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Abstract 

Background Hyaluronic acid (HA) has a broad range of cosmetic and therapeutic applications due to its unique 
physicochemical properties and involvement in various essential biological processes, including cell signaling, wound 
reparation, and tissue regeneration.

Main body In this review, we provide a comprehensive overview of HA, including its history, physicochemical 
properties, roles, molecular biology, and biochemistry (including occurrence, biosynthesis, and degradation), as well 
as its chemical modifications and conventional and emerging production methods. We also examine HA’s medical, 
pharmaceutical, and cosmetic applications and its derivatives in arthrology, ophthalmology, wound healing, odontol-
ogy, oncology, drug delivery, 3D bioprinting, and cosmetology. Finally, we discuss the potential role of HA in prevent-
ing Covid-19.

Conclusion Hyaluronic acid, a naturally found substance, has shown immense potential in the clinic. Thus, it is imper-
ative to highlight its applications in the diverse fields impacting the lives of patients and healthy individuals.

Keywords Hyaluronic acid, Biomaterials, Cosmetics, Tissue: rejuvenation, Covid-19

Background
Hyaluronic acid (HA) is a naturally occurring glycosa-
minoglycan found in vertebrate connective, epithelial, 
and nervous tissues. This versatile substance has a broad 
range of applications in the medical and cosmetic indus-
tries, such as dermal fillers, osteoarthritis treatment, 
ophthalmology, and vesicoureteral reflux. In 2018, the 
global HA market was valued at USD 8.3 billion, with 
a projected Compound Annual Growth Rate (CAGR) 
of 7.8% during the forecast period [1–3]. HA was first 
discovered in cow’s eyes in 1934 and later identified in 
humans and other animals. It is primarily found in the 
extracellular matrix of connective tissue, synovial fluid, 
and vital tissues such as the eye’s vitreous, cartilage, fas-
cia, and umbilical cord. In 1979, pharmaceutical-grade 
HA was produced by extracting and purifying the poly-
mer from rooster combs and human umbilical cords [2]. 
HA is abundant in soft connective tissues, including skin, 
lungs, kidneys, brain, and muscles. Its unique viscoelastic 
properties, biocompatibility, and non-immunogenicity 
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make it an ideal substance for clinical applications and 
cosmetic purposes [2, 4]. Due to changing beauty stand-
ards and rising health awareness, there has been a sig-
nificant increase in nonsurgical cosmetic procedures, 
with hyaluronic acid injectables being the second most 
frequently performed procedure after Botox, with a total 
spending of more than USD 5 billion in America in 2015 
[5, 6]. This review explores HA’s potential benefits and 
limitations in various applications, such as tissue engi-
neering, drug delivery, and wound healing, by examining 
this substance’s positive and negative aspects to provide 
a comprehensive overview of its use in medicine and 
cosmetics.

Main text
Physiological functions of hyaluronic acid
Hyaluronic acid (HA) is a macromolecule that plays 
a vital role in the human body. It is a high molecular 
weight glycosaminoglycan composed of glucuronic acid 
and N-acetylglucosamine linked together via glycosidic 
bonds. In the body, it exists in sodium hyaluronate and is 
present in various soft connective tissues, including the 
skin, lungs, kidneys, brain, and muscle tissues [7]. HA’s 
biological functions are diverse and significant. It plays 
a crucial role in regulating tissue hydration and water 
transport, maintaining the elasto-viscosity of connec-
tive tissues, and facilitating the supramolecular assem-
bly of proteoglycans in the extracellular matrix. HA also 
engages in numerous receptor-mediated roles, such as 
cell detachment, mitosis, migration, tumor development 
and metastasis, and inflammation [8]. When bound to 
water molecules, HA forms a hydrated gel and acts as a 
water-binding agent that lubricates movable body parts, 
such as joints and muscles. HA’s properties and functions 
have led to a broad range of applications in the medical 
field. For example, it is commonly used in dermal fillers 
for cosmetic purposes and is also used to treat osteoar-
thritis. The increasing demand for nonsurgical cosmetic 
procedures has led to a surge in using hyaluronic acid 
injectables [9] (Fig. 1).

Molecular biology and biochemistry
Hyaluronan is a linear glycosaminoglycan compris-
ing approximately 10,000 disaccharide units of d-glu-
curonic acid and N-acetyl-d-glucosamine (Fig.  2A). 
The synthesis of HA is carried out by hyaluronan syn-
thases, which are membrane-bound enzymes forming 
functional dimers with six transmembrane segments. 
The polymer chain is expelled through the plasma 
membrane during hyaluronan synthesis. The active 
form of the hyaluronan synthase enzyme was isolated 

from streptococci as a complex and characterized as a 
42  kDa protein through immunological cross-reaction 
with the streptococcal enzyme and affinity labeling 
techniques [10]. Three mammalian genes are responsi-
ble for hyaluronan synthesis (HAS1, HAS2, and HAS3), 
each contributing to hyaluronan production with dif-
ferent molecular weights. The biological effects of 
hyaluronan are distinct from other biologically active 
molecules and are influenced by its molecular weight 
(Mw) [11, 12].

There is a total of 15  g of hyaluronan (HA) in the 
human body, and about 30% of it undergoes degrada-
tion through two distinct mechanisms (Fig.  3). One 
mechanism involves specific enzymatic degradation 
mediated by hyaluronidases, while the other mecha-
nism is nonspecific and occurs due to oxidative damage 
caused by reactive oxygen species (ROS) [13–15]. ROS 
encompass hydrogen peroxide, peroxynitrite, nitric 
oxide, superoxide, and hypohalous acids. These ROS are 
generated during inflammatory responses in conditions 
like sepsis, tissue inflammation, and ischemia–reper-
fusion injury. They can degrade hyaluronan, a process 
that can occur due to ROS. The human genome con-
tains six identified gene sequences related to hyaluro-
nidase: HYAL-1, HYAL-2, HYAL-3 genes, HYAL-4 and 
PH20/SPAM1 genes, and HYAL-P1 pseudogene. These 
genes are associated with the production of hyaluroni-
dase enzymes, which are involved in the degradation of 
hyaluronan [16, 17]. The degradation of HA occurs par-
tially within the tissue itself, but a significant portion 
occurs in local lymph nodes and within the endothelial 
cells of the liver. The remaining 70% of HA undergo-
ing systemic catabolism is transported by hyaluronan, 
primarily carried to the lymph nodes through the lym-
phatic system. Within the lymph nodes, hyaluronan is 
internalized and broken down by the endothelial cells 
of the lymphatic vessels. Additionally, a small fraction 
of HA enters the bloodstream and undergoes degrada-
tion by the endothelial cells in the liver [18–20]. Hya-
luronidase-mediated degradation of HA plays a crucial 
role in various critical regulatory processes, including 
embryonic development and wound healing. The sig-
nificance of HA degradation by hyaluronidases is evi-
dent in mucopolysaccharide hyaluronidase deficiency, 
a lysosomal storage disorder characterized by elevated 
levels of HA in the plasma due to a defect in hyaluro-
nidase activity [21, 22]. HA exhibits one of the most 
rapid turnover rates among molecules in the mamma-
lian body. It is estimated that approximately one-third 
of the 15 g of HA present in an average adult human is 
turned over daily (Fig.  4). The high turnover of HA in 
various tissues requires equally high rates of synthesis 
and degradation [23–25].
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Fig. 1 Applications of hyaluronic acid (HA) in different fields. HA is a versatile biomaterial with various applications in various areas. This figure 
provides an overview of the diverse applications of HA, including drug delivery, tissue engineering, cosmetic procedures, and wound healing. The 
figure shows that HA can form nanoparticles for drug delivery, including oral drugs, micelles, and tumor-targeting nanoparticles. HA nanoparticles 
can also be used in ocular applications, enhancing drug delivery to the eye and improving ocular bioavailability. HA has also been used in tissue 
engineering, including cardiovascular tissue engineering, stem cell delivery, reconstructive and plastic surgery, and scaffold construction for knee 
replacement and cartilage regeneration. HA hydrogels, cryogels, and carbon nanotubes have enhanced tissue regeneration and repair. HA 
is commonly used as a filler for facial rejuvenation and volumization in cosmetic procedures. HA-based liposomes can also be used for targeted 
drug delivery in cosmetics. Other applications of HA include embryo implantation, wound healing, and microneedle patches. HA has been shown 
to improve embryo implantation rates and promote wound healing. Microneedle patches incorporating HA can enhance transdermal drug delivery 
and promote skin hydration [Figure generated using https:// www. biore nder. com/]

https://www.biorender.com/
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Isolation from biological sources and manufacturing 
by biotechnology
HA is a glycosaminoglycan that serves vital functions 
in tissue hydration and cellular processes. Within the 
body, HA is synthesized by attaching sugar molecules to 
the reducing end of the polymer. This synthesis occurs 
within the plasma membrane of various cells, including 
fibroblasts. The resulting HA molecule extends into the 
pericellular space, contributing to its important physi-
ological roles [26]. Historically, hyaluronic acid was 
extracted from animal tissues such as rooster combs, 
human umbilical cords, or other vertebrate tissue. 
However, this process was found to be relatively com-
plex and expensive [27, 28]. In recent years, hyaluronic 
acid has been obtained through in  vitro production or 
extraction from the cell walls of bacteria of streptococ-
cal origin. Two types of hyaluronic acid can be produced 

depending on the method: isolation-origin HA and fer-
mentation-origin HA. Isolation-origin HA is obtained 
through a series of steps that include the removal of epi-
thelium from the rooster comb, followed by grinding of 
the comb. Subsequently, the ground material is treated 
with acetone, ethanol, and sodium chloride to extract and 
purify the hyaluronic acid [29]. In contrast, the produc-
tion of fermentation-origin HA involves the continuous 
fermentation of Streptococcus in a controlled culture 
environment, such as a chemostat. However, it is essen-
tial to note that fermentation-origin HA often contains 
substantial amounts of endotoxins and elevated bacte-
rial levels, necessitating the removal of these impurities 
through subsequent purification steps [30]. Therefore, 
additional purification steps are required to minimize the 
presence of bacterial proteins. Remarkably, hyaluronan 
has been discovered in the capsule of specific microbial 
pathogens, including Pasteurella multocida and certain 
strains of Streptococcus (Fig.  5). These microorganisms 
have developed enzymatic systems that resemble those 
found in vertebrate hosts to facilitate hyaluronan syn-
thesis within their capsules [31, 32]. These microorgan-
isms employ hyaluronan as a protective capsule around 
their cells, effectively evading the host’s immune system 
and facilitating adhesion and colonization of the bacte-
rial cells. This hyaluronan-based encapsulation serves as 
camouflage, allowing the microorganisms to bypass the 
animal defense mechanisms [21, 33]. Isolation-origin HA 
generated in biological systems is often associated with 
proteins and other glycosaminoglycans, necessitating 
thorough purification processes [34, 35]. Complex puri-
fication processes are essential to obtain a genuine prod-
uct from traditional resources like rooster combs while 
minimizing the degradation of the molecular chains. 
However, even with sophisticated purification and sterili-
zation methods, the final product’s molecular weight will 
likely decrease, resulting in a lower molecular weight [36, 
37]. Furthermore, the production of isolation-origin HA 
from traditional sources also poses a risk of viral contam-
ination, necessitating complex purification procedures 
that can be costly [38–40].

Modification of HA
HA possesses various functional groups, such as car-
boxylic acids, N-acetyl groups, and alcohols, that can 
be modified to alter the properties of resulting materi-
als for enhanced hydrophobicity and biological activity 
[41, 42]. These modifications are commonly carried out 
through chemical cross-linking or radical polymeriza-
tion, leading to hydrogels known as hylans. Although 
HA is highly hydrophilic and soluble in water, it is 
often required to have limited solubility or insolubil-
ity for its use in medical devices. It can be achieved 

Fig. 2 A Structure of hyaluronic acid. B Schematic diagram 
illustrating the key steps involved in hyaluronic acid (HA) synthesis 
and degradation. The diagram shows that the synthesis of HA 
is regulated by various factors, such as growth factors, cytokines, 
kinases, and other proteins that modulate the activity of HA 
synthases (HAS1, HAS2, and HAS3). These enzymes are responsible 
for synthesizing HA chains, which are then bound by HAS protein 
complexes and extruded onto the cell surfaces and into the 
extracellular matrix (ECM). The biological actions of HA are tightly 
regulated by its degradation, which is carried out by several 
hyaluronidase enzymes, including HYAL-1, HYAL-2, HYAL-3, HYAL-4, 
PH20/SPAM1, HYAL-P1, and ROS. These enzymes cleave the HA chains 
into smaller fragments, which can be metabolized or eliminated 
from the body
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by conjugating or cross-linking HA [43, 44]. Chemi-
cal modification of HA enables its transformation into 
diverse physical forms such as viscoelastic solutions, 
hydrogels with varying stiffness, electrospun fibers, 
flexible sheets, macroporous and fibrillar sponges, non-
woven meshes, and nanoparticulate fluids, which find 
applications in various clinical and preclinical settings 
[44–46]. This is achieved by targeting three functional 
groups: primary and secondary hydroxyl groups, car-
boxylic acid, glucuronic acid, and N-acetyl groups. 
Different approaches, such as addition/condensation 
chemistry or radical polymerization, can cross-link 
these groups [47]. However, the direct application of 
HA-based products in humans presents substantial 
challenges in their development (Fig.  6). The market 
for these products is expensive, and ongoing efforts 
are being made to create new formulations. The glo-
balization of the industry has heightened the need for 
stringent quality controls to guarantee the safety of 
cosmetic products [47, 48]. Consequently, there is an 
immediate requirement to advance the development 
of cost-effective and efficient techniques for identifying 

and detecting toxic components present as contami-
nants or impurities.

Nanofibers and nanomicelles
Nanofiber scaffolds have a broad range of applications in 
fields such as tissue engineering, wound dressing, cos-
metics, and drug delivery [49]. Biopolymers are ideal 
materials for these scaffolds due to their biodegradability 
and biocompatibility. However, the industrial develop-
ment of such formulations is challenging due to modify-
ing HA with toxic reagents during chemical processes, 
which are challenging to eliminate from the final product, 
making it unsuitable for pharmaceutical applications [50, 
51]. Nanofibers based on photocurable ester derivatives 
of HA or its salt have been developed to overcome this 
issue. The skin barrier at the topmost layer, the stratum 
corneum, can prevent the penetration of drugs. How-
ever, nanosized colloidal systems, such as nanoparticles, 
liposomes, nanoemulsions, micelles, and polymeric sus-
pensions, have demonstrated the ability to enhance drug 
penetration through this barrier [52, 53]. These systems 
have received significant attention for delivering cosmetic 

Fig. 3 Summary of the production of HA. This figure provides an overview of the methods used to produce HA, including in vitro production, 
bacterial production, and extraction from animal tissues. The first method described is in vitro production, which involves using enzymes derived 
from Streptococcus pyogenes and Pasteurella multocida to synthesize HA in a controlled laboratory setting. This method allows for the production 
of HA with precise molecular weight and purity, making it ideal for pharmaceutical and biomedical applications. The second method described 
is bacterial production, which involves using various strains of bacteria, including Streptococci, Enterococcus faecalis, Escherichia coli, Bacillus subtilis, 
and Lactococcus lactis, to produce HA. This method is relatively inexpensive and scalable, making it suitable for large-scale production of HA 
for commercial and industrial purposes. The third method described is an extraction from animal tissues, which involves isolating HA from various 
animal sources, including rooster comb, human umbilical cord, bovine synovial fluid, and vitreous humor of cattle. This method is less commonly 
used due to the challenges associated with obtaining HA from animal tissues, but it remains an essential source of HA for specific applications



Page 6 of 21Salih et al. Future Journal of Pharmaceutical Sciences           (2024) 10:63 

and pharmaceutical compounds topically for local or 
systemic administration [54, 55]. Research on polymer-
based drug delivery has aimed at developing biodegrad-
able polymer systems to reduce the risk of accumulating 
non-biodegradable particles in the body [56]. HA is an 
intriguing material as a topical drug delivery agent since 
it is a substantial part of the skin’s extracellular matrix 
and can be found in both the epidermis and dermis [57].

Hydrogels
Hydrogels are intricate polymeric networks characterized 
by a three-dimensional architecture that enables them to 
absorb substantial quantities of water while preserving 
their structural integrity [58]. Due to its very important 
physiological and biological roles in maintaining homeo-
stasis in the human body, hydrogels made from HA have 
been developed for several biomedical applications such 
as, drug delivery, tissue engineering and regeneration, as 
well as diagnostics, etc. [59, 60]. Market for HA-based 
hydrogels is continuously expanding and HA hydrogels 
are already being used in medicine as viscosupplements, 
dermal fillers, would dressings, etc.

Although HA can form molecular networks in the 
presence of a solvent due to its conformation and molec-
ular weight, it cannot form a physical gel alone which 
further warrants for further chemical modifications such 
as covalent cross-linking and use of gelling agents to pre-
pare HA hydrogels. Chemical cross-linking, with some 
limitations, has been a versatile method to obtain HA 
hydrogel with excellent mechanical, chemical, and ther-
mal stability [61]. HA-based hydrogels can be prepared 
by several methods, such as polymerization, enzymatic 
cross-linking, condensation reactions, and click chemis-
try. HA hydrogels can be directly cross-linked with the 
help of cross-linking agents such as glutaraldehyde, divi-
nyl sulfone, bisepoxide, and carbodiimide. [62, 63]. Using 
Diels Alder-based click reaction, HA-based hydrogels 
with tunable properties were developed by reacting furan 
modified HA with peptide derivatized with bismaleimide 
in order to mimic extracellular matrix (ECM) for breast 
cancer cells invasion [64]. Furthermore, by avoiding the 
use of cytotoxic copper as a catalyst, HA-PEG hydrogels 
were synthesized by reacting cyclooctyne modified HA 
with azide functionalized PEG. This hydrogel showed 

Fig. 4 Schematic diagram illustrating the electrospun nanofibers and hydrogel scaffold composite for tissue engineering applications. The figure 
shows that electrospinning is used to fabricate nanofibers from a hyaluronic acid (HA) polymer, which is then cross-linked with 1 M NaOH and 0.5% 
CaCl2 to form a hydrogel scaffold. The resulting composite material provides a suitable substrate for cell proliferation and stretching, which can lead 
to the formation of functional tissue structures. The electrospun nanofibers provide a high surface area-to-volume ratio, facilitating cell adhesion 
and migration, while the hydrogel scaffold offers mechanical support and promotes cell proliferation. The composite material can also be further 
functionalized with growth factors or other bioactive molecules to enhance tissue regeneration [Figure generated using https:// www. biore nder. 
com/]

https://www.biorender.com/
https://www.biorender.com/
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excellent mechanical properties, gelation time, and high 
stability [65, 66]. Recently, using another naturally occur-
ring click chemistry between cyanobenzothiazole and 
cysteine, an in situ forming injectable HA hydrogel with 
encapsulated camptothecin nanocrystals was prepared 
for long-term treatment of inflammatory arthritis [66].

On the other hand, non-covalent bonds and supra-
molecular interactions have been researched to pre-
pare physical hydrogels with tunable properties by 
applying various cues like pH, light, temperature, etc. 
[67, 68]. Taking advantage of inclusion complexation 

properties of cyclodextrins, self-assembled HA hydro-
gel was formed by reacting β-cyclodextrin with ada-
mantane functionalized HA which displayed excellent 
shear thinning properties [69]. Interestingly, using gel-
ling agents such as Pluronic F-127, thermosensitive HA 
hydrogel was prepared by mixing HA in water with 
Pluronic F-127. Due to the hydrophobic interactions 
of acetyl groups of HA and methyl groups of Pluronic 
F-127, stable and mechanically stronger hydrogel was 
formed which avoided the typical burst release of drugs 
when only Pluronic F-127 was used in hydrogel prepa-
ration [70].

Films
HA films have several advantages over conventional 
formulations like gels, ointments, and solution as films 
can be stable, long-lasting, and can enhance patient 
compliance. There have been continued research on 
HA-based films for the treatment of diverse diseases 
by overcoming the drug delivery barriers of drug mol-
ecules as well as delivery system itself [71, 72]. HA films 
have been found to have limited medical applications 
that require extended stability in aqueous environments 
due to their fast dissolution in water, poor mechanical 
stability, and rapid in vivo degradation. However, these 
limitations can be overcome by implementing physi-
cal and chemical cross-linking techniques [57, 73, 74]. 
To be suitable for biomedical applications, films must 
possess specific properties, such as self-supporting, 
adequate mechanical strength when hydrated, biocom-
patibility, biodegradability, non-cytotoxicity, and the 
ability to adjust in  vivo stability [75, 76]. A new type 
of water-insoluble film composed of palmitoyl esters 
of hyaluronan (pHA) was developed in 2016 to over-
come the solubility limitations of hyaluronan films [77]. 
A new method was formed in 2019 for creating free-
standing films from lauroyl derivatives of HA without 
the need for cross-linking agents, plasticizers, toxic 
solvents, and activators. This method involves an art-
less single-step solution casting process. The resulting 
films were homogeneous, exhibited good mechanical 
strength, and were flexible. Hydrophobized or cross-
linkable hyaluronan derivatives exhibit higher resist-
ance to biodegradation. They can serve as scaffolds for 
cell culture and matrices for controlled drug-related 
augmentation of soft tissues via viscosupplementation 
[78]. Conjugation of hyaluronan with drugs also pro-
vides an exciting approach for targeted drug delivery 
[79]. Significant attention has been given to the prepa-
ration of hyaluronic acid derivatives that can undergo 
cross-linking reactions under mild physiological condi-
tions to broaden their applications.

Fig. 5 Applications of hyaluronic acid (HA) and its derivatives 
in various fields. The figure shows that HA and its derivatives can 
be used as a drug delivery system, where they serve as carriers 
for different therapeutic agents, including small molecules, proteins, 
and nucleic acids. The biocompatibility and biodegradability of HA 
make it an ideal material for sustained drug release, enhancing 
the therapeutic efficacy of the delivered agent. In cancer therapy, 
HA and its derivatives have been used for targeted drug delivery, 
as well as for imaging and diagnosis. HA-based nanoparticles can 
selectively accumulate in tumor tissues, releasing the drug payload 
and effectively inhibiting tumor growth. HA, and its derivatives 
have also been used in soft tissue regeneration, including wound 
healing, cartilage repair, and bone regeneration. HA-based 
scaffolds and hydrogels can support cell adhesion, proliferation, 
and differentiation, forming functional tissue structures. HA 
and its derivatives are commonly used in skin care products 
in the cosmetic industry due to their moisturizing and anti-aging 
properties. HA-based fillers can also be used for facial rejuvenation 
and volumization. Other applications of HA and its derivatives include 
dietary supplements, urology, odontology, and wound treatment. 
HA-based materials can be used in urology for bladder augmentation 
and incontinence treatment. In odontology, HA-based materials 
can be used for tissue engineering and implantology. In wound 
treatment, HA-based dressings can promote healing and prevent 
infection [Figure generated using https:// www. biore nder. com/]

https://www.biorender.com/
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Fig. 6 Application of hyaluronic acid (HA) hydrogel in the regeneration of dental pulp and cosmeceuticals. A shows that HA hydrogel can 
regenerate damaged dental pulp. Dental pulp stem cells are mixed with the HA hydrogel and injected into the damaged pulp using a syringe. 
The HA hydrogel provides a suitable microenvironment for the proliferation and differentiation of dental pulp stem cells, leading to functional 
dental pulp tissue regeneration. In addition to dental pulp regeneration. B HA hydrogel can be incorporated into skincare products, such as creams 
and serums, to improve skin hydration and reduce the appearance of fine lines and wrinkles. HA hydrogel can also be used as a filler in facial 
rejuvenation procedures, providing immediate volumization and contouring [Figure generated using https:// www. biore nder. com/].

https://www.biorender.com/
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Applications of hyaluronan
HA is a biocompatible polysaccharide with distinctive 
physicochemical characteristics. These properties render 
it highly versatile and applicable in numerous medical 
domains [8]. In the human body, the total quantity of HA 
is estimated to be around 15 g in a 70-kg adult [80]. While 
HA is predominantly present in the skin, constituting 
approximately 50% of the overall HA content in the body, 
it is also distributed throughout various other tissues and 
fluids. HA can be found in the vitreous humor of the eye, 
the umbilical cord, and synovial fluid, as well as in all tis-
sues and bodily fluids. This includes skeletal tissues, heart 
valves, the lungs, the aorta, the prostate gland, and spe-
cific structures of the penis, such as the tunica albuginea, 
corpora cavernosa, and corpus spongiosum [80–85].

HA in arthrology
Autograft reconstruction is a commonly employed surgi-
cal technique for treating severe ligament injuries. How-
ever, this approach has limitations, including the risk of 
donor site morbidity. Tissue engineering techniques that 
involve culturing isolated fibroblasts on scaffold materi-
als offer a promising alternative to autografts [86, 87]. 
Successful regeneration in ligament and tendon tissues 
has been demonstrated through various scaffold materi-
als. These scaffolds encompass both naturally occurring 
substances and synthetic materials. An effective strategy 
for ligament tissue engineering involves incorporating 
glycosaminoglycans (GAGs) or GAG-like materials as 
essential scaffold components [88]. The principal con-
stituent of GAGs, integral components of extracellular 
matrices, has been proven to promote tissue healing in 
diverse tissue types. It is achieved through several mech-
anisms, including enhanced delivery of growth factors, 
improved cellular adhesion and proliferation, and the 
facilitation of anti-inflammatory response [89–91]. HA’s 
biological effects could play a critical role in promoting 
the regeneration of ligament tissues. Moreover, the use of 
HA and hylans for intra-articular treatment has gained 
broader acceptance as a therapeutic approach for manag-
ing pain associated with osteoarthritis [92, 93]. HA plays 
a crucial role in maintaining the viscoelastic properties 
of synovial fluid in the knee. In osteoarthritic joints, HA 
concentration is typically lower than in healthy joints. 
Therapy aims to restore the lost viscoelastic properties of 
synovial fluid by introducing HA. This can help alleviate 
osteoarthritis pain by reducing nerve impulses and sensi-
tivity associated with the condition [94–96].

HA for eye drops and ophthalmic surgery
Hyaluronan possesses distinctive characteristics, such 
as stabilization of the reduction of friction during blink-
ing, tear film, and prevention of harmful substances from 

binding to the eye due to its various properties such as 
viscoelasticity and hydrophilicity, which greatly dimin-
ish the signs of dry eye [8, 97, 98]. Its viscoelasticity is 
mainly related to its cushioning and lubricating effect, as 
it is a component of the eye (aqueous humor) and syno-
vial fluid. This unique rheological property is exploited 
in applying hyaluronan in ophthalmic surgery, where 
it is mainly used to establish and maintain a secure sta-
tus to progress healing of the postsurgical area [30, 99]. 
The benefits of HA in ophthalmology extend to various 
aspects. HA aids in stabilizing the tear film, reducing 
healing time, minimizing adhesion risk, decreasing free 
radicals’ formation, and normalizing intraocular pres-
sure. The rheological properties of sodium hyaluronate 
have been examined for ophthalmic viscosurgical device 
(OVD) applications during cataract surgery. It has been 
concluded that the viscoelastic and flow properties of 
binary formulations consisting of sodium hyaluronate 
and HPMC (hydroxypropyl methylcellulose) are suitable 
for use as OVD. These formulations effectively main-
tain the ocular spaces and can be administered quickly 
[100, 101]. Furthermore, the adhesive properties of both 
sodium hyaluronate and HPMC in the binary formula-
tion provide an additional advantage. These properties 
enable the formulation to effectively interact with the 
corneal endothelium, resulting in durable protection of 
ocular tissues. This interaction enhances the overall effi-
cacy and safety of the formulation in maintaining ocular 
health during surgical procedures or therapeutic inter-
ventions [98, 102, 103].

HA in wound healing and tissue repair
CD44, the primary receptor for HA, is a versatile trans-
membrane glycoprotein expressed in various isoforms 
and found in nearly all human cell types. CD44 can 
interact with HA and various growth factors, cytokines, 
and extracellular proteins. This comprehensive interac-
tion profile allows CD44 to participate in diverse cel-
lular processes and signaling pathways involved in 
development, tissue homeostasis, inflammation, and 
cancer progression. The ability of CD44 to engage with 
multiple ligands highlights its significance as a critical 
regulator of cell adhesion, migration, proliferation, and 
signaling events within the extracellular microenviron-
ment [104]. The interaction between HA and CD44 is 
implicated in many intracellular signaling pathways 
that govern various cell biological processes. These pro-
cesses include receptor-mediated internalization and 
degradation of hyaluronan, angiogenesis (the formation 
of new blood vessels), cell migration, proliferation (cell 
growth and division), aggregation (cell clustering), and 
adhesion to extracellular matrix (ECM) components. 
The HA-CD44 interaction is a critical modulator of 
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these cellular activities, contributing to tissue devel-
opment, wound healing, immune response, and other 
physiological and pathological processes [105, 106]. 
CD44 emerges as a pivotal player in inflammation 
and wound healing, encompassing intricate biologi-
cal processes to restore damaged tissue. Throughout 
all phases of tissue repair, including cellular migration, 
inflammation, angiogenesis (formation of new blood 
vessels), remodeling, and scar formation, extracellular 
matrix components, including HA, exert significant 
regulatory influence. CD44, through its interaction 
with HA and other molecules, exerts precise control 
over these sequential events, orchestrating the com-
plex interplay required for effective tissue repair and 
regeneration [107]. HA is a fundamental component of 
the ECM and possesses distinctive properties contrib-
uting to its crucial role in tissue regeneration. Besides 
its structural support, HA can also function as part 
of a feedback loop, promoting cell proliferation and 
migration in actively growing tissues. This interac-
tion between HA and cells helps regulate critical tis-
sue development, repair, and regeneration processes. 
HA contributes to the dynamic balance required for 
effective tissue growth and remodeling by influenc-
ing cell behavior [108]. Furthermore, the role of HA in 
maintaining water homeostasis can contribute to tissue 
hydration, which in turn has a beneficial impact on the 
healing process. During periods of rapid tissue prolif-
eration, regeneration, and repair, there is an increase in 
HA levels. This heightened presence of HA helps retain 
moisture, providing a hydrated microenvironment 
that supports cellular activities and facilitates optimal 
conditions for tissue healing and recovery. The ability 
of HA to regulate water balance within tissues under-
scores its significance in promoting efficient healing 
processes [109, 110]. As HA is implied in every step of 
the wound healing procedure, exogenous application of 
HA can provide faster healing.

HA in odontology
In dentistry, biological materials such as HA have a broad 
range of applications, including regeneration and recon-
struction of dentine, gingiva, dental pulp, cancellous 
bone, mucosal wound repair, and constructing a biophys-
ical barrier between gingiva and jaw bones [111]. HA can 
act as a biocompatible scaffold or niche for mesenchymal 
stem cell (from apical papilla) differentiation, polarity, 
and a biophysical trigger or reservoir for the controlled 
release of various cytokines and chemokines for parac-
rine and autocrine signaling [112]. Additionally, HA can 
neutralize bacterial hyaluronate lyase enzymes, exerting a 
bacteriostatic effect.

Oral ulcer
Recurrent aphthous stomatitis (RAS), known as can-
ker sores, is the most prevalent inflammatory ulcerative 
condition affecting the oral mucosa. However, the man-
agement of oral ulcers remains a challenge for clinicians. 
While topical corticosteroids, antibiotics, and antimi-
crobial agents are widely used, there are feeble proofs 
supporting the efficacy of any topical therapy. For these 
molecules to be effective, they should be easily applica-
ble and preserved at the site of mucosal ulcer (MU) for 
an extended period [113]. Several studies have explored 
HA as a topical remedy for MU of the oral cavity. Nota-
bly, topical treatment of chronic aphthous MU with 0.2% 
HA gel for two weeks has promoted healing without side 
effects. Lee et al. demonstrated the effectiveness of topi-
cal 0.2% HA gel in treating oral MU in patients with RAS 
and Behçet’s disease, suggesting improved symptoms 
[114, 115]. Hence, the primary activity of HA appears 
to be in tissue regeneration, performing a wide range 
of biological activities, including activating phlogistic 
responses, aiding cellular differentiation, proliferation, 
migration, and vasculogenesis, and reducing collagen 
deposition and scarring [116].

Gingivitis and periodontitis
Gingivitis is a highly prevalent disease that affects 82% 
of the population. Dental plaque has been identified as 
a crucial etiological factor in developing gingivitis and 
periodontitis [117]. Consequently, treating gingivitis and 
periodontitis aims to reduce dental plaque accumulation. 
In vitro studies have demonstrated that HA inhibits bac-
terial growth and interferes with bacterial morphology 
[118, 119]. Regarding clinical studies, it has been found 
that HA reduces plaque accumulation and inhibits gin-
gival inflammation. A survey by Gizligoz et al. examined 
the plaque inhibitory impact of HA mouthwash com-
pared to chlorhexidine. It was found that HA revealed 
an almost similar plaque inhibitory effect to chlorhex-
idine [120]. Jentsch et  al. evaluated the effectiveness of 
the topical treatment of 0.2% HA. They concluded that it 
benefitted gingivitis by lowering the plaque indices and 
improving the papillary bleeding index (PBI) concerning 
gingival crevicular fluid (GCF) variables [121]. Similarly, 
Pistorius et  al. proposed that the topical application of 
a HA reduced the PBI and sulcus bleeding index (SBI) 
[122]. Additionally, Sahayata et al. claimed that oral appli-
cation of 0.2% HA gel in gingivitis, in addition to dental 
scaling and oral hygiene, offered a successful consequen-
tial response in the gingival index (GI) and PBI of placebo 
or control group (scaling plus placebo gel) and negative 
control group (scaling only) [123]. Dental scaling and 
root planning with topical HA are beneficial therapies 
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for controlling gingivitis and probing depths (PDs) in 
individuals with chronic gum disease. Annsofi Johannsen 
et  al. explained the beneficial effects of HA-based for-
mulations in treating periodontitis [124]. The adjunctive 
application of hyaluronan gel could benefit periodontal 
health. The hyaluronan-based scale and root planning 
(SRP) protocol resulted in statistically significantly more 
significant reductions in abnormal dental bleeding in SRP 
control. Additionally, Hyaluronan has also been proven 
to induce bacteriostatic effects in vitro [124].

Surgery
In a comparative analysis, the health status of peri-
implant mucositis and peri-implantitis during the recov-
ery period of functional implants using HA or CHX gels. 
Their results demonstrated a reduced bleeding index in 
the HA group compared to the control group managed 
with CHX. Therefore, treating peri-implant mucositis 
and per-implantitis patients with 0.2% HA gel may be 
beneficial. Ballini et  al. proposed combining autologous 
bone graft with the esterified low-molecular HA formu-
lation can accelerate bone regeneration in periodontal 
intrabone anomalies [125]. Additionally, the topical spray 
of 0.2% HA proved beneficial in managing inflammation 
and trismus during postoperative surgeries. Romeo et al. 
also demonstrated that the utility of essential amino acids 
with 1.33% HA solution could aid in secondary intention 
healing in laser-induced wounds during the total exci-
sional biopsy of the gingiva and palate of the oral cavity 
[126]. Although it is not beneficial in pain perception, it 
can considerably expedite the repair processes [119].

HA in bioinks for 3D bioprinting
Manufacturing a three-dimensional (3D) object by layer-
wise deposition or combination of materials, including 
plastics, metals, ceramics, powders, liquids, and living 
cells, is called 3D printing. When utilized in biomedi-
cal engineering and regenerative medicine to produce 
complex biological scaffolds or viable tissue structures 
that in vivo tissues and organs, 3D printing technology is 
referred to as 3D bioprinting; it holds immense potential 
for the fabrication, personalized prosthetics, precision 
implants, and histological models, and for pharmaceu-
tical interventions such as controlled drug delivery, and 
microphysiological systems or organ-on-chip based drug 
discovery and development [127–129]. In 3D bioprint-
ing, bioink is the main component, and different bio-
materials are utilized as bioinks that are evaluated for 
crucial properties to ensure ease in the process [130]. It 
is imperative that bioinks possess high biocompatibility 
and physiological relevance to nurture viable cells, are 
mechanically sturdy after printing, and offer precise 
resolution during 3D printing. Therefore, biophysical 

characteristics, such as extrusion compatibility and 
mechanical properties, fluidic nature, viscosity, biodeg-
radability, and cytotoxicity, must be evaluated [131]. 
Among the leading bioprinting materials used in 3D bio-
printing to develop biological structures is HA, a natural 
ECM. HA is primarily employed because of its biologi-
cal integrity, elasticity, mechanical and biodegradation 
properties, mimicking ECM composition, self-assem-
bling ability, and yielding good resolution during printing 
[132]. To obtain increased stability and cell viability, HA 
can also be combined with different semi-synthetic or 
chemically defined polymers, such as hydrogel polymers, 
which exhibit stable rheology properties and excellent 
biocompatibility, resulting in gels that demonstrate print-
ability in good shape. This development of biomaterials 
and cell biology has paved the way for bionic and regen-
erative medicine to become vital research fields with fast 
growth [133].

HA in cancer therapy
Cancer is a significant contributor to morbidity and 
mortality globally, with an estimated 18.1 million new 
cases and 9.6 million deaths reported in 2018 [140]. 
In recent decades, the progress of nanotechnology in 
medicine has offered new and promising solutions and 
insights for detecting, preventing, and treating cancer 
[143, 144]. HA plays a crucial role in various aspects 
of cancer cell behavior, primarily through its interac-
tions with the stromal environment. The dysregulation 
of HA synthesis and the subsequent overproduction of 
HA often occur during the malignant transformation 
of cells. The impact of HA on tumor development can 
vary depending on the specific circumstances being 
evaluated, as it has the potential to either suppress or 
support tumor growth [146]. Extensive research has 
provided substantial evidence regarding the role of 
hyaluronan in promoting malignancies. It has been 
observed that increased invasion and dissemination 
of cancer cells can be attributed, at least in part, to 
the mesenchymal conversion facilitated by HA over-
expression [147]. Experimental studies have demon-
strated that various components of the hyaluronan 
signaling pathway, such as HA synthases, HA recep-
tors, and HYAL-1 hyaluronidase, significantly promote 
tumor growth, metastasis, and angiogenesis. These 
findings highlight the potential of targeting each com-
ponent as a therapeutic approach to cancer treatment 
[148]. The role of hyaluronan in cancer progression 
can vary depending on the expressed isoforms of HA 
synthases (HAS). Cancer cells at different stages may 
utilize the three HAS isoforms differently to enhance 
their survival. This suggests that the specific isoform 
of HAS expressed by cancer cells could influence their 
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behavior and response to treatment, highlighting the 
importance of considering the isoform-specific effects 
of HA in cancer research and therapy [149]. Multiple 
strategies have been devised to target different HA 
(hemagglutinin) family members. These strategies 
encompass small-molecule inhibitors, antibody-based 
therapies, and vaccine-based interventions [150]. 
These treatment approaches aim to block the intra-
cellular signaling mediated by HA, which is critical 
in promoting tumor cell proliferation, motility, inva-
sion, and the induction of endothelial cell functions. 
HA has been incorporated into nanoparticle formu-
lations to achieve targeted delivery of chemotherapy 
drugs and other anticancer compounds to tumor cells. 
These preparations take advantage of the interaction 
between HA and cell-surface HA receptors, offering 
several advantages, such as being nontoxic, nonimmu-
nogenic, and amenable to modifications for enhanced 
efficacy [148, 151]. The utilization of HA nanosys-
tems shows great potential in facilitating the targeted 
and safe delivery of chemotherapeutic drugs and other 
anticancer compounds specifically to tumor cells. By 
leveraging the unique properties of HA and its inter-
actions with cell-surface receptors, these nanosystems 
can enhance the specificity of drug delivery while min-
imizing potential adverse effects on healthy tissues. 
This targeted approach holds promise in improving 
the efficacy and safety of cancer treatments [152]. The 
utilization of HA nanoparticles offers several advan-
tages in anticancer therapy. One such advantage is the 
ability to improve the half-life of anticancer agents 
and concentrate their delivery to cells that overexpress 
HA receptors. This targeted approach enables the 
potential for enhanced effectiveness at lower doses, 
leading to reduced drug-related toxicities. Many anti-
neoplastic drugs have been successfully conjugated 
to hyaluronic acid, developing novel compounds with 
promising antitumor effects. For instance, HA-mod-
ified polycaprolactone nanoparticles encapsulating 
naringenin have demonstrated encouraging results. 
In vitro studies have shown enhanced drug uptake by 
cancer cells, indicating improved cellular internaliza-
tion. Furthermore, in  vivo experiments on rats with 
urethane-induced lung cancer revealed inhibited 
tumor growth following treatment with these nano-
particles. This highlights the potential of HA-based 
formulations to enhance therapeutic outcomes in can-
cer treatment [153]. Furthermore, it has been observed 
that HA-coated chitosan nanoparticles facilitate the 
delivery of 5-fluorouracil specifically to tumor cells 
that overexpress the CD44 receptor. The HA coating 
on chitosan nanoparticles enhances their affinity to 

CD44 receptors, enabling targeted drug delivery. This 
targeted approach improves the uptake of 5-fluoroura-
cil by tumor cells and enhances its therapeutic efficacy 
against cancer. This finding underscores the potential 
of HA-coated chitosan nanoparticles as a promising 
strategy for improving drug delivery and enhancing the 
effectiveness of anticancer therapies [154, 155]. Pacli-
taxel, a widely studied compound, has demonstrated 
significant potential as an anticancer agent. However, 
its poor solubility in water has limited its therapeutic 
use. Recent research has focused on addressing this 
challenge by exploring novel approaches, such as uti-
lizing unsaturated derivatives of HA and various HA-
paclitaxel conjugates. These innovative strategies aim 
to enhance the aqueous solubility of paclitaxel and 
improve its delivery to target cancer cells. Research-
ers have sought to overcome its solubility limitations 
and enhance its therapeutic efficacy by conjugat-
ing paclitaxel to HA. Additionally, this approach can 
potentially reduce drug-related toxicities associated 
with conventional formulations. Furthermore, other 
anticancer agents are successfully linked to HA beyond 
paclitaxel, aiming to overcome toxicity and impart new 
physicochemical characteristics to the drug. These 
efforts seek to improve drug stability, enhance targeted 
delivery, and optimize therapeutic outcomes. These 
advancements in HA-based conjugates and derivatives 
showcase the potential of HA as a versatile platform 
for improving the delivery and efficacy of various anti-
cancer agents. Such research holds promise for devel-
oping safer and more effective treatments for cancer 
patients [105, 156]. Eurand Pharmaceuticals imple-
mented a similar strategy using methotrexate (MTX), 
an antimetabolite and folic acid analog commonly used 
as an antineoplastic drug. They developed an HA-
MTX conjugate and conducted studies to evaluate its 
efficacy. The HA-MTX conjugate demonstrated signif-
icant activity in a liver metastasis tumor model, indi-
cating its potential in treating metastatic liver tumors. 
Additionally, it exhibited activity in a mammary car-
cinoma model, demonstrating its effectiveness in 
combating breast cancer. These findings highlight 
the promising therapeutic potential of the HA-MTX 
conjugate in targeting and treating neoplastic condi-
tions. By conjugating MTX with HA, the researchers 
aimed to enhance drug delivery, potentially improving 
the treatment outcomes and reducing adverse effects 
associated with conventional MTX formulations. This 
research demonstrates the valuable application of HA-
based conjugates in expanding the therapeutic options 
for anticancer drugs like MTX, potentially offering 
more effective and targeted treatments for liver metas-
tasis and mammary carcinoma [157]. Toxicology and 
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pharmacokinetics analyses have displayed an extended 
half-life and amplified area under the curve (AUC) 
worth concerning free MTX [158]. Recent work has 
highlighted the importance of hyaluronan in oncology 
and should be further researched.

HA for skin
The skin serves as a homeostatic indicator of overall 
physical and emotional well-being. Alterations in dermal 
characteristics such as temperature, tone, muscle tension, 
and hydration reflect somatic and emotional changes that 
occur in an individual, with the latter being beyond con-
scious control [134]. Skin aging is a complex, progressive, 
and irreversible process marked by biochemical, mor-
phological, and biophysical changes in the body. With 
the global population aging and the increasing aesthetic 
demands of patients, the desire to appear youthful and 
healthy is gaining momentum. In the past, surgical inter-
ventions were the primary option for rejuvenation [135]. 
However, novel noninvasive outpatient techniques have 
revolutionized aesthetic dermatology. Injectable fillers, 
in particular, have garnered considerable attention due to 
their efficiency and safety [136]. Wrinkle filling remains 
a primary indication, but restoring volume and contours 
to achieve a natural, balanced look is equally vital in con-
temporary aesthetics. Additionally, advanced techniques 
have been developed to correct chin/nose deformities, 
and it is preferable to use biodegradable agents for aes-
thetic dermatology instead of permanent ones [137, 138]. 
Complications arising from using permanent agents in 
aesthetic dermatology can be particularly challenging to 
treat compared to those associated with biodegradable 
agents. Fortunately, a range of skin treatments, including 
injectable hyaluronic acid-based fillers (HAFs), are availa-
ble to address age-related changes [139]. Fillers constitute 
an effective tool in skin rejuvenation, and while bovine 
collagen was previously the primary filler used for wrin-
kles and lip augmentation, since 1996, HA has become 
the preferred choice. Modern HA is produced through 
bacterial fermentation, eliminating the risk of animal-
derived contamination, and because it is not species-
specific, skin testing is not required [137, 140]. Recent 
statistics suggest that over 85% of dermal filler surgeries 
utilize HA derivatives. This figure will rise in the future, 
as no other potential filling agent is currently available 
to counter HA’s popularity [141]. HA’s efficacy, ease of 
administration, low toxicity, and high safety profile have 
made it the gold standard compound among fillers, and 
the list of cosmetic dermal fillers available continues to 
expand rapidly [142]. As the aging population seeks 
inexpensive and safe options to revise the signs of aging 

without major surgery, the popularity of HA-based fillers 
is only expected to increase [142].

The strength of HA to cross the biological barrier is 
primarily determined by its molecular weight (MW). 
High-MW HA, with a weight exceeding 600 KDa, has 
poor skin permeability and typically forms a very thin 
protective hydration veneer on the epidermis [45]. 
In contrast, low-MW HA can penetrate through the 
deeper layers of the skin and permeate up to the hypo-
dermis level. Thus, using HA enables a comprehensive 
rejuvenation of the face, as thin HAs can be adminis-
trated by mesotherapy to rehydrate the skin’s surface. 
In contrast, high-MW HAs have been used to address 
wrinkles, nasolabial folds, dark circles, under-eye hol-
lows, and lip augmentation. High-MW HAs are also 
employed for tissue volume increase, highlighting the 
versatility of this approach [19]. Due to its unique vis-
coelasticity, biocompatibility, biodegradability, and 
non-immunogenicity, HA has been extensively applied 
in dermatology for its biomedical benefits, includ-
ing skin anti-aging, anti-wrinkle, anti-nasolabial folds, 
skin rejuvenation, and dermal hydration properties 
[143]. HA can be administered through various routes, 
including ophthalmic, nasal, parenteral, topical, and 
intravenous, and in clinical, nutraceutical, nutritional, 
and cosmetic industries. Topical delivery systems 
offer several advantages over oral or parenteral deliv-
ery modes, such as overcoming the hepatic first-pass 
metabolism, improved prognosis, excellent dermal 
barrier permeability, and minimizing possible toxic-
ity-related clinical adverse or side effects [45]. HA has 
been utilized to formulate microparticles for controlled 
dermal release of caffeine to medicate cellulite, topical 
hydrogels containing nonsteroidal anti-inflammatory 
drug diclofenac to manage actinic keratosis, and for 
manufacturing, HA-derived liposomes for healing der-
mal and subcutaneous wounds [45]. HA has also been 
extensively utilized for preparing transdermal formu-
lations through various approaches, such as chemi-
cal tempering to create conjugates or physiochemical 
methods to create microneedles, including OVA-HA 
conjugates for noninvasive vaccination and HA-based 
microneedles for controlled release of insulin to treat 
Type I diabetes [144]. In current cosmetic trends, HA 
is commonly found in moisturizers, creams, gels, and 
serums due to its hydrating properties, lipid barrier 
enhancement, fine lines and wrinkles reduction, and 
skin tightening effects. Moreover, sunblock derived 
from hyaluronan may assist in preserving spry skin and 
shielding it against the detrimental impact of ultravio-
let radiations attributed to HA’s potential free radical 
scavenging effects. Overall, HA’s diverse and promising 
applications in various fields of medicine and cosmetics 
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have established it as a highly desirable and versatile 
biomaterial.

Covid‑19 and hyaluronic acid
In modern times, the coronavirus disease 2019 (COVID-
19) pandemic posed a severe threat to international bios-
ecurity and public health. The etiology of this respiratory 
illness is a novel coronavirus known as severe acute res-
piratory syndrome coronavirus 2 (SARS-CoV-2). Clini-
cal investigations revealed that SARS-CoV-2 infection 
triggers a biphasic immune response. During the initial 
incubation period, a first-line defense-based protective 
phase is activated, which requires the activation of the 
adaptive immune system to intercept the virus replica-
tion and disease progression to severe stages. Therefore, 
strategies to enhance immune responses at this stage are 
paramount [145]. To establish an effective host immune 
response during the disease incubation period, the host 
must be in good physical condition, which can induce 
peculiar antiviral immunity. However, if the adaptive 
immune response is compromised, the infection will 
continue replicating, leading to massive tissue damage, 
particularly in tissues with high ACE2 expression [146]. 
This triggers an inflammation-driven damaging phase 
characterized by lung parenchymal tissue inflammation 
mediated primarily by alveolar macrophages and other 
granulocytes. Pneumonitis is the primary etiology of 
lethal upper and lower respiratory tract disorders during 
the severe stage of the disease. Hence, suppressing the 
proinflammatory system is critical to managing the clini-
cal symptoms when severe damage to lung parenchyma 
occurs. SARS-CoV-2 infection is classified into three 
different stages: stage I is an incubation phase when the 
patient is usually asymptomatic and sometimes the virus 
cannot be detected in body specimens; stage II, a non-
critical symptomatic phase with detectable viral immu-
nogens; and stage III, an extreme respiratory or general 
symptomatic stage with elevated viral load in the body. 
Histopathological examinations of the tissues collected 
from COVID-19 patient atopies revealed edema and 
the presence of abnormal hyaline membrane pulmonary 
mesenchyme, forecasting the existence of acute respira-
tory distress syndrome (ARDS) [147].

Hyaluronan, a primary constituent of the lung extra-
cellular matrix (ECM) in the lungs, is found in the pul-
monary mesenchymal tissue. It is a key player in airway 
homeostasis by regulating cellular functions, growth fac-
tors, cytokine behavior, and biomechanical forces, among 
other aspects [148]. In various respiratory diseases, such 
as COPD, atypical asthma, idiopathic arterial pulmo-
nary hypertension, and ARDS, airway hyaluronan levels 
are elevated and are associated with poor lung function 
[149, 150]. Furthermore, there is mounting evidence that 

hyaluronan and its degradation products are of critical 
significance in the pathophysiology of the respiratory 
tract. Aerosolized exogenous hyaluronan has been shown 
to exert beneficial effects against airway inflammation, 
protect against bronchial hyperreactivity and remod-
eling, and disrupt biofilms associated with chronic infec-
tions [151, 152]. Therefore, exogenous hyaluronan may 
serve as a novel therapeutic option in conjunction with 
conventional medical or surgical therapy for respiratory 
tract diseases involving inflammation, epithelial sur-
vival, remodeling, and the microbiome, such as rhinitis, 
asthma, COPD, cystic fibrosis, ARDS, and pulmonary 
hypertension, and should be considered for COVID-19 
treatment [153, 154].

Hydroxychloroquine is currently one of the leading 
drugs being investigated worldwide for COVID-19 [155]. 
To mitigate its intrinsic toxicity, enhance its bioavail-
ability, localization, and controlled release, and improve 
its efficacy, a proposal has been developed to conjugate 
it with HA to formulate a hyaluronic acid-hydroxychlo-
roquine conjugate [156]. The ability of hyaluronic acid 
to form conjugates with pharmacologically active com-
pounds offers an opportunity for this approach [157]. 
However, no clinically approved immunoglobulins or 
specific therapeutic drugs are available for COVID-19. 
Rigorous research is ongoing to screen potential thera-
peutic targets that may aid in developing effectual pre-
vention and successful treatment strategies [158].

HA in drug delivery
Conjugating active ingredients to HA can create pro-
drugs with efficient physicochemical features, improved 
shelf life, stability, and therapeutic potency and safety 
compared to free drugs [2]. Since hyaluronan possesses 
multiple physiochemical properties, HA-drug conju-
gates can exert their biological activities as such. Moreo-
ver, therapeutic actions can also be achieved upon drug 
release when the chemical bonds linking active ingredi-
ents and HA are catalyzed in the biological system, ideally 
at the peculiar target sites [48, 159]. A diverse range of 
active ingredients can be compounded into HA for topi-
cal or intravenous application. HA is primarily utilized 
in controlled release or targeted drug delivery systems 
because of its excellent biocompatible gelation proper-
ties. One example is a polymer network created by gelat-
ing the adipic dihydrazide derivative of HA cross-linked 
with reagent poly (ethylene glycol)–propionaldehyde. 
This macromolecule gives rise to a hydrogel [72, 160]. 
Transdermal drug delivery using HA is possible, but the 
challenge lies in that HA, a high molecular weight com-
pound, cannot cross the stratum corneum. To overcome 
this issue, nanoparticles of HA can be utilized, which can 
deliver the drug to the dermis. Moreover, bioavailability 
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has always been a limitation in ocular drug delivery due 
to various barriers [161, 162]. However, coating chitosan-
based nanoparticles with HA can increase the cornea’s 
retention time, thereby enhancing dexamethasone’s bio-
availability by almost two times. These nanoparticles are 
also suitable for gene delivery, as they are highly com-
patible with the mucous and ensure efficient transfer 
without loss of cell viability [163]. During eye-related 
surgeries, HA is employed to equilibrate the morphol-
ogy of the frontal chamber. HA-based nanoparticles 
(NPs) in polymeric thin films can also serve as a hybrid 
therapeutic system for the controlled release of vitamin 
E to manage skin wounds [164]. HA formulations with 
phospholipids can develop surface-modified liposomes 
before or after liposome formulation [165]. HA-modi-
fied liposomes have shown great promise as drug car-
riers. They enhance drug stability in the dynamic blood 

flow, extend drug half-life, lower toxicity, improve tissue 
absorption and barrier permeability, sustain prolonged or 
controlled active ingredient release, and enhance thera-
peutic efficacy through synergistic actions [166]. HA and 
its derivatives have a strong affinity for CD44 receptors, 
specific receptors in cancerous tumors [167]. This makes 
HA an ideal candidate for targeted and effective deliv-
ery of anticancer drugs, given its high biocompatibil-
ity, non-immunogenicity, and non-toxicity [105]. Many 
approaches, like nanotheranostics and nanocarriers such 
as carbon tubes, quantum dots, and graphene, are used in 
conjugation with HA to achieve an efficient delivery sys-
tem. In addition to anticancer drugs, HA is also used to 
deliver genes and proteins. HA-based microspheres and 
microparticles have been investigated as potential com-
binational compounds to enhance the bioadhesive prop-
erties, control drug delivery, and improve the ointments’ 

Table 1 Summarizing different types of HA forms available, their properties, and potential applications

Type of HA Molecular weight Properties Potential application Reference

Nanofibers 15–150 kDa High porosity
Mechanical strength
Flexibility compared to microfibers
Large surface area-to-volume ratio

Wound dressing
Scaffolds for tissue engineering
Drug release delivery systems
Serums for cosmetics
Nano masks
Coatings for medical devices

[171–175]

Microfibers 100–700 kDa Solubility is adjustable
Different textile technologies can weave it
Sterilizable

Tissue regeneration
Pre- or postsurgical use
Drug delivery or another active ingredient 
delivery
Controlled release delivery system

[176–178]

Staple fibers 350 kDa–2.7 M It can be loaded with growth factors or MRI 
contrast agents
It can be combined with other HA forms 
for multilayer applications

Drug delivery and drug release materials
Active layers for wound healing devices
3D structures
Antiseptics
Hemostatic Pads
Scaffolds with GFs

[179–182]

Hydrogels 60–1000 kDa Fully biocompatible and biodegradable
Possible to incorporate cells, fibers, micro 
or nanoparticles, or active substances

Scaffolds
Regenerative medicine
Viscosupplementation
Postsurgical adhesion
Reservoir drug release
Wound healing
Cartilage tissue engineering
Bioprinting
Contact lenses preparation
Super porous hydrogels in hygiene products

[73, 183–185]

Thin Films 15–1000 kDa Swelling, degradation rates, and mechani-
cal properties can be controlled by the type 
of modification and the degree of substitution

Prevention of postoperative adhesions
Tissue engineering (cell sheets)
Controlled release of active substances 
or growth factors
Soluble or insoluble options
Controlled dissolution materials
Transparent or colored

[78, 180, 186, 187]

Micelles 10–20 kDa Self-assembly into polymeric micelles with dis-
tinctive core–shell structures
Non-covalent encapsulation of poorly water-
soluble drugs
HA in the shell can be used as a targeting 
molecule

Dermatology
Topical applications and carrier system
Enhancing penetration of encapsulated com-
pounds into skin, hair, and nails
Drug delivery systems—Parenteral applications

[52, 188–191]
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physical quality. For instance, spray-dried HA-based 
microspheres have shown precision delivery of ofloxacin 
to the pulmonary tissues via nasal inhalation. This leads 
to better pharmacological impact than free ofloxacin and 
intravenous or oral routes of administration. HA and its 
derivatives have been utilized alone or in conjugates to 
formulate pro-drugs, surface-modified liposomes, NPs, 
microparticles, hydrogels, and other controlled drug 
delivery carriers [168, 169]. All these drug delivery sys-
tems are subject to intensive pharmaceutical optimiza-
tion for harnessing the maximum benefits. This extensive 
biomedical and clinical reach is still in its infancy, as 
most of the findings are based on in  vitro experiments, 
and there is a long way to go for the industrialization of 
HA-based pharmaceutical products [170].

Conclusion
This paper comprehensively overviews the natural 
biopolymer HA and its unique physicochemical char-
acteristics, including biodegradability, biocompatibility, 
efficacy, safety, and immunogenicity (Table  1). HA has 
been generally utilized and proven successful in various 
biomedical applications, including controlled drug deliv-
ery and release, osteoarthritis treatment, open-wound 
healing, ocular surgery, odontology, cosmetology, regen-
erative medicine, and biomedical engineering. Extensive 
research from academia and the biomedical industry 
has been carried out to understand the various deriva-
tives of HA and their applications. The game-changing 
potential of HA has been a driving force for this research. 
The application of HA for 3D bioprinting has also been 
discussed, along with its proposed use in combating 
the current COVID-19 crisis. Overall, the versatility 
and potential of HA make it a promising candidate for 
numerous future biomedical applications, and continued 
research in this field will undoubtedly yield more signifi-
cant findings.

Future perspective
Looking ahead, the future perspective of HA and its 
formulations are propitious and diverse, with ongoing 
research indicating novel applications and opportuni-
ties in various fields. Genetic manipulation of the HAS 
synthase enzyme and isoenzymes in cancer therapy 
offers a new approach to combat cancer progression. At 
the same time, research into identifying cancer-associ-
ated HAS proteins presents new opportunities for can-
cer therapy. In regenerative medicine, HA derivatives 
have significant implications for immunomodulation, 
angiogenesis, nerve regeneration, and hybrid materi-
als, suggesting new avenues for treating novel diseases 
such as COVID-19. In addition to cancer therapy and 
regenerative medicine, HA can potentially treat chronic 

inflammation, cardiovascular disease, and neurodegen-
erative disorders, with new and innovative applications 
emerging continually. For example, HA-based hydro-
gels are being explored for controlled drug delivery and 
drug release, biotechnology, and biosensors for detect-
ing disease biomarkers. At the same time, HA is being 
investigated as an adjuvant in vaccines for infectious 
diseases.

Furthermore, 3D bioprinting using HA-based bioinks 
shows significant potential for tissue engineering and 
regenerative medicine. Advances in genetic engineering 
and biotechnology offer the production of tailored HA 
derivatives with enhanced properties and functional-
ity, expanding the scope of its applications. Hyaluronic 
acid has also shown promising results in wound healing 
and skin regeneration, making it a popular ingredient 
in cosmetic products. At the same time, its potential in 
treating eye disorders and orthopedic applications is 
being actively researched. Its biocompatibility and abil-
ity to mimic natural ECM components make it an ideal 
candidate for bioengineering and implant coatings. At 
the same time, its presence and expression level can be 
correlated with disease severity and progression, mak-
ing it a valuable tool for diagnosis and monitoring. As 
our understanding of HA and its properties contin-
ues to evolve, the possibilities for its applications and 
potential in biomedical research are vast. The future 
of HA and its derivatives looks bright, with continued 
research offering the potential for developing innova-
tive therapies and treatments.
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