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Abstract 

Background  Since December 2019, a global crisis has unfolded with the emergence of a new strain of coronavirus 
known as SARS-CoV-2. This pandemic has afflicted hundreds of millions of people worldwide, resulting in millions 
of fatalities. In response to this urgent healthcare crisis, extensive efforts have been made to discover inhibitors 
of the COVID-19 virus. Given the structural similarities between SARS-CoV-2 and HCV, drugs approved by the FDA 
for treating HCV were selected and subjected to in silico testing against the SARS-CoV-2 virus, with Remdesivir used 
as the standard for validation. Drug repurposing and phytochemical testing have also been conducted to identify 
potential candidates capable of inhibiting or suppressing the infection caused by the coronavirus. The time con-
straints imposed by the pandemic necessitated the in silico analysis of existing drug molecules against the coronavi-
rus. Eleven HCV drugs approved by the FDA, along with one RNA synthesis inhibitor antibiotic drug, were tested using 
the in silico method due to their structural similarities with HCV and the SARS-CoV-2 virus.

Results  Molecular docking and MD simulation studies were performed for all selected compounds. Binding ener-
gies, root-mean-square deviation, root-mean-square fluctuation, solvent-accessible surface area, radius of gyration, 
and molecular mechanics generalized born surface area were calculated. Based on docking and MD simulation 
studies all the selected compounds have shown good binding energy values with Mpro (PDB ID: 6LU7). No toxicity 
measurements are required for these drugs since they were previously tested prior to their approval by the FDA.

Conclusions  This study shows that FDA-approved HCV drugs can be used as for SARS-COVID-19 inhibitors.
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Background
In December 2019, the world faced a global crisis with 
the emergence of COVID-19, leading to widespread suf-
fering. According to data from the worldometers data-
base (https://​www.​world​omete​rs.​info/​coron​avirus/), 

this pandemic resulted in 680,656,727 confirmed cases 
and 6,805,186 fatalities, impacting nearly every country 
worldwide. Common symptoms of COVID-19 include 
fever, fatigue, dry cough, shortness of breath and res-
piratory distress [1]. Studies have shown that COVID-
19 patients with respiratory issues are at a higher risk of 
kidney impairment [2]. Given the associated risk factors 
and the lack of specific drugs developed to date for pre-
vention, there is an urgent need for therapeutic strategies 
to address this disease [3]. Utilizing existing approved 
antiviral pharmaceuticals offers several advantages due 
to their well-studied pharmacokinetics, pharmacody-
namics and safety profiles [4–7]. Drug repurposing has 
gained significance as it is anticipated to be a faster and 
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more cost-effective approach. Initial research has sug-
gested that a combination of lopinavir and ritonavir may 
have inhibitory effects on the virus, with numerous other 
antiviral medications also under investigation [8, 9]. 
Additionally, the potential therapeutic benefits of natu-
rally occurring bioactive flavonoid molecules have been 
explored due to their diverse bioactivity and low toxicity 
[10, 11].

The SARS-CoV-2 virus, a positive-sense single-
stranded RNA virus, encompasses a plethora of struc-
tural proteins such as accessory proteins and spike 
glycoprotein, in addition to several non-structural pro-
teins encoded by its viral genome. Foremost among these 
non-structural proteins is the 3-chymotrypsin-like pro-
tease, accompanied by helicases, papain-like proteases 
and RNA-dependent RNA polymerase (RdRp) [12]. RdRp 
assumes a pivotal role in the replication process of SARS-
CoV-2, making it a prime target for the development 
of antiviral medications, which have proven effective 
against various RNA viruses including Zika, Hepati-
tis C and other coronaviruses [13]. Notably, Remdesivir 
and Favipiravir have demonstrated efficacy in inhibiting 
SARS-CoV-2 replication by targeting RdRp and RNA 
polymerase in  vitro [7, 8, 14]. Moreover, the viral repli-
cation process relies on the activity of the viral protease 
(Mpro), encoded by the retroviral RNA genome [15]. Tar-
geting this enzyme with antiviral medications has shown 
promise in preventing viral replication by limiting the 
activity of Mpro and subsequently reducing the quantity 
of virus particles [15–17]. Among these medications, cer-
tain HIV-1 protease inhibitors like lopinavir and ritonavir 
have exhibited effectiveness in hindering SARS-CoV-2 
from producing its major protease, presenting potential 
therapeutic avenues against COVID-19 [10].

Moreover, HCV belongs to the Flaviviridae family of 
viruses, whereas SARS-CoV-2 is classified within the 
Coronavirus family. Although SARS-CoV-2 and HCV 
are distinct viruses, they share the characteristic of being 
positive single-strand RNA viruses (+ ssRNA) genetically. 
Remarkably, they exhibit similar immunological traits 
concerning host immune responses, which could offer 
insights into potential treatment strategies for COVID-
19. Taken together, it is apparent that HCV, SARS-CoVs 
and possibly SARS-CoV-2s may share comparable patho-
physiological aspects in terms of immune response 
[18]. Various approaches, including drug repurposing, 
sampling methods and genome comparison methods, 
are being explored to identify inhibitors for COVID-19 
[32–35].

Recently, computer-aided drug design (CADD) has 
significantly expedited the process of drug discov-
ery, leading to substantial reductions in costs, time and 
labor compared to traditional methods. Computational 

drug screening, a component of CADD, efficiently sifts 
through compound libraries to identify potential drugs 
[19]. A structural-based drug design approach was 
employed to pinpoint promising drug candidates from 
selected ligands [31]. Leveraging the shared genetic 
characteristics of HCV and the COVID-19 virus as posi-
tive single-strand RNA viruses (+ ssRNA), eleven FDA-
approved HCV drugs and one RNA synthesis inhibitor 
antibiotic were specifically chosen to target the major 
protease (Mpro) of SARS-CoV-2. Various computational 
techniques were utilized to assess their physical and 
chemical properties as potential COVID-19 drugs, ulti-
mately identifying all selected compounds as robust can-
didates warranting further experimental testing.

Methods
Selection of protein
The protein structure of “Structural and Active site anal-
ysis of SARS-CoV-2 Mpro complexed with N3 inhibi-
tor (PDB ID: 6LU7) containing two chains (A&B)" was 
retrieved from the protein data bank (www.​rcsb.​org). 
The PDB ID of the protein 6LU7_A (Fig. 1) has a resolu-
tion of 2.16 Å [20], which is considered good quality for 
a protein structure, as a resolution of 2.0  Å or better is 
recommended. To avoid undesired molecular interac-
tions during molecular docking and simulations, water 
molecules and unwanted complexes were removed from 
the downloaded protein structure.

The PROCHECK Ramachandran plot and ERRAT were 
used to validate the protein structure. The results indi-
cate that there is one amino acid in the disallowed region, 
and 90.6% of residues are in the most favored region. A 
good quality model typically has > 90% of amino acids in 
the most favored region [21]. ERRAT shows a quality fac-
tor of 96.552%, indicating that the protein structure is of 

Fig. 1  Structural of SARS-CoV-2 Mpro (PDB ID: 6LU7_A)

http://www.rcsb.org
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high quality. A quality factor > 50% is considered indica-
tive of a good quality model [22]. Figure 2 illustrates the 
Ramachandran plot of 6LU7_A.

Ligand selection
We selected twelve FDA-approved drugs commonly used 
in the treatment of HCV, along with one RNA synthesis 
inhibitor antibiotic, to investigate their inhibitory activi-
ties against the main protease (Mpro) of SARS-CoV-2 
with PDB ID: 6LU7. The drugs selected are Daclatasvir 
(DAC), Elbasvir (ELB), Glecaprevir (GLE), Grazoprevir 
(GRA), Ombitasvir (OMB), Paritaprevir (PAR), Pibren-
tasvir (PIB), Rifampicin (RIF), Sofosbuvir (SOF), Vel-
patasvir (VEL), Voxilaprevir (VOX), and Ledipasvir 
(LED). Remdesivir (REM), extensively used in COVID-19 
patient treatment during the pandemic, was chosen as a 
standard to validate the selected ligands. The structures 
of these ligands were obtained from PubChem and ZINC 
15 databases. Ligand preparation and energy minimi-
zation were conducted using the PyRx screening tool 
(23). The Universal Force Field (UFF) was employed for 
energy minimization of all ligands via Open Babel within 
the PyRx software, and subsequently, all ligands were 
converted to the PDB format. These optimized ligand 
structures were further converted to the PDBQT format 
suitable for molecular docking using the graphical user 
interface of PyRx.

Molecular docking of all compounds was performed 
using PyRx software with AutoDock Wizard [24, 25]. 
The protein structures provided by the AutoDock Wiz-
ard panel were utilized to generate the macromolecules 
for docking studies. During molecular docking, ligands 
were treated as flexible, while proteins were considered 
rigid. Grid parameters for docking were generated using 
the AutoGrid engine in PyRx, with the grid box dimen-
sions set to X = 13.20  Å, Y = 13.20  Å and Z = 13.20  Å, 
and the center of the grid box positioned at X = − 28.14, 
Y = 13.20, Z = 59.17 to predict the amino acids of the pro-
tein interacting with the ligands (Table 1).

Molecular dynamic simulation
Desmond, Schrödinger LLC was used to run molecular 
dynamic simulations for 50 ns [26, 27]. Atom movements 
are usually computed over time using MD simulations 
through the integration of Newton’s classical equation 
of motion [28, 29]. Using the Protein Preparation Wiz-
ard of Maestro, the receptor–ligand combination under-
went complex optimization and minimization. Utilizing 
the System Builder tool, every system was set up. An 
orthorhombic box solvent model called Transferable 
Intermolecular Interaction Potential 3 Points (TIP3P) 
was selected. The OPLS 2005 force field was employed 
in the simulation [30]. Counter ions were added to neu-
tralize the models. 50  mm of sodium chloride (NaCl) 

Fig. 2  Ramachandran plot of Mpro protein
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Table 1  2D structural diagrams of selected ligands

Ligand name Structure

1) Daclatasvir (DAC)

2) Elbasvir (ELB)

3) Glecaprevir (GLE)

4) Grazoprevir (GRA)
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Table 1  (continued)

Ligand name Structure

5) Ombitasvir (OMB)

6) Paritaprevir (PAR)

7) Pibrentasvir (PIB)

8) Rifampicin (RIF)
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Table 1  (continued)

Ligand name Structure

9) Sofosbuvir (SOF)

10) Velpatasvir (VEL)

11) Voxilaprevir (VOX)
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was supplied to replicate physiological circumstances. 
Throughout the simulation, the NPT ensemble with 
a temperature of 300  K and a pressure of 1  atm was 
selected. The models were relaxed before the simulation. 
The trajectories were stored for analysis at 100 ps inter-
vals. The root-mean-square deviation (RMSD) of the 
protein and ligand over time was compared to ensure the 
stability of the simulation. Along with RMSD, root means 
square fluctuation (RMSF), solvent-accessible surface 
area (SASA), hydrogen bonds radius of gyration (Rg) and 
MM-GBSA values evaluated.

Results
There are 306 amino acid residues complexed with 
an inhibitor (N3-(N-[(5-Methylisoxazol-3-Yl)Car-
bonyl])- Alanyl-l-Valyl-N, 1 (1r,2z) -4-(Benzy-
loxy) -4-Oxo-1-{[(3r)-2-Oxopyrrolidin-3-Yl]Methyl}
But-2-Enyl)-l-Leucinamide) in the X-ray crystallographic 
structure of the SARS-CoV-2Mpro (PDB ID: 6LU7 Chain 
A) in Fig. 1. It consists of 23%, 31%, 45% and 28% α-helix, 
β-sheets, Coil and turns, respectively (36). According to 
X-ray diffraction, the protease had a resolution of 2.16. 
The structure has 87 hetero groups. The PROCHECK 

server has determined the R-values (free, work and 
observed) to be 0.235, 0.202 and 0.204, respectively.

Docking study
The Vina wizard has displayed nine possible binding 
positions as an output for each compound. The favora-
ble binding affinity was estimated by finding the results 
of less than 1.0 Å in positional root-mean-square devia-
tion (RMSD). The highest binding energy (most nega-
tive) was measured as the ligand with maximum binding 
affinity. The selected thirteen ligands efficiently bind to 
the main protease of SARS-CoV-2. The docking ener-
gies of all eleven ligands are shown in Table 2. From the 
docking analysis, all the selected ligands showed binding 
energy between − 7.5 and − 9.4 kcal/mol. PAR, GLE and 
PIB have been showing binding affinities against the main 
protease protein that were −  9.2, −  9.0 and −  9.4  kcal/
mol, respectively.

The docking scores of DAC and ELB are −  8.1 and 
−  8.8  kcal, respectively. The residues of Mpro main 
chain interaction with the  ligand are identified in Fig. 3. 
The DAC binds to the SARSCoV2 Mpro strongly, and 
the polar and non-polar amino acid residues involved 
are LYS5, TYR 126, LYS137, GLU290, ASP289, 

Table 1  (continued)

Ligand name Structure

12) Ledipasvir (LED)

13) Remdesivir (REM)
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TYR239, LEU297 and TYR237. The molecular interac-
tion is facilitated through hydrogen bond with residue 
TYR239,engages in Van der Waals interactions with 
GLU290, establishes pi-bonds with LYS5, ASP289, and 
GLU290, and creates alkyl bonds with TYR126, LYS137, 

LYS5, TYR237, and LEU287. For ELB Amino acids 
PRO108, THR 196, GLU240, HIS246, GLN110, PRO293, 
ILE249 and PHE294 residues in the main protease were 
found in binding interaction with the ligand. The amino 
acid Hydrogen bond with THR196,GLN110 Van der 
Waals interactions with GLU290,pi-bond with PRO108, 
HIS246, PRO293, PHE284, ILE249, unfavored bond with 
GLU240.

Docking score of GLE and GRA is −  9.0 and 
−  8.0  kcal, respectively. The residues of Mpro main 
chain interaction with ligand are identified in Fig. 4. The 
GLE and SARS-CoV2 Mpro binding involves LYS137, 
VAL171, ALA194, ASP197, THR199, LEU286, LEU287 
residues in main protease were found in binding inter-
action with the ligand. The amino acid forms hydrogen 
bond with LYS137,ASP197,halogen bond with LEU287, 
alkyl bond with VAL171, ALA194, LEU286, unfavored 
bond with THR199. The major protease’s HIS246, 
VAL202, GLN110, VAL297, PRO293, PRO252, PHE294 
and VAL104 residues were discovered in the binding 
interaction with the ligand GRA. The amino acid forms 

Table 2  Binding energy values of docking analysis
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b Proportion successful

Fig. 3  a 3D and 2D ligand interaction diagram of DCA with SARS-CoV-2 Mpro; b 3D and 2D ligand interaction diagram of ELB with SARS-CoV-2 
Mpro
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hydrogen bonds with HIS246 and GLN110, pi-sigma 
bonds with PHE294 and HIS246 and VAL202, VAL297, 
PRO252 and PRO293 form pi-alkaly bond.

Docking score of OMB is − 7.5 kcal. The residues of 
Mpro main chain interaction with ligand are identified 
in Fig.  5. The amino acid forms hydrogen bonds with 
ASP197, carbon hydrogen bonds with LEU272, LYS137, 
Alkyl bonds with LEU287, LEU286, LEU 272 and VAL 
171, Van der Waals bonds with LEU271, TYR237, 
GLN273, ASN274, GLY275.

The docking score of PAR is − 9.2 kcal. The residues 
of Mpro main chain interaction with the  ligand  are 
identified in Fig. 6. VAL104, ASN151, GLN110, ILE249, 
PRO293, VAL202, HIS246, PRO252 and VAL297 
residues in the main protease were found in bind-
ing interaction with the ligand. The amino acids have 
hydrogen bond with ASN151, VAL104, GLN110, pi-
cation bond with HIS246, alkaly and pi-alkaly with 
VAL297, PRO252, PRO293, VAL202, ILE249, Van der 

Fig. 4  a 3D and 2D ligand interaction diagrams GLE; b 3D and 2D ligand interaction diagrams GRA with SARS-CoV-2 Mpro
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Waals bond with ASP153, PHE294, THR292, ILE106, 
GLN107, ILE106, PRO108.

The docking score of PIB is − 9.4 kcal. The residues of 
Mpro main chain interaction with the ligand are identi-
fied in Fig.  7.LYS5, LYS137, ARG131, ASP289, LEU286, 
LEU287, ALA285, GLY278, MET276, ASN277, THR198, 

ASP197, ALA193, ALA194 residues in main protease 
were found in binding interaction with the ligand. Fig-
ure  7 shows the ligand interaction diagrams of PIB 
with SARS-CoV-2 Mpro. The amino acids have hydro-
gen bond with ARG135, ALA285, GLY278, MET276, 
ASN277, ASP197, pi-cation bond with LYS5, LYS137, 

Fig. 5  3D and 2D ligand interaction diagrams of OMB with Mpro

Fig. 6  2D and 3D ligand interaction diagrams of PAR with Mpro
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halogen bond with ASP289, LEU287, THR198, alkaly 
and pi-alkaly with ALA193, ALA194, LYS137, LEU286, 
LEU287, MET276, ALA285, Van der Waals bond with 
LEU271, GLY275, LEU272, TYR239, TYR237, ASN238, 
VAL171, THR169, THR196, GLU288, GLU290.

The docking score of RIF is − 7.8 kcal/mol. The resi-
dues of Mpro main chain interaction with the ligand are 
identified in Fig. 8. ASP153, SER158, GLN110, ILE249, 
PHE294, PHE8, VAL104 residues in the main protease 
were found in binding interaction with the ligand. 
The amino acids have hydrogen bond with GLN110, 
ASP153, SER158, alkyl and pi-alkyl with PHE294, 
PHE8, VAL104, Van der Waals bond with LEU271, 

GLY275, LEU272, TYR239, TYR237, ASN238, VAL171, 
THR169,THR196, GLU288, GLU290.

The docking score of SOF is − 7.6 kcal/mol. The resi-
dues of Mpro main chain interaction with the ligand are 
identified in Fig. 8. ILE106, ILE249, VAL297, GLN110, 
ASN151, ASP153, SER158 and PHE294 residues in the 
main protease were found in binding interaction with 
the ligand. The amino acids have hydrogen bond with 
GLN110, ASN151, PHE294, GLN107, SER158 alkyl and 
pi-alkyl with VAL104, ILE106, PRO293, pi-pi bond with 
PHE294, Van der Waals bond with LYS102, ASP153, 
VAL297, ILE249, PRO252, ARG105, THR292.

Fig. 7  3D and 2D ligand interaction diagrams of PIB with Mpro

Fig. 8  a 2D ligand interaction diagram, b 3D interaction diagram of RIF with Mpro
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The docking score of VEL is −  8.8 a kcal/mol. Main 
protease residues PRO132, HIS246, GLN110, VAL202, 
PRO241, PHE294, ILE106 and ILE249 were found in 
binding interaction with the ligand. The amino acids 
have hydrogen bond with PRO132,GLN110, alkyl and 
pi-alkyl with VAL202,ILE249,ILE106,PRO293,pi-pi 
bond with PHE294,pi-cation bond with HIS246, Van der 
Waals bond with ASN133, THR196, GLY195, ASP153, 
THR111, ASN151, VAL297, THR292, GLY109, ILE200, 
GLU240, PRO108, PHE134. The docking score of VOX 
is −  8.7  kcal/mol. Residues in the main protease found 
in binding interaction with the ligand are ARG131, 
ASN238, THR199, LYS236, ASP197 and TYR237, and the 
amino acids have hydrogen bonds with ARG131, LYS236, 
ASN238, THR199 and pi-alkyl bond with TYR237. Van 
der Waal and halogen bonds were also observed. Figure 9 
shows interaction diagrams of VEL & VOX with SARS-
CoV-2 Mpro.

The docking score of LED is − 8.7 kcal/mol. The res-
idues of Mpro main chain interaction with the ligand 
are identified in Fig. 10. Conventional hydrogen bonds 
with ALA285, MET276, ASN277, GLY170, TYR239, 
pi-cation bond with LYS137, pi donor hydrogen bond 
with LEU287, pi-alkyl bonds with LEU286, HIS172, 
alkyl bond with LEU272, halogen bond with GLU288, 
ASP289 and Van der Waals bond with VAL171, 
LEU287, THR189, LU281 and carbon hydrogen bonds 
with protein amino acids.

The docking score of REM is − 7.8 kcal/mol. The resi-
dues of Mpro main chain interaction with the ligand are 
identified in Fig. 10. Conventional hydrogen bonds with 
AGR188, THR190, HIS 41,pi-pi bond with HIS 41,pi-
alkyl bonds with MET49, MET165 and Van der Waals 
and carbon hydrogen bonds with protein amino acids.

Fig. 9  a, c 2D ligand interaction diagrams and b, d 3D interaction diagrams of VEL & VOX with Mpro
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Discussion
RMSD
The root-mean-square deviation (RMSD) is used to 
measure the average change in displacement of a selec-
tion of atoms for a particular frame with respect to a 
reference frame. It is calculated for all frames in the tra-
jectory. The RMSD for frame x is:

When comparing a protein’s initial structural confor-
mation to its final position, the difference between the 
backbones of the protein is measured using the root-
mean-square deviation (RMSD). RMSD calculation was 
done for the entire C-α atom from the starting structures, 
which was considered an essential criterion to calculate 
the convergence of the protein–ligand complex system 
involved in the study. The stability of the complex was 

(1)RMSDx =

√

√

√

√

1

N

N
∑

i=1

(r′
i
(tx)− ri(tref))

2

demonstrated by the time-dependent variation in RMSD 
values for C-alpha atoms in ligand-bound proteins. Fig-
ures  11, 12 and 13 show the RMSD graphs of protein–
ligand complexes. The complexes stabilized at 30  ns, 
according to the RMSD plots. On the other hand, at 
30 ns, the RMSD of the protein-bound ligand increased 
slightly. This flip might be the result of a conformational 
shift in the ligand’s rotatable bonds.

RMSF
RMSF stands for root-mean-square fluctuation. This 
numerical measurement is similar to RMSD, but instead 
of indicating positional differences between entire struc-
tures over time, RMSF calculates the flexibility of indi-
vidual residues—the extent to which a particular residue 
moves (fluctuates) during a simulation. RMSF per residue 
is typically plotted against residue number and can indi-
cate which amino acids in a protein contribute most to 
molecular motion. Analysis of residue fluctuation reveals 
that RMSF values for all complex structures followed 

Fig. 10  a, c 2D ligand interaction diagram, b, d 3D ligand interaction diagrams of LED & REM with Mpro
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a similar pattern. Notably, residues with higher fluc-
tuations were observed between positions 100 and 306. 
Overall, the graph suggests that the 6LU7-PAR complex 
exhibited higher fluctuations during the final simulation 
period compared to all other complexes. Additionally, the 
average RMSF values across all complexes range from 0.4 
to 4.8, except for the 6LU7-PIB complex, where RMSF 
values fluctuated from 0.8 to 6.4. See Fig.  14 for RMSF 
graphs.

Solvent‑accessible surface area
Solvent-accessible surface area (SASA) is defined as 
the surface area of a protein that interacts with solvent 
molecules [22]. SASA is considered a pivotal element 

in investigations regarding protein stability and folding, 
characterized by its theoretical center within the solvent 
sphere and exhibiting van der Waals interactions with the 
molecular surface. Average SASA values for all complexes 
were monitored during 50 ns MD simulations. The aver-
age SASA values for all 6LU7-ligand complexes ranged 
from 14,500 to 15,500 Å2, respectively. No major changes 
were observed in SASA values due to ligand binding. See 
Fig. 15 for SASA graphs.

Radius of gyration (RoG)
The radius of gyration measures the compactness of a 
protein structure, which reflects its stability. The greater 
the fluctuation, the less stable the structure. Therefore, it 

Fig. 11  Root-mean-square deviation (RMSD) overlay between free protein before docking and protein after docking with a DAC, b ELB and c GLE, 
respectively
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plays a significant role in comparative studies. The stabil-
ity of protein–ligand complexes was analyzed in terms of 
RoG over a 50-ns simulation period. The average Rg was 
found to be 21–23 nm for all protein–ligand complexes 
with a % RSD of 0.05. The minimal standard deviation 
values indicate that ligand binding to the protein’s active 
site does not induce major conformational changes in the 
protein structure. This suggests that all protein–ligand 

complexes remained stable throughout the entire simula-
tion period. See Fig. 16 for radius of gyration (RoG) plots 
of selected ligands with the protein.

Hydrogen bond
Hydrogen bonds are crucial for ligand binding. Their 
properties significantly influence drug specificity, 
metabolism and absorption, making them essential 

Fig. 12  Root-mean-square deviation (RMSD) overlay between free protein before docking and protein after docking with a GRA, b LED, c OMB 
and d PAR, respectively
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Fig. 13  Root-mean-square deviation (RMSD) overlay between free protein before docking and protein after docking with a PIB, b RIF, c SOF, d VEL, 
e VOX and f REM, respectively
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considerations in medication design. Four subtypes of 
hydrogen bonds can be distinguished between a protein 
and a ligand: side-chain donor, side-chain acceptor and 
backbone acceptor.

The most important interactions between ligands 
and the protein consisted of hydrogen bonds, as shown 
in Fig.  16. Various amino acid residues were found 
to participate in hydrogen bonding. Additionally, the 

ligand–protein interaction was carefully monitored 
throughout the simulation analysis process. H-bonds, 
hydrophobic interactions, ionic interactions and water 
bridges are examples of molecular contacts that dem-
onstrate the connection between the target protein and 
the chosen ligand. The interaction of the ligand along the 
x-axis was determined for every frame of the trajectory. 
Furthermore, distinct interactions with the ligand, such 

Fig. 14  Root-mean-square fluctuation (RMSF) of the target protein residues complexes with the selected ligand DAC, ELB, GLE, PIB & REM, 
respectively
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as hydrophobic interactions, ionic interactions and water 
bridges, were observed. The protein–ligand heat map is 
shown in Fig. 17.

A timeline representation of the interactions and con-
tacts (H-bonds, hydrophobic, ionic, water bridges) is 
summarized in the previous page. The top panel shows 
the total number of specific contacts the protein makes 

with the ligand over the course of the trajectory. The 
bottom panel shows which residues interact with the 
ligand in each trajectory frame. Some residues make 
more than one specific contact with the ligand, which 
is represented by a darker shade of orange, according to 
the scale to the right of the plot. For all twelve protein–
ligand complexes the protein–ligand contact heat map 
generated and verified the interactions and contacts.

Fig. 15  SASA graphs of selected ligands

Fig. 16  Radius of gyration (RoG) plots of ligands with protein
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Protein–ligand contact
Throughout the simulation, it is possible to observe 
how the ligand and protein interact. As the above plot 
illustrates, these interactions can be type-categorized 
and summarized. There are four different forms of 
protein–ligand interactions, or “contacts”: hydropho-
bic, ionic, water bridge and hydrogen bonding. The 
‘Simulation Interactions Diagram’ panel allows for 
the exploration of more detailed subtypes within each 
interaction type. Over the trajectory, the stacked bar 

charts undergo normalization. Figure 18 shows the pro-
tein ligand contact bar diagram.

Molecular mechanics and generalized born surface area 
(MM‑GBSA) calculations
The molecular mechanics generalized Born surface area 
(MM-GBSA) module of prime was used to determine 
the binding free energy (Gbind) of docked complex dur-
ing MD simulations of Mpro complexed with selected 
ligands. Using the OPLS 2005 force field, VSGB solvent 

Fig. 17  Protein–ligand contact heat map throughout trajectory (protein-REM complex)
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model and rotamer search techniques, the binding free 
energy was estimated. The MD trajectory frames were 
chosen at intervals of 10 ns after the MD run. The total 
free energy binding was calculated using Eq. 2:

where dGbind = binding free energy, Gcomplex = free 
energy of the complex, Gprotein = free energy of the 
target protein and Gligand = free energy of the ligand. 
Table  3 shows the MMGBSA values of protein—ligand 
complexes.

Table  4 presents that most of the selected ligands 
exhibit favorable free energy of binding values compared 
to Remdesivir, which was used as the reference com-
pound. Among the 12 selected compounds (GLE, PAR, 

(2)dGbind = Gcomplex−
(

Gprotein+ Gligand
)

PIB, VEL, ELB), those with docking scores ≥ −  8.8 kcal/
mol against SARS-CoV-2 Mpro were identified. These 
complexes were subsequently analyzed for intermolecu-
lar interactions, complex stability, and binding affinity 
relative to the SARS-CoV-2 Mpro-REM reference com-
plex using computational methods. Based on compre-
hensive analysis, GLE, PAR, PIB, VEL, and ELB were 
found to establish strong molecular contacts within the 
active site of SARS-CoV-2 Mpro. Therefore, these com-
pounds are potential candidates for further evaluation as 
SARS-CoV-2 Mpro inhibitors through in  vitro studies, 
with the goal of repurposing them for treatment against 
SARS-CoV-2 infection.

Conclusion
This study employed molecular docking methods to 
screen FDA-approved compound databases, utilizing 
FDA-approved HCV drugs and an RNA synthesis inhibi-
tor antibiotic. The objective was to identify molecules 
within these substances that could effectively inhibit 
COVID-19 by targeting the main protease (Mpro). The 
selected ligands exhibited promising COVID-19 inhibi-
tion, as indicated by improved energy scores using the 
blind docking approach. Subsequently, molecular dynam-
ics (MD) simulations were conducted over 50  ns (ns) 
using Desmond, Schrödinger LLC software, to further 
evaluate the chosen compounds in their best docking 
poses. Additionally, various parameters including RMSD, 
RMSF, Rg, SASA and MMGBSA were calculated. Our 
data suggest that these findings support the repurposing 
of existing pharmacological molecules for the treatment 
of additional diseases during urgent pandemic situations 
such as COVID-19.

Fig. 18  Protein–ligand contact bar diagram of trajectory (protein-PAR complex)

Table 3  MM/GBSA binding free energy values

Name of the ligand MMGBSA (k/cal)

DAC − 76.828827

ELB − 66.272588

GRA​ − 47.941362

GLE − 22.378531

LED − 57.653165

PAR − 34.390086

SOF − 47.638993

RIF − 54.152987

VEL − 67.841531

VOX − 91.610103

OMB − 57.034641

REM − 73.094995

PIB 0.064481
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