3) are frequently used in the wound care industry. 
With the advancement of technology, the characteris-
tics of biopolymers can be improved to meet a variety of 
wound care needs, including tissue repair, scar-less heal-
ing, and integrity restoration of lost tissue [446, 447]. By 
preventing microbes from directly interacting with the 
bacterial cell wall, producing ROS to increase oxidative 
stress, and inducing the leaking of macromolecules like 
DNA and proteins from microorganisms, antimicrobial 
biomaterials can aid in the healing of wounds [442, 448].

Extracellular vehicles (EVs)
Extracellular matrix (ECM), growth factors, and hor-
mones are just a few of the biomaterials and composites 
that have recently undergone modifications to improve 
cell survival, motility, and proliferation. One of the most 
promising methods for wound healing is extracellular 
vehicles (EVs). EVs are released by a variety of cells and 
are crucial for the phases of wound healing (hemostasis, 
inflammation, proliferation, and remodelling) as well as 
intercellular communication that promotes regeneration. 
Additionally, by labelling EVs with certain surface pro-
teins, they can be created to carry particular cargo and 
employed for targeted delivery [469–473]. Exosomes, 
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which are created during endosomal sorting, microvesi-
cles, which directly arise from plasma membranes, and 
apoptotic bodies, which are created following cell death, 
can all be classified as subpopulations of EVs [474–476]. 
The regulation of hemostasis and each stage of wound 
healing are considerably aided by EV. The most prevalent 
EVs in blood circulation are platelet-derived EVs (PEVs) 
[476–478]. The activated form of integrin IIb-3 mediates 
the role of PEVs from thrombin-stimulated platelets in 
the development of fibrin clots [479]. This form of inte-
grin αIIbβ3 has a high affinity for fibrinogen. PEVs were 
also discovered to bind tissue factor (TF) and factor XII, 
as well as to stimulate the generation of thrombin, but 
only in the presence of factor VII and xii, indicating that 

they mediate both intrinsic and extrinsic coagulation 
pathways [480]. Neutrophil-derived EVs (NDEVs) have 
been shown to have pro- or anti-inflammatory effects 
by boosting the production of ROS and IL-8 [481]. EVs 
are also involved in inflammation. Additionally, EVs 
take part in the remodelling phase (starting fibroplast 
differentiation) and the proliferation phase (EVs from 
wound edge keratinocytes, or KCs-EVs) [482]. EVs can 
be made from plants, stem cells, or engineering [482, 
483]. Membranous vesicles formed from plants are simi-
lar to mammalian exosomes but have different chemical 
compositions and include fewer proteins and no cho-
lesterol in the lipid layer. EVs made from plants are less 
harmful, safer, and expensive. Wheat, broccoli, ginger, 

Table 2  Most used medicinal plants in treating skin disorders

Plant name Active compounds Therapeutic uses References

Achillea millefolium L Flavonoids, monoterpenes, and sesquiterpenes Skin inflammatory and wound healing [375–379]

Aloe vera Acemannan (Fig. 11) Wound healing [380, 381]

Bletilla striata Triterpenoids and polysaccharides Drug delivery, wound dressing, and wound healing [382, 383]

Blumea balsamifera L-Borneol (Fig. 11) Dermatitis, eczema, skin bruises, and skin injury [384, 385]

Boswellia sacra Boswellic acids (Fig. 11) Improvement of blood circulation, pain treatment, and rheu-
matoid arthritis

[386–389]

Caesalpinia sappan Brazilin and Sappanchalcone (Fig. 11) Improvement of blood circulation,
pain treatment, and oedema

[390, 391]

Calendula officinalis Esculetin, and
Quercetin-3-O-glucoside
(Fig. 11)

Burns, dermatitis,
and wound healing

[392–394]

Celosia argentea Celosin I and Celosin II
(Fig. 11)

Skin sores and
ulcers

[395, 396]

Centella asiatica Asiaticoside and Madecassoside (Fig. 11) Wounds healing [397–399]

Cinnamomum cassia Cinnamaldehyde (Fig. 5) Analgesia and improvement of blood circulation [399, 400]

Commiphora myrrha Furanoeudesma-1,3-diene and
Terpene
(Fig. 12)

Gastrointestinal diseases, wounds, and pain [401–404]

Curcuma longa Curcuminoids (Fig. 12) Digestive diseases,
liver disorders, menstrual difficulties, pain disorders, sprains, 
and wounds

[405, 406]

Entada phaseoloides Tannin
(Fig. 12)

Aging, atherosclerosis, cancer, diabetes, and neurodegenera-
tive disorders

[407, 408]

Ganoderma lucidum Ganoderma lucidum polysaccharide Cancer, diabetes, hepatitis, leukaemia, and ulcer [409–413]

Ligusticum striatum Phthalide lactones, and alkaloids Antiatherosclerotic, antioxidant, neuroprotective, and vas-
orelaxant

[414–418]

Panax ginseng Ginsenosides (Fig. 12) Laser burn, excision wounds models in mice, cell migration, 
and wound healing assays

[419–424]

Polygonum cuspidatum Emodin, polydatin, and resveratrol (Fig. 12) Hepatitis, hyperlipidemia. Jaundice, scald, skin burns, 
and suppurative dermatitis

[425–428]

Rheum officinale Emodin (Fig. 12) Chronic kidney disease, hepatitis, and wounds healing [429–431]

Sanguisorba officinalis Polysaccharides, tannins, triterpenoid glyco-
sides, and triterpenoids

Burns, chronic intestinal infections, haemorrhoids, menor-
rhagia, and scalds

[432–434]

Sophora flavescens Kushenol, and sophoraflavanone B (Fig. 12) Asthma, burns, dysentery, eczema, fever, hematochezia, 
inflammatory Jaundice, oliguria, and vulvar swelling

[435]

Wedelia trilobata Kaurenoic acid (Fig. 12) and Luteolin (Fig. 5) Arthritic painful joints, rheumatism, and stubborn wounds [436, 437]

Zanthoxylum bungeanum Afzelin, hyperoside quercitrin, and rutin (Fig. 12) Skin wrinkles [438, 439]



Page 27 of 45Breijyeh and Karaman ﻿Future Journal of Pharmaceutical Sciences           (2024) 10:68 	

Fig. 11  Chemical structure of active compounds found in medicinal plants used to treat skin disorders including, acemannan, L-Borneol, boswellic 
acids, brazilin, sappanchalcone, esculetin, quercetin-3-O-glucoside, celosin I, celosin II, asiaticoside, and madecassoside
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Fig. 12  Chemical structure of active compounds found in medicinal plants used to treat skin diseases cont. including cinnamaldehyde, 
furanoeudesma-1,3-diene, tannin, ginsenoside, emodin, polydatin, resveratrol, kushenol, sophoraflavanone B, kaurenoic acid, afzelin, hyperoside, 
and rutin
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grapefruit, grape, lemon, and EVs were also discovered 
in the xylem and phloem of woody plants, according to 
recent investigations [484, 485]. Several plant have been 
known in pharmacognosy and phytochemistry to own 
antibleeding and hemostatic properties such as Rubia 
cordifolia,Alchornea cordifelia,  Aspilia africana,  Bap-
hia nitida,  Ageratum conyzoides, Chromolaena odorata, 
Jathropha curcas,  Landolphia owariensis,  Dalbergia sis-
soo, Aloe spesiosa, Beta vulgaris, Humulus lupulus, Salix 
alba, and others [486–488]. Different studies demon-
strated the effect of plant-derived EVs on wound heal-
ing; Perut et al. [489] isolated and purified plant-derived 
exosome-like nanovesicles (EPDENs) from strawberry 
juice of Fragaria  x  ananassa  which is characterized of 
high anthocyanins, folic acid, flavonols, vitamin C, and 
short RNAs and miRNAs contents. The uptake of Fra-
garia-derived EPDENs by mesenchymal stromal cells 
(MSC) did not affect cell viability and prevented oxi-
dative stress which may be due to the presence of vita-
min C. Additionally, exosome-like nanovesicles isolated 
from Citrus limon L. (EXO-CLs) were investigated and 
examined in  vitro on MSC by Baldini et  al. [490]. The 
findings indicated that EXO-CLs contained short RNA 
sequences (20–30 bp), vitamin C, and citrate. EXO-CLs 
were taken up by MSC and had a significant antioxidant 
activity, according to in  vitro tests. Ju et  al. team also 
found that grape exosome-like nanoparticles (GELNs) 
have a protective effect against dextran sulphate sodium-
induced colitis and facilitate intestinal tissue remodelling 
[491]. Similar outcomes were also observed with ginger-
derived EVs, which promoted intestinal wound healing 
and are presently being investigated in clinical trials for 

inflammatory bowel disease and colon cancer [320, 482, 
484]. Other plant-derived EVs, such as those from grape-
fruit and wheatgrass, improved wound healing by boost-
ing cell viability and motility [485, 492]. The formation of 
hypertrophic scars and keloid lesions has also been dem-
onstrated to be decreased by herbal extracts and active 
herbal compounds, including onion extract, epigallocat-
echin gallate from green tea, resveratrol obtained from 
peanuts, and others [493]. To retain EVs at the wound 
site and encourage longer, more effective results, they can 
be applied topically or encapsulated into scaffolds like 
hydrogels. Natural polymers like chitosan, alginate, and 
collagen are examples of hydrogels. Synthetic polymers 
like polyethene glycol, polyglycolic acid, and polyure-
thane are also possible [494–497]. A promising method 
to introduce EVs into the wound site with extended 
release involves encapsulating them in hydrogels [498]. 
To create naturally produced EVs for wound healing, fur-
ther research on particular plant species is required.

Treatment of skin disorders
Diabetic foot ulcers (DFUs)  Patients with uncontrolled 
diabetes mellitus frequently develop diabetic foot ulcers 
(DFUs), which can be brought on by poor glycemic man-
agement, peripheral vascular disease, neuropathy, or 
inadequate foot care [499]. According to the International 
Diabetes Foundation [500], there are 40–60 million per-
sons worldwide with DFUs. DFUs can be treated using 
several methods, including as gene therapy, stem cells, 
skin substitutes, and antibiotics. Due to the high cost of 
local debridement (removal of nonviable wound tissue) 
and negative pressure therapy, antibiotic resistance as 

Table 3  Natural biopolymers used in wound healing process

Biopolymer Source Biological role References

Collagen Cattle and porcine slaughterhouse wastes Skin tissue engineering, nerve regeneration, vitreous 
replacement, coating of bioprostheses, and others

[449–452]

Cellulose Plant’s cell wall (e.g. Hibiscus Cannabinus) and in several 
bacteria (e.g. Gluconacetobacter,
Agrobacterium, and Sarcina)

Artificial skin substitute and as regeneration of tissue 
for wound healing purposes

[453, 454]

Alginate Brown algae Biomedical, cosmetics, pharmaceutical, food industries [455–459]

Hyaluronic acid Synovial fluid, articular cartilage, and mammalian bone 
marrow

Bone regeneration, tissue engineering, drug delivery, 
tumour cell targeting, skin aging treatment, reduced 
wrinkles, skin firmness, skin hydration, wound healing, 
and others

[459–462]

Chitosan Partially deacetylation of chitin Wound healing, tissue engineering, cartilage regeneration, 
gene delivery, drug delivery, bioadhesive, and others

[459, 463]

κ-carrageenan Red seaweeds (Rhodophyceae) Anti-inflammatory, antithrombotic, cytoprotective, antivi-
ral, antitumour, antioxidant, antipathogenic, drugs delivery, 
wound dressing, and wound repair

[464, 465]

Silk fibroin Silkworms, spiders, and other insects wound healing, skin restoration, cellular adhesion, wound 
contraction, re-epithelialization, angiogenesis, collagen 
production, stimulation of cell migration, and inactivation 
of the apoptotic pathway

[466–468]
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a result of prolonged use, the ineffectiveness of growth 
factors to inhibit bacterial growth, and the existence of 
stem cell and gene therapies in the experimental stage, 
nonsurgical treatments for DFUs must be quick and inex-
pensive [501]. Due to their anti-inflammatory qualities, 
several herbal extracts have been utilized as traditional 
treatments to treat wounds. Liu et al. [501] designed an 
experiment to explore the effects of five herbal extracts 
on wound healing, Bauhinia purpurea (inhibit inflamma-
tion, and act as analgesic and antipyretic) [502], Paeoniae 
rubrae (ameliorating inflammation by inhibiting glycogen 
synthase kinase 3β (GSK3β)) [503],  Angelica dahurica 
(accelerate wound healing by regulating inflammation) 
[504], Acorus  calamus  L (promote collagen maturation) 
[505], and  Radix Angelicae  biseratae  (inhibit inflam-
mation and regulate immune system in osteoarthritis) 
[506]. In order to determine the mechanisms of action for 
wound healing, the mixture of herbal plants was identi-
fied by Ultra-High-Performance Liquid Chromatography 
(UHPLC) and Quadrupole Exactive-Mass Spectrometer 
(QE-MS) and tested in vivo on a rat model with diabetic 
ulcer wound utilizing transcriptomics and proteomics. 
The mixture speeds up the healing of wounds by encour-
aging angiogenesis and the growth of M2 macrophages, 
according to the results. Specific miRNAs and proteins 
were found to be crucial for controlling wound healing by 
transcriptomics and proteomics. Consequently, the herbal 
combination may offer a potential method to quicken the 
healing of diabetic wounds [501].

Atopic dermatitis (AD)  Atopic dermatitis (AD), a 
chronic and relapsing inflammatory skin condition that 
affects children and is characterized by itchy, eczematous 
skin lesions, is another skin condition [507, 508]. Intense 
itching results in skin damage that compromises tissue 
repair and allows microorganisms to infiltrate the skin 
[509, 510]. The absence of precise disease processes is a 
challenge for the development of successful AD therapeu-
tics. Flavonoids, a type of secondary metabolite found in 
plants, exhibit a variety of antiallergic properties, includ-
ing antioxidant, anti-inflammatory, antiangiogenic, anti-
bacterial, and antiviral effects [511, 512]. In foods ingested 
as part of a daily diet, quercetin (Fig. 5) is an illustration of 
a flavonoid [513]. Quercetin inhibits the release of hista-
mine, proinflammatory cytokines, and interleukin (IL)-4 
and -13, among other antiallergic characteristics. Despite 
this, there have only been a few research on quercetin’s 
effects on AD [514, 515]. Therefore, Beken et  al. [516] 
studied the effect of quercetin on AD model of human 
keratinocyte and treated it with IL- 4, -13, and tumour 
necrosis factor-α (TNF-α) to mimic AD in  vitro. Result 
showed that quercetin accelerated wound healing by 
reducing AD-inducing agents IL-1β, IL-6, IL-8, thymic 

stromal lymphopoietin, phosphorylation of extracellu-
lar signal-regulated kinase 1/2/mitogen-activated pro-
tein kinase (ERK1/2 MAPK), and nuclear factor-kappa 
B (NF-κB), while it upregulated the expression of IL-10, 
and antioxidant enzymes; glutathione peroxidase (GPx), 
superoxide dismutase-1 (SOD1), SOD2, and catalase 
(CAT), in addition to mRNA expression of Twist and 
Snail. Therefore, quercetin may act as a potential therapy 
for AD symptoms.

Conclusions and future recommendations
Extensive and inappropriate uses of antibiotics resulted 
in the development of antimicrobial resistance and the 
rise of bacterial strains that were resistant to multiple 
drugs (MDR) and multiple drugs extensively (XDR), 
which made the most powerful medications useless. 
Antimicrobial resistance is very concerning and urgent 
issue, and scientists are aware that the shelf life of anti-
biotics is finite. Natural product research is receiving a 
lot of interest internationally. Today, millions of people 
around the world turn to phytomedicine as one of their 
top options for the treatment of chronic illnesses. Medic-
inal plant extracts are crucial in the fight against infec-
tious diseases that pose a threat to public health globally. 
Alkaloids, phenolics, polyphenols, terpenoids, essential 
oils, lectins, polypeptides, and polyacetylenes are a few 
examples of antimicrobial phytochemicals that can be 
utilized as adjuvants or substitutes against bacterial infec-
tions. Medicinal plants including St. John’s wort (Hyperi-
cum perforatum), Rosemary (Rosmarinus officinalis), 
Ginger (Zingiber officinale), and nopal cactus (Opuntia 
ficus-indica (L.)) are attracting the interest of research-
ers due to their high phytochemical contents. Addition-
ally, probiotics, polysaccharides, polyphenols, fatty acids, 
and other bioactive substances can modulate the immune 
system and treat inflammatory skin diseases such atopic 
dermatitis (AD) and diabetic foot ulcers (DFUs). Natu-
ral anticarcinogenic, anti-inflammatory, and antioxidant 
substances can be employed to stop skin deterioration. 
Biopolymers derived from microorganisms, animals, and 
plants (cellulose, hyaluronic acid, collagen, alginate, and 
chitosan) and extracellular matrix (ECM) have bioactive 
properties that make them promising approaches for 
wound healing. These properties include antimicrobial, 
immune-modulatory, cell proliferative, and angiogenic 
effects.

It is essential to create innovative plans and tactics to 
deal with the issue of rising AMR. Medicinal plants con-
tain unlimited source of bioactive compounds which has 
been used in the treatment of many diseases, especially 
against bacterial infections. Despite that fact, natural 
compounds have not yet been thoroughly investigated 
and many are still unexplored. Therefore, researchers 
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should make efforts to isolate and identify new bioac-
tive compounds from plant source to face antibacterial 
resistance and find new effective treatments. Researchers 
should focus on using appropriate extraction methods 
to isolate compounds from bioactive extracts, study the 
mechanism of action, test the compounds in vivo in ani-
mal models, and apply structural modification to improve 
pharmacodynamics and pharmacokinetics. Moreover, 
further studies should be done on the synergistic or addi-
tive interactions between plant compounds itself and 
with antibiotics to enhance the action of medications.
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