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Abstract 

Background Coccoloba uvifera L. (Family: Polygonaceae) known as sea grape is natively distributed in middle 
and south America. The aqueous leaf extract showed inhibitory activities against α‑glucosidase and α‑amylase 
in previous reports. Moreover, the hydroalcoholic leaves extract ameliorated hyperglycemia in the oral glucose toler‑
ance test. Despite these promising results, the extracts used in these studies were not standardized, nor was their 
mechanism of action elucidated. The current study aims to standardize the ethanolic C. uvifera leaves extract (CU) 
using markers, and assess its ameliorative activity against diabetes and its hepatoprotective activity against diabetic 
complications.

Results Standardized leaves’ ethanolic extract contained 0.09 ± 0.00057 and 0.23 ± 0.0011 mg/g gallic acid and rutin, 
respectively, as estimated by HPLC. Administration of CU (100, 200 and 400 mg/kg) for 6 weeks ameliorated DM mani‑
festations in STZ‑induced diabetic rats in a dose‑dependent manner. The ethanolic extract reduced fasting blood glu‑
cose, increased serum insulin and reduced elevated liver enzymes. CU counteracted oxidative stress, promoted glu‑
cose metabolizing enzymes and reduced gluconeogenesis enzymes. The underlying mechanism involved increased 
expression of IR, IRS‑1, IRS‑2 and GLUT2 in liver tissue through activation of PI3K/AKT signaling. The histopathological 
study demonstrated reduced inflammation and hepatocyte degeneration.

Conclusion CU could be used as a promising antidiabetic drug with hepatoprotective activity in diabetes hepatic 
complications. The standardized CU ethanolic extract should be further assessed clinically alone or in combination 
with other antidiabetic remedies.
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Background
Combating diabetes mellitus (DM) and its complica-
tions is one of the major challenges facing the healthcare 
system worldwide. DM has a high prevalence among all 
ages. It afflicted 463 million people in 2019, projected to 
increase to 578 million (10.2%) by 2030 [1]. DM compli-
cations due to persistent hyperglycemia harmfully affect 
vital physiological systems involving the Kidney, neurons, 
heart and liver [2]. One of these complications is hepato-
toxicity [3].

DM is associated with multiple liver abnormalities 
such as abnormal glycogen deposition, non-alcoholic 
fatty liver disease, fibrosis, cirrhosis, abnormal elevated 
hepatic enzymes, acute liver disease and viral hepati-
tis [4]. Excessive accumulation of fats in the liver with 
persistent hyperglycemia may worsen insulin resistance 
leading to severe metabolic dysfunction. Consequently, 
this would increase the mortality and morbidity within 
diabetic patients through the damage of hepatocytes. The 
biochemical alterations induced by DM are comparable 
to those observed in serious liver diseases, e.g., the for-
mation of hepatocellular carcinomas (HCCs) and even 
end-stage liver failure [5].

A combined pharmacological therapy approach is 
applied to have a better control on the serum glucose 
level and to limit diabetes complications, e.g., metformin 
and pioglitazone (thiazolidinediones), together with 
other drugs such as atorvastatin, betaine, losartan and 
orlistat [6, 7]. However, these synthetic drugs possess not 
only undesirable side effects but also high cost. Herbal 
plants are safe and cost-effective complementary therapy 
for diabetic patients [8, 9].

Coccoloba uvifera L. (Family: Polygonaceae) known 
as sea grape which is natively distributed in Middle and 
South America [10]. The sea grape was traditionally used 
by the Native Americans to make medicinal teas from its 
leaves, bark and roots. The sea grape’s astringent juice 
and decoctions of wood, bark and roots were used to 
treat diarrhea, dysentery, hemorrhages and venereal dis-
eases; they were also applied externally for rashes and 
other skin afflictions. A tea made from the leaves was 
used to treat hoarseness and asthma, as well as to bathe 
wounds. The resinous gum of the bark was also used 
against throat ailments, and the root decoction was used 
to treat dysentery [11].

Leaves of sea grape have many biological activities 
such as antidiabetic, antioxidant, anti-inflammatory, 
antimicrobial and cytotoxic activities [12–14]. The aque-
ous extract of leaves showed inhibitory activities against 
α-glucosidase and α-amylase enzymes [15]. Moreover, 
the leaf ’s hydroalcoholic extract ameliorated hyperglyce-
mia in the oral glucose tolerance test [14]. In addition, a 
patent application demonstrated effective treatment of a 

diabetic condition by the daily ingestion of a tea brewed 
from Coccoloba uvifera leaves ethanolic extract [16]. 
Several compounds, such as flavonoids, anthraquinones, 
anthocyanins and terpenoids, were isolated from the 
plant [17, 18]. Moreover, different phenolic acids were 
quantified from C. uvifera leaves ethanolic extract which 
have been reported to control DM and its complications 
[12, 19]. Despite these promising results, the ethanolic 
extracts were not standardized, nor was their mecha-
nism of action elucidated. The current study aims to (i) 
standardize the ethanolic C. uvifera leaves extract (CU) 
using markers, (ii) assess the ameliorative activity of the 
standardized extract against diabetes and (iii) assess its 
hepatoprotective activity against diabetic complications.

Materials and methods
Chemical and reagents
For extraction and HPLC analysis, respectively, solvents 
of analytical and HPLC grades were used. They were pur-
chased from Sigma-Aldrich (St. Louis, MO, USA).

Plant material and extraction
Leaves (2 kg) were air-dried and grinded to coarse pow-
der. Powdered leaves were exhaustively extracted with 
95% ethanol by maceration (5 X 10L). Under reduced 
pressure, the solvents were distilled off using Buchi Rota-
vapor (Switzerland) to yield 75 g of greenish-black extract 
of CU, and it was stored in closed airtight container at 
4 °C. Aliquots were used for the chemical analysis and the 
pharmacological study.

Chemical standardization of Coccoloba uvifera L. 
extract
Determination of total phenolic and flavonoid content
Total phenolics was assessed using Folin–Ciocalteu rea-
gent and it was expressed as mg/g gallic acid equiva-
lents (GAE) [20]. Gallic acid standard curve was set up 
at concentration range (250–15.6 µg/mL). The assay was 
constituted by mixing 10% Folin–Ciocalteu reagent (200 
µL) with CU extract, gallic acid or methanol (100 µL) to 
form sample, standard and blank assay mixtures. Next, 
saturated  Na2CO3 solution (7%, 800 µL) was added and 
mixed. The mixture was incubated for an hour at room 
temperature in a dark place. Aliquots of the assays (200 
µL) were transferred to a transparent 96-well plate to 
measure the absorbance at 630 nm using plate reader 
(ELx 808, BIO-TEK Instruments, US).

Besides, the total flavonoid content was investigated 
using aluminum chloride colorimetric assay [21]. The fla-
vonoid–aluminum complexes were measured at absorb-
ance 403 nm. Quercetin (100–10 µg/mL) was chosen 
as a reference standard. 250 µL  AlCl3 aqueous solution 
10% was combined and vortexed with 500 µl extracts, 
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methanol or quercetin and 250 µL of water. Following a 
10-min incubation period at room temperature, 250 µL 
of the aliquots was transferred to a transparent 96-well 
plate, water was replaced with the same volume as  AlCl3 
in the blank. The amount of flavonoid compounds in the 
dry extract was represented as milligrams equivalents of 
quercetin per gram (mg/g QE).

High‑performance liquid chromatography (HPLC) analysis
Aliquots of CU (121  mg) were dissolved in 
methanol:water (50:50) at final concentration 50 mg/
ml, filtered using Millex-HV 0.45-mm membrane filters 
(Millipore, Bedford, MA, USA). HPLC analysis was car-
ried out on waters 2690 Alliance HPLC system equipped 
with a Waters 996 photodiode array detector PDA (Mil-
ford, MA, USA). The flow rate was maintained at 1.0 mL/
min; 10 µL sample was injected; and the chromatogram 
was traced at 280 nm. Chromatographic separations were 
performed on a Kromasil C-18 guard column (5 µm, 
4.6 × 250 mm) (Eka Chemicals, Sweden). For the stand-
ardization process, rutin and gallic acid were selected as 
markers for the standardization of CU. A standard cali-
bration curve was performed in the detector linear range 
from 10 to 50 µg/mL for both standards (supplementary 
data, Figures S1, S2). The mobile phase comprises of mix-
ture A (0.1% phosphoric acid in water) and B (methanol) 
run in gradient mode. The following gradient elution was 
used: 95/5% A/B for 3 min, then increased to 50% B at 
50 min, then elevated to 30/70% A/B at 55 min, followed 
by 10/90% A/B in 75 min. Under the previous conditions, 
gallic acid and rutin were eluted at 13.60 and 51.16 min, 
respectively (Fig. 1).

The pharmacological study
Animal
Adult male Wistar albino rats weighing 150–200 g were 
used. Rats were kept under controlled environmen-
tal conditions, humidity (60 ± 10%), a light/dark cycle 
of 12/12  h and room temperature. All animals had free 
access to food and water throughout the study.

Experimental design
For diabetes induction, rats were fasted overnight then 
injected with STZ (40 mg/kg, i.p.) (Sigma-Aldrich Chem-
icals (St. Louis, MO, USA), which was freshly prepared 
in cold 0.1  M citrate buffer (pH 4.5) [22]. STZ-injected 
rats were allowed to drink 5% glucose solution for 24 h 
to overcome initial hypoglycemic mortality induced by 
STZ. After 48 h of injection, diabetic animals were identi-
fied by measuring blood glucose level using an analyzer 
(Roche Diagnostic Accu-Check test strips, Germany). 
For the experiment, rats with blood glucose levels more 
than 250 mg/dl were selected.

Rats were randomly divided into five groups (n = 6 per 
group) as follows: diabetic untreated group (STZ), dia-
betic CU at three dose levels (100, 200 or 400  mg/kg, 
p.o.) treated groups [14] and a fifth group that received 
a single citrate buffer i.p. and daily 0.1% tween 80 p.o 
and served as normal control. CU was dissolved in 0.1% 
tween 80 and administered for 6  weeks starting from 
the third day after the injection of STZ. Animals were 
weighed on the first and last day of treatment. The col-
lection of blood was from the retro-orbital sinus under 
light anesthesia (sodium pentobarbital; 10  mg/kg, i.p), 
and serum was separated and stored at − 80 °C to be used 
for the estimation of insulin and liver enzymes. Animals 
were euthanized by cervical dislocation under anesthe-
sia and the liver was removed and washed with saline. A 
part of liver was placed in 10% (v/v) formalin for 24 h for 
histopathological analysis. The other parts were stored 
at − 80  °C for biochemical analysis. Frozen tissues were 
homogenized in a buffer for biochemical testing.

Biochemical analysis
Measurement of fasting blood glucose and serum insulin 
levels
Blood glucose levels were determined from tail vein of 
overnight fasted rats using glucometer (Roche Diagnos-
tic Accu-Check test strips, Germany). According to the 
manufacturer’s instructions, serum insulin levels were 
assessed using a commercially available rat ELISA kit 
(Ray Biotech, Peachtree Corners, GA, USA).

Measurement of serum aminotransferases and liver 
oxidative stress biomarkers
Serum aspartate aminotransferase (AST) and alanine 
aminotransferase (ALT) were measured by kits supplied 
by Biodiagnostic (Cairo, Egypt). Besides, liver malon-
dialdehyde (MDA) as an index of lipid peroxidation and 
reduced glutathione (GSH) contents were measured col-
orimetrically according to the methods of [23] and [24], 
respectively. Results are expressed as nmol/g for MDA 
and µg/g for GSH.

Estimation of liver carbohydrate metabolic enzyme 
activities and glycogen content
Carbohydrate metabolic enzymes such as hexokinase, 
glucose-6-phosphatase, fructose-1,6-bisphosphatase and 
glycogen content were measured by the method of [25–
27] and [28], respectively.

Quantitative real‑time polymerase chain reaction
Using an SV Total RNA Isolation System (Promega, 
Madison, WI, USA), total RNA was isolated from the 
liver tissues, and the purity of the resulting RNA was 
determined spectrophotometrically at 260/280  nm. 
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After that, the same quantities of RNA were reverse-
transcribed into cDNAs using Reverse Transcription 
System (Promega). Quantitative RT-PCR of IR, IRS-
1, IRS-2, GLUT2 and β-actin mRNAs was performed 
using SYBR green (iTaq Universal SYBR Green Super-
mix, Bio-Rad, Hercules, CA, USA). Table  1 describes 
the primer sequences employed. The thermal cycler 
protocol’s initial enzyme activation stage was per-
formed for 10  min at 95 ◦C. This was followed by 40 
cycles of 15  s denaturation at 95 ◦C and 60  s anneal-
ing/extension at 72 ◦C. Using the  2−ΔΔCT formula, the 

Fig. 1 HPLC standardization of CU leaves extract. A Chromatogram of total ethanolic leaves extract of C. uvifera (CU) traced at 280 nm. B Authentic 
gallic acid and rutin chromatogram eluted at 13.6 and 51.16 min at 280 nm, respectively

Table 1 Primer sequences used in RT‑PCR

Gene Primer sequence (5’‑3’)

IR F: TGG ACA TCC GGA ACA ACC TG
R: TCT GCA GAT GGC CCT CAA TG

IRS‑1 F: TGT GCC AAG CAA CAA GAA AG
R: ACG GTT TCA GAG CAG AGG AA

IRS‑2 F: CTA CCC ACT GAG CCC AAG AG
R: CCA GGG ATG AAG CAG GAC TA

GLUT2 F: GTC AGA AGA CAA GAT CAC CGGA 
R: AGG TGC ATT GAT CAC ACC GA

β‑Actin F: ATC CTG GCC TCA CTG TCC A
R: AAC GCA GCT CAG TAA CAG TC
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relative expression of target genes was determined. 
Each value was expressed as a fold change and normal-
ized to β-actin levels.

Western blot analysis
After the total protein was extracted from the liver tis-
sue, equal amounts of protein (10  μg) were separated 
by sodium dodecyl sulfate polyacrylamide gel electro-
phoresis. The protein was transferred to a nitrocellulose 
membrane (Amersham Bioscience, Piscataway, NJ, USA). 
Later, the membranes were washed with phosphate-
buffered saline (PBS) and blocked via immersion in 5% 
(w/v) skim milk powder overnight. The membranes were 
then incubated with primary antibodies against p-PI3K 
(Tyr458, Tyr199) (1:1000, Cat. No. PA5-17,387), p-AKT 
(Ser473) (1:1000, Cat. No. 44-621G) and β-actin (1:500, 
Cat. No. PA1-183) obtained from Thermo Fisher Scien-
tific Inc. (Rockford, IL, USA). Subsequently, the mem-
branes were washed, and secondary antibodies labeled 
with peroxidase were added and they were incubated for 
one hour at 37 ◦C. The ChemiDoc™ imaging equipment 
with Image Lab™ software version 5.1 (Bio-Rad Labora-
tories Inc., Hercules, CA, USA) was used to analyze the 
band intensity. The results were expressed using arbitrary 
units following normalization to the expression of the 
β-actin protein.

Histopathological analysis
The fixed specimens of the liver were processed over-
night for dehydration, clearing and impregnation using 
an automatic tissue processor. Using an embedding sta-
tion, the specimens were embedded in paraffin blocks, 
and a microtome was used to cut serial sections with a 
thickness of 5 µm. Hematoxylin and eosin staining were 
used for routinely staining of the tissue sections. Using 
the light microscopy, the mounted specimens were 
observed and scored as previously described [29]; a semi-
quantitative comparison was conducted for the structural 
changes, and the abnormalities in the tissue sections 
were graded from 0 (normal structure) to 3 (severe path-
ological changes).

Statistical analysis
Data are expressed as mean ± standard deviations 
(S.D.). All results obtained were analyzed using one-
way ANOVA followed by Tukey’s multiple comparison 
test. Statistical analyses were performed using Graph-
Pad Prism software (version 9; GraphPad Software, Inc., 
San Diego, CA, USA). A probability level of < 0.05 was 
accepted as statistically significant in all statistical tests.

Results
Characterization of Coccoloba uvifera L. ethanolic leaves 
extract.
It was imperative to standardize the CU extract before 
the pharmacological study, The total phenolic content 
CU was determined to be 205.26 ± 0.362 mg of GAE/g of 
dry extract. At the same time, the total flavonoid content 
assay revealed the presence of 32.756 ± 0.507 mg QE/g of 
dry extract. HPLC analysis revealed the presence of rutin 
as a major flavonol glycoside and gallic acid as a major 
phenolic acid in C. uvifera leaves with concentration 
of 0.23 mg ± 0.0011 and 0.09 ± 0.00057 mg per gram of 
extract, respectively (Fig. 1).

Effect of CU extract on STZ‑induced changes in body 
weight, fasting blood glucose and serum insulin
STZ diabetic rats exhibited a significant body weight 
loss at the end of the 6-week experiment (Fig. 2). How-
ever, treatment with CU extract (100, 200 or 400  mg/
kg) increased the body weight of animals as compared to 
STZ diabetic rats. Further, STZ produced a marked eleva-
tion in serum fasting blood glucose level to reach 4.9-fold 

Fig. 2 Effect of CU extract on STZ‑induced changes in body weight. 
Each bar with a vertical line represents the mean of experiments ± S.D. 
(n = 6). Statistical analyses were performed using the one‑way ANOVA 
followed by Tukey’s multiple comparison test, with the criterion 
for statistical significance as follows: **p < 0.01 and ****p < 0.0001



Page 6 of 18Mohamed et al. Future Journal of Pharmaceutical Sciences          (2024) 10:132 

along with a decline in serum insulin level to reach 48.6% 
of the control group values (Fig. 3A, B). Treatment with 
STZ increased blood glucose level to 485.20 mg/dL com-
pared to control group showing 98.33 mg/dL. Treatment 
with CU extract (100, 200 or 400 mg/kg) lowered fasting 
blood glucose to attain 382.20, 368.70 and 195.30 mg/
dL, respectively. Administration 200 or 400  mg/kg CU 
only increased serum insulin to reach 1.5-fold and 1.8-
fold, respectively, compared to the STZ group Table S1. 
It was obvious that CU was effective in a dose-dependent 
manner.

Effect of CU extract on STZ‑induced changes in liver 
enzymes and oxidative stress biomarkers
STZ diabetic rats showed markedly elevated serum activ-
ity of AST and ALT to reach 3.5-fold and 2.8-fold the 
control values, respectively (Fig.  4A, B). Administration 
of CU extract (100, 200 or 400  mg/kg) to diabetic rats 
resulted in a significant decrease in the serum activ-
ity of AST to reach 61.1%, 51.7% and 39.2%, and ALT to 
reach 88.8%, 71.3% and 44.1%, respectively, compared to 
the STZ group values (Table S1). Likewise, induction of 

diabetes using STZ increased lipid peroxidation as evi-
denced by elevated hepatic MDA level to reach 2.9-fold 
and depleted hepatic GSH content to reach 34.5% as 
compared to diabetic rats (Fig. 4C, D). CU extract (100, 
200 or 400  mg/kg) treatment was effective in reducing 
MDA level to reach 76.8%, 53.7% and 44.7%, and replen-
ishing GSH content to reach 1.6-fold, 2-fold and 2.4-fold, 
respectively, as compared with STZ-treated rats. As pre-
viously elucidated, the effect of CU was dose-dependent.

Effect of CU extract on STZ‑induced changes in hepatic 
carbohydrate metabolic enzyme activity and glycogen 
content
The liver tissue of STZ diabetic rats revealed a significant 
inhibition in the activity of hexokinase and glycogen con-
tent to reach 61.4% and 45.1%, respectively, along with 
a substantial increase in the activity of glucose-6-phos-
phatase and fructose-1,6-bisphosphatase to reach 2.6-
fold and 3.1-fold, respectively, in comparison with the 
control group (Fig. 5). On the other hand, treatment with 
CU extract (200 or 400  mg/kg) inversed the decrease 
in hexokinase to reach 1.3-fold and 1.5-fold, as well as 

Fig. 3 Effect of CU extract on STZ‑induced changes in fasting blood glucose (A) and serum insulin (B). Each bar with a vertical line represents 
the mean of experiments ± S.D. (n = 6). Statistical analyses were performed using the one‑way ANOVA followed by Tukey’s multiple comparison 
tests, with the criterion for statistical significance as follows: **p < 0.01, ***p < 0.005, ****p < 0.001 and ns = no significance
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Fig. 4 Effect of CU extract on STZ‑induced changes in serum AST (A), serum ALT (B) activities, hepatic MDA (C) and hepatic GSH (D) contents. 
Each bar with a vertical line represents the mean of experiments ± S.D. (n = 6). Statistical analyses were performed using the one‑way ANOVA 
followed by Tukey’s multiple comparison test, with the criterion for statistical significance as follows: *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.001 
and ns = no significance
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Fig. 5 Effect of CU extract on STZ‑induced changes in the hepatic activity of hexokinase (A), glycogen content (B), fructose‑1,6‑bisphosphatase (C) 
and glucose‑6‑phosphatase (D). Each bar with a vertical line represents the mean of experiments ± S.D. (n = 6). Statistical analyses were performed 
using the one‑way ANOVA followed by Tukey’s multiple comparison test, with the criterion for statistical significance as follows: *p < 0.05, **p < 0.01, 
***p < 0.005, ****p < 0.001 and ns = no significance
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glycogen to reach 1.7-fold and 1.9-fold, respectively, as 
compared to STZ group (Fig.  5A, B). Similarly, admin-
istration of CU extract (100, 200 or 400  mg/kg) to dia-
betic rats decreased the glucose-6-phosphatase activity 
to reach 75.8%, 58.7% and 42.4%, respectively, and fruc-
tose-1,6-bisphosphatase to reach 80.9%, 69.8% and 53.8%, 
respectively, as compared to STZ group (Fig. 5C, D).

Effect of CU extract on STZ‑induced changes in mRNA 
expression of IR, IRS‑1, IRS‑2 and GLUT2 in liver tissue
Induction of diabetes by STZ significantly downregulated 
the mRNA expression of hepatic IR, IRS-1, IRS-2 and 
GLUT2 to reach 28.1%, 16.1%, 38.4% and 30.7%, respec-
tively, in comparison with control rats (Fig. 6). Treatment 
of diabetic rats with CU extract (100, 200 or 400 mg/kg) 
significantly improved the expression of IR to reach 2.2-
fold, 2.3-fold and 2.8-fold, respectively, IRS-1 to reach 
3.3-fold, 3.4-fold and 4.3-fold, respectively, IRS-2 to 
reach 1.9-fold, 1.9-fold and 2.3-fold, and GLUT2 to reach 
2.2-fold, 2.2-fold and 2.7-fold, respectively, compared to 
STZ group values.

Effect of CU extract on STZ‑induced changes in PI3K/AKT 
signaling in liver tissue
STZ diabetic rats demonstrated a decreased expression 
of p-PI3K and p-AKT to reach 30.3% and 16.8%, respec-
tively, compared to normal rats (Fig. 7). In contrast, CU 
extract (100, 200 or 400 mg/kg) administration effectively 
ameliorated STZ-induced downregulation of p-PI3K to 
reach 2.6-fold, 2.5-fold and 2.5-fold, respectively, and 
p-AKT to reach 3.6-fold, 3.6-fold and 4.7-fold, respec-
tively, compared to STZ group.

Effect of CU extract on STZ‑induced histopathological 
changes in liver tissue
Control group (Fig.  8A, B) showed normal hepatic 
parenchyma without any detectable histopathological 
alteration. On the other hand, examination of hepatic 
tissue of STZ group (Fig.  8C, D) showed serious inju-
ries in the hepatic parenchyma. Multifocal random 
and portal mononuclear inflammation infiltration were 
detected in the several examined sections accompa-
nied by increased portal fibroplasia and necrobiotic 
changes in the surrounding hepatocytes. Marked oval 
cells hyperplasia were commonly observed among sev-
eral affected sections. Mild improvement was detected 
in CU (100  mg/kg) group (Fig.  8E, F) that revealed 
moderate to high number of inflammatory cells infil-
tration accompanied by mild oval cells hyperplasia 
and limited degeneration of the hepatocytes. Compa-
rable results were detected in CU (200  mg/kg) group 
(Fig.  8G, H), except for fewer sections that exhibited 
fewer inflammatory cells infiltration when compared to 

CU (100  mg/kg) group. Meanwhile, marked improve-
ment was reported in CU (400  mg/kg) group (Fig.  8I, 
J) revealing apparently normal hepatic parenchyma 
in several examined sections. A sporadic case in CU 
(400  mg/kg) group showed limited area of sinusoi-
dal dilation. The statistical analysis of lesion score of 
STZ-induced hepatic injuries was conducted in differ-
ent experimental groups. STZ group exhibited a sig-
nificant increase in lesion score compared with other 
groups. Meanwhile, all groups of CU treatment showed 
a significant decrease in lesion score when compared to 
STZ group (Fig. 8K).

Discussion
Globally, diabetes has become a serious health concern, 
with over 90% of cases of DM being type 2 diabetes [30]. 
About one-third of patients with cirrhosis also have dia-
betes, and people with type 2 diabetes have a higher risk 
of developing chronic liver disease, including steatohepa-
titis and non-alcoholic fatty liver disease [31]. This study 
assessed the CU’s in vivo antidiabetic and hepatoprotec-
tive effect in STZ-induced diabetic mice. STZ is a cell-
specific toxin that causes DNA damage and free radical 
production in pancreatic islets, which results in perma-
nent damage [32]. Prior to the pharmacological study, the 
extract was chemically characterized. The HPLC chroma-
togram of the CU showed that gallic acid and rutin are 
among the major constituents of the extract. They were 
selected as markers because of their wide availability, 
cost-effectiveness and efficacy in clinical trials, which are 
important factors for QC protocols. The biochemical, 
molecular and histopathological levels evidenced the CU 
efficacy. Notably, the extract showed a dose-related activ-
ity, with 400 mg/kg being the most active dose. The study 
disclosed the possible underlying molecular mechanisms 
and assessed the histopathological changes.

The ameliorative CU activity against diabetes and diabetes 
liver complications.
CU had effectively restored serum insulin, resulting in a 
significant decrease in serum glucose. These effects were 
reflected in increased body mass. These effects suggest 
CU-protected Langerhans cells against STZ toxicity, 
maintaining insulin secretion. CU would be beneficial 
for type 2 DM patients regarding these aspects. Elevated 
liver enzymes are correlated with higher odds of diabetes 
[33]. This could be related to oxidative stress induced by 
DM [34]. It was reflected in the current study by low GSH 
and high MDA levels (Fig. 4). CU phenolics had counter-
acted this oxidative stress leading to restoration of GSH 
levels and reduction in the oxidative stress marker MDA.
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Fig. 6 Effect of CU extract on STZ‑induced changes in mRNA expression of IR (A), IRS‑1 (B), IRS‑2 (C) and GLUT2 (D) in liver tissue. Each bar with a 
vertical line represents the mean of experiments ± S.D. (n = 3). Statistical analyses were performed using the one‑way ANOVA followed by Tukey’s 
multiple comparison test, with the criterion for statistical significance as follows: *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.001 and ns = no 
significance
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CU normalized the hepatic carbohydrates metabolic 
enzymes and replenished the glycogen content
The liver is involved in glycogen formation and con-
trols postprandial hyperglycemia. It is well recognized 
that diabetes mellitus affects the liver’s normal ability to 
synthesize glycogen [35]. Furthermore, partial or com-
plete insufficient amounts of insulin in DM disrupt the 
metabolism of carbohydrates and lower the activity of the 
enzymes phosphofructokinase, hexokinase and glucoki-
nase, which depletes muscle and liver glycogen. These 
enzymes provide an approach for evaluating the periph-
eral utilization of glucose [36]. CU effectively normalized 
the hepatic carbohydrate metabolic enzyme hexokinase 
and restored the glycogen content almost to the normal 
level. These activities in turn revealed the CU insulin-
mimetic activity and its ability to facilitate the glucose 
uptake by the cells. On the other hand, glucose-6-phos-
phatase and fructose-1,6-bisphosphatase are crucial 
enzymes in gluconeogenesis [37]. The activity of these 
enzymes was reduced significantly by CU. Consequently, 
CU will result in the inhibition of gluconeogenesis and, 
hence, lower endogenous glucose synthesis.

CU elevated the expression of insulin receptors 
and glucose transferase
Insulin receptors (IRs) and insulin receptor substrates 
(IRSs), two important proteins in the insulin signal-
ing system, are downregulated in the livers of diabetic 
rodents and humans [38]. The maintenance of glucose 
metabolism largely depends on IRSs, the major media-
tors of insulin signaling [39]. Tyrosine phosphorylation 
of the IRS protein is necessary for the metabolic effects 
of insulin [40]. This phosphorylation triggers a signal-
ing cascade by activating PI3K and the serine/threonine 
kinase Akt/PKB. Furthermore, hepatic nutritional home-
ostasis is particularly dependent on IRS-2, as it mediates 
the anabolic effects of insulin via the PI3K-AKT cascade 
[41]. In the current study, CU upregulated IR, IRS-1 and 
IRS-2 mRNA expression.

The glucose transporter gene GLUT2 regulates the 
hepatocytes’ ability to absorb and release glucose across 
the plasma membrane. It preserves the balance of glu-
cose inside and outside liver cells. However, the expres-
sion of GLUT2 is drastically decreased in DM [42]. CU 
increased GLUT2 levels in the hepatocyte membrane by 
increasing mRNA expression.

CU upregulated PI3K and p‑AKT signaling in liver tissue
Insulin initiates the PI3K/AKT signaling pathway by 
binding to insulin receptors on the cell membrane. 
The main mechanism of insulin signal transduction, 
which controls glucose uptake, glycogen formation and 

Fig. 7 Effect of CU extract on STZ‑induced changes in p‑PI3K (A) 
and p‑AKT (B) expression in liver tissue. Each bar with a vertical line 
represents the mean of experiments ± S.D. (n = 3). Statistical analyses 
were performed using the one‑way ANOVA followed by Tukey’s 
multiple comparison tests, with the criterion for statistical significance 
as follows: *p < 0.05, **p < 0.01, ****p < 0.001 and ns = no significance
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breakdown, is the PI3K/AKT signaling pathway [43]. 
Insulin binds to the α subunit of IR on liver cells, activat-
ing IRS in the process. Subsequently, IRS binds to PI3K’s 
regulatory subunit, p85, and activates the catalytic subu-
nit, p110. Phosphatidylinositol (3,4)-bisphosphate and 
phosphatidylinositol (3,4,5)P3, which are produced by 
activated PI3K, promote the activation of AKT [44].

Activated AKT results in the following: Extracellular 
glucose is more easily transported into cells when active 
AKT encourages the translocation of glucose trans-
porter 4 to cell membranes. In addition, it facilitates the 
synthesis of glycogen and inhibits hepatic gluconeogen-
esis. Thus, the control of the liver’s glucose metabolism 
is mostly dependent on the insulin-PI3K/AKT signaling 
pathway. CU effectively ameliorated STZ-induced down-
regulation of p-PI3K and AKT.

CU retrieved histopathological changes in liver tissues
Previous findings showed that STZ causes histologi-
cal changes in the liver of diabetic mice. Liver cells of 
the STZ diabetic animals after 4 weeks from injection 
displayed severe congestion, necrotic foci, hydropic 
changes and aggregation of lymphocytes between the 

hepatocytes, among other more advanced abnormalities. 
Furthermore, after six weeks of STZ injection, mono-
nuclear inflammatory cell infiltration, severe hydropic 
degeneration alterations and kupffer cell hyperplasia 
can be identified [45]. CU retrieved histopathological 
changes caused by STZ through inhibition of inflamma-
tory cell infiltration and hyperplasia as well as CU lim-
ited degeneration of the hepatocytes, showing apparently 
normal hepatic parenchyma at 400 mg/Kg dose.

Different phenolic acids were quantified from C. uvif-
era aqueous, ethanolic and acetone leaves extracts such 
as syringic, ferulic, gallic, o/p-coumaric, ellagic, caffeic 
acids and others [12]. In the following sections, the anti-
diabetic activity of these constituents will be discussed. 
It is reported that high consumption of polyphenols 
may reduce the risk of diabetes incidence, control the 
postprandial glycemia and prevent the onset of glucose 
intolerance. These effects are mediated by facilitating the 
insulin response and attenuating the release of glucose-
dependent insulinotropic polypeptide and glucagon-like 
peptide-1 [46].

Gallic acid (GA) was quantified in CU with a concen-
tration of 0.09 mg/g extract, and also, it was isolated 

Fig. 8 Effect of CU extract on STZ‑induced histopathological changes. H&E staining of the liver tissues from different experimental groups. A, B 
The control group showed normal hepatic parenchyma with healthy hepatocytes. C, D STZ group showing portal fibroplasia with mononuclear 
inflammatory cell infiltration (arrow). E, F CU (100 mg/kg) group showing limited portal inflammatory cell infiltration (arrow) with congested 
blood vessels. G, H CU (200 mg/kg) group showing mild portal hepatitis (arrow) with limited oval cell hyperplasia. I, J CU (400 mg/kg) group 
normal hepatic parenchyma. K Liver lesion score in different groups represented as mean ± S.D. (n = 3). Statistical analyses were performed using 
the one‑way ANOVA followed by Tukey’s multiple comparison tests, with the criterion for statistical significance as follows: *p < 0.05, **p < 0.01, 
****p < 0.001 and ns = no significance



Page 13 of 18Mohamed et al. Future Journal of Pharmaceutical Sciences          (2024) 10:132  

from C. uvifera leaf extract [47]. A study showed that GA 
increased glucose uptake by promoting the translocating 
of GLUT4 to the plasma membrane of rat adipocytes in a 
dose-dependent manner. Indeed, authors had concluded 
that the antidiabetic activity of mulberry leaves could 
be attributed to its gallic acid content [48]. Interestingly, 
GA alleviated DM detrimental effects in high-fat diet-fed 
streptozotocin-induced insulin resistance in diabetic rats. 
GA-treated rats had lower body weight gain, lower fast-
ing blood glucose and lower insulin resistance [49]. Fur-
thermore, the levels of glycogen content and the activity 
of glucose-6-phosphatase, fructose-1,6-bisphosphatase 
and hexokinase were dramatically restored to almost 
normal levels. These beneficial effects were mediated by 
increased expression of PPARγ (peroxisome proliferator-
activated receptorγ) in adipocytes; consequently, GLUT4 
was translocated and activated in PI3K- p-AKT depend-
ent pathway [49]. Molecular docking showed that GA 
had promising interaction against GLUT4, GLUT1, PI3K 
and p-AKT. Moreover, histological examination revealed 
consistent distributions of pancreatic islets, adipose and 
hepatic cells with seemingly normal structures [49, 50]. 
Moreover, a study evaluated the antidiabetic activity of 
different hydroxybenzoic acid derivatives. GA suppressed 
the overexpression of microRNA-1271 generated by free 
fatty acids and upregulated its targets, such as p-IRS, 
p-PI3K, p-AKT and p-FOXO1, accompanied with the 
modulation of glucose metabolism genes [51].

GA was also found to be effective in clinical trials. In 
single-cell gel electrophoresis assays, oxidized purines 
are significantly reduced by 31% and pyrimidines by 2% 
after administration of GA, 15 mg for 7 days for patients 
of type 2 diabetes [52]. Moreover, following the interven-
tion, the plasma concentrations of C-reactive protein and 
oxidized LDL were decreased by 39% and 24%, respec-
tively. Consequently, a small quantity of GA (within 
the daily consumption range in Central Europe) lowers 
markers reflecting inflammation and elevated risks of 
CVD and cancer, as well as preventing oxidative DNA 
damage [52].

Several phenolic acids ameliorated DM manifesta-
tions. HbA1c and fasting plasma insulin levels were 
dramatically reduced by syringic acid, with improve-
ment in liver glucose homeostasis [53, 54] Furthermore, 
ferulic acid (FA) has been demonstrated to increase the 
levels of insulin, glycogen and glucokinase, as well as 
lower the enzymes glucose-6-phosphatase and phospho-
enolpyruvate carboxykinase in mice fed on high-fat diet 
[55]. Furthermore, FA was reported to regulate the gene 
expression of GLUT2 in the liver of diabetic rats [56]. 
Moreover, it raised the protein expression levels of IRS-1, 
PI3K and AKT in the muscles and brains of obese mice 

treated with FA, which could relieve obesity-related insu-
lin-resistant case [57].

Ellagic acid (EA) enhanced the expression of IRS-1, 
AKT and ERK in HepG2 cells exposed to high glucose 
levels; simultaneously, EA downregulated the MDA level, 
counteracted oxidative stress and increased the glucose 
consumption by cells [58]. In DM-type 2 rats, EA raised 
GSH levels while suppressing serum MDA, TNF-α and 
IL-6. It also decreased liver enzymes ALT, AST and blood 
glucose [59].

Furthermore, caffeic acid caused upregulation of the 
expression of IRS-1, AKT, PI3K and GLUT4 [60]. In 
another study, caffeic acid lowered plasma glucose and 
glucose-6-phosphatase while increasing body weight and 
plasma insulin in diabetic rats [61]. Protocatechuic acid 
found in CU extract [47] has been shown to be able to 
counteract insulin resistance in obese volunteers by rais-
ing the levels of p-Tyr-IRS-1 and p-AKT in the visceral 
adipose tissue. Furthermore, protocatechuic acid reduced 
the inflammation and PTP1B activity [62]. In addi-
tion to lowering blood glucose levels and gluconeogenic 
enzymes, p-coumaric acid was reported to modify lipid 
and glucose metabolism via activating GLUT2.

Flavonoids are ubiquitous phenolic compounds in 
plants and their beverage products. Numerous in  vitro 
and animal studies support that dietary flavonoids posi-
tively impact glucose homeostasis. In addition, through 
a variety of intracellular signaling mechanisms, flavo-
noids have been demonstrated to control carbohydrate 
digestion, insulin secretion, insulin signaling and glucose 
uptake in insulin-sensitive tissues [63]. Several flavo-
noids were isolated from C. uvifera leaves extract such as 
quercetin, myricetin and kaempferol derivatives [47, 64]. 
Their impact on DM and its complications would be dis-
played in the following paragraphs.

Rutin was quantified in this study in CU with a 
concentration of 0.23mg/g extract. A recent review 
explored the diverse mechanisms of action of rutin 
against DM. First, rutin reduces glucose level by reduc-
ing its absorption from the intestine, increasing the 
tissue glucose uptake, reducing gluconeogenesis, 
increasing insulin secretion and protecting islets of 
Langerhans against deterioration [65]. Moreover, rutin 
protects against DM complications by reducing sorbitol 
accumulation, reactive oxygen species, advanced gly-
cation end-products and inflammatory cytokines [66]. 
Rutin was reported to increase the liver’s antioxidant 
status by raising catalase, glutathione peroxidase and 
superoxide dismutase levels [67]. It also reduced serum 
levels of liver enzymes and corrected the histologi-
cal damage to hepatocytes [68]. Rutin-induced insulin 
receptor kinase activity and GLUT4 translocation in 
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differentiated myotubes enhance glucose uptake [69]. 
Furthermore, querectin, isoquercetin and rutin had 
α-glucosidase inhibiting activity [70].

In STZ diabetic rats treated with rutin (100 mg/kg), 
there was a decrease in plasma glucose and a rise in 
insulin levels, as well as a restoration of glycogen con-
tent and the activity of carbohydrate metabolic enzymes. 
The pancreas’ histological examination demonstrated 
rutin’s protective function. Meanwhile, the islets became 
larger, and the fatty infiltration of the islets decreased. 
[71]. In another study, flavonoids extract from mulberry 
leaves containing rutin as the main ingredient (1mg/
mL) remarkably increased the protein expression levels 
of p-IRS-1, p-PI3K, p-AKT, total GLUT4 and membrane 
GLUT4 in 3T3-L1 adipocytes insulin resistance model 
[72]. Moreover, it has been shown that rutin (23 µg/mL) 
reversed the high glucose-induced insulin resistance 
caused in hepatic FL83B cells via enhancing AKT phos-
phorylation, which thereby enhanced GLUT2 transloca-
tion and glucose uptake [73].

Rutin was effective in clinical trials. Consuming 1g of 
rutin in patients with type 2 diabetes mellitus resulted in 
a significant decrease in heart rates, mean arterial pres-
sure, pulse pressure and blood pressure. Moreover, there 
is a substantial rise in the antioxidant enzymes catalase, 
glutathione peroxidase and superoxide dismutase as well 
as quality of life (QOL) parameters (emotional limita-
tions, mental health, energy and freshness, social perfor-
mance and general health) [74].

Rutin was effective when combined with other oral 
synthetic antidiabetics. When given separately, rutin 
effectively decreased hyperglycemia in acute assays in a 
way comparable to oral antidiabetic drugs (OADs). In the 
subchronic assay, rutin also helped to lower the HbA1c% 
and hyperlipidemia. In all treatments, rutin and OADs 
effectively reduced hyperglycemia, as seen by the decline 
in the  percentage of HbA1c and lipid profile. conse-
quently, rutin showed significant activity when combined 
with antidiabetic medications, which is a first step toward 
creating novel DM treatments [75].

Rutin and quercetin increased glucose uptake in insu-
lin-resistant FL83B liver hepatocytes. This effect was 
mediated by the upregulation of p-AKT and GLUT2, 
reduction in oxidative stress and prevention of the deg-
radation of PPARγ [76]. Quercetin aglycone and its 
derivatives (quercetin-3-O-glucoside and quercetin-3-O-
galactoside) isolated from berry extract, enhanced insu-
lin-independent glucose uptake and stimulated AMPK 
in muscle cells [77]. Over a period of 28 days, quercetin 
at dosages of 25 and 50 mg/kg significantly decreased 
blood glucose and glycosylated hemoglobin (Hb), while 
increasing the levels of Hb in plasma and hepatic gly-
cogen. After receiving quercetin, the hexokinase and 

glucose-6-phosphatase activity in diabetic rats were also 
markedly restored [78].

When isoquercetin (quercetin-3-O-glucoside) was 
supplemented to STZ-induced diabetic rats, the insu-
lin levels increased significantly, and the glucose levels 
returned to normal. Additionally, liver enzymes were 
reduced. Glycogen synthase GK and GLUT2 expressions 
were markedly upregulated, while glucose-6-phosphatase 
expressions were significantly downregulated. The lev-
els of gluconeogenesis enzymes were significantly lower 
than those in negative control. Insulin, IR, IRS-1, IRS-2 
and AKT mRNA expressions were also elevated. Indeed, 
isoquercetin efficacy was similar to that of glibenclamide 
[79].

Administration of kaempferol (K) and its glycosides 
rich fraction decreased the area under the curve in glu-
cose tolerance test in genetically type 2 KK-Ay mice. 
Moreover, the liver had lower triglycerides level and fatty 
acid synthase activity [80]. By controlling mitochon-
drial calcium absorption, K stimulates Akt activation 
and enhances insulin production. Moreover, K directly 
restores AKT activation. Subsequently, reversing the 
effects of AKT inactivation causes the upregulation of 
gluconeogenesis, the downregulation of glycogen synthe-
sis and the uptake of glucose. Additionally, the antioxi-
dant K controls both apoptosis and autophagy [81].

Myricetin caused upregulation of p-IR, p-IRS-1 and 
p-AKT in the liver of high-fat diet-fed and STZ-induced 
type 2 diabetic rats. These effects were mediated by sup-
pressing PTP1B’s activity and expression; PTP1B is the 
tyrosine phosphatase that adversely regulates insulin 
signal transduction. These effects were evident when 
myricetin was administered alone and not in combina-
tion with horsegram protein [82]. Moreover, hexokinase, 
glycogen synthase, glycogen phosphorylase, glycosylated 
hemoglobin, glucose-6-phosphatase and plasma glucose 
were all inhibited from a significant increase [83]. It has 
been determined that myricitrin, glycosylated myricetin, 
activates the IRS-1/PI3K/AKT/GLUT4 pathway in the 
soleus muscle of type 2 DM-affected rats as well as in L6 
muscle cells exposed to high glucose [84].

Conclusion
The current study provided an unequivocal experimental 
validation of the antidiabetic activity of standardized CU. 
Moreover, it deciphered the molecular mechanism of 
antidiabetic and hepatoprotective actions of CU for the 
first time. CU had ameliorated DM detrimental impact. 
The underlying mechanism involved the upregula-
tion and induction of IRS isomers, GLUT2 and their 
upstream PI3K/AKT signaling pathway. GA and rutin 
were the major and key bioactive constituents of CU. 
Both could serve as QC markers in future analyses. As a 
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result, C. uvifera leaves extract could be used as a prom-
ising antidiabetic drug with hepatoprotective activity in 
diabetes hepatic complications. The current study laid 
the foundation for performing further assessment and 
clinical testing of the antidiabetic activity CU alone or in 
combination with other remedies.
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