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Abstract

but also causes serious side effects during treatment.

with prostate malignancy and BPH treatment.

cancer without any side effects.

Background: Identifying ways to reduce the burden of prostate cancer (Pca) or benign prostatic hyperplasia (BPH)
is a top research priority. It is a typical entanglement seen in men which is portrayed by trouble in micturition. It
stands as a significant problem in our society. Different molecular biomarker has high potential to treat Pca or BPH

Main text: The role of calcium signalling in the alteration of different biomarkers of Pca or BPH is important.
Therefore, the photoswitch drugs may hold the potential to rebalance the altered calcium signaling cascade and
the biomarker levels. Thereby play a significant role in the management of Pca and BPH. Online literature searches
such as PubMed, Web of Science, Scopus, and Google Scholar were carried out. The search terms used for this
review were photo-pharmacology, photo-switch drug, photodynamic therapy, calcium signalling, etc. Present
treatment of Pca or BPH shows absence of selectivity and explicitness which may additionally result in side effects.
The new condition of the calcium flagging may offer promising outcomes in restoring the present issues related

Conclusion: The light-switching calcium channel blockers aim to solve this issue by incorporating photo-switchable
calcium channel blockers that may control the signalling pathway related to proliferation and metastasis in prostate

Background

Chronic inflammatory conditions in benign prostatic
hyperplasia (BPH) result in an altered prostatic immune
system characterized by tissue damage caused by differ-
ent inflammatory mediators through multiple molecular
pathways [1, 2]. This condition is commonly associated
with elderly patients [1]. Studies have also suggested that
prostate cancer is influenced by the same factor. Mul-
tiple epidemiological and molecular studies have also
concluded that patients with BPH live at a higher risk of
developing prostate cancer at the later stages of their
lives [3, 4]. So, there is a need of common therapeutic
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approaches to their management [5]. Several prognostic
markers are identified that can be further explored to
halt the molecular pathways that are involved in the pro-
gression of chronic inflammation [6, 7]. Intracellular cal-
cium signalling plays an important role in the regulation
of gene expression [8, 9]. As a result, identification of
calcium coupling receptors using molecular targets
against Pca or BPH can be potentially useful in the man-
agement of these complications [7, 10]. So, it revealed
that angiogenesis, metastasis, and tumor initiation and
progression are regulated by intracellular Ca** homeo-
stasis which is altered in cancer cells [11]. Application of
chemotherapy to control these conditions comes with
severe side effects affecting the cancer and normal cells
simultaneously [12, 13]. So, the localized place is the
promising way to treat cancer cells and prevent cell

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if

changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.


http://crossmark.crossref.org/dialog/?doi=10.1186/s43094-020-00046-w&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:manishnivsarkar@gmail.com

Sharma et al. Future Journal of Pharmaceutical Sciences

proliferation by targeting Ca®" signalling [14, 15]. The
mechanisms behind Ca®* channels/transporters or Ca**
ATPase pumps are still unclear [16, 17]. In this aspect,
the current review is designed to study the role of cellu-
lar mechanisms underlying the regulation of Ca** signal-
ling in proliferated cells in Pca or BPH. This review also
focuses on the novel therapeutic evidence to control the
proliferation through Ca** channels and intercellular
communication in the tissue system [18—20]. Voltage-
gated calcium channel Ca,3.2 can be a potential differen-
tial biomarker for survival and treatment response in
breast cancer subtypes [21]. Similarly, store-operated
calcium entry (SOCE) plays a role in migration and pro-
liferation [22]. Thus, we discuss about the role of differ-
ent biomarkers linked with calcium signalling cascade
and their use as a single therapeutic target and as a light
switch in effective management of Pca or BPH.

Objective

The mechanism of a complex interplay of the inactiva-
tion and activation of extracellular and intracellular cal-
cium oscillations on the molecular level in the context
of BPH has not been fully elucidated and can be modi-
fied [23]. The experimental possibility of light-
responsive biologically active materials in the therapy
are a new domain, but it is difficult to give a rational
therapeutic regimen. Most importantly, it requires pre-
cise manipulation of the area, dosage time, and concen-
tration of the active form of drug molecules [24]. The
caged compounds which are irreversibly activated with
light can be modulated as light-sensitive compounds
that can be switched between the active and inactive
states [25, 26]. An attempt is made to address the funda-
mental use of photoswitches and their usefulness in
pharmacological applications such as in Pca or BPH
[27]. Researchers have studied the calcium oscillation in
cells with the help of a photochromic molecule that
switched between high and low affinity states. Ca** is
the most diverse secondary messenger molecule in the
cell [28, 29], and its levels are responsible for many
physiological functions including muscle contraction
and various signalling pathways [30, 31]. Similarly, sev-
eral mechanisms are proposed that can regulate Ca**
homeostasis [32, 33]. The uncontrolled cell proliferation
cause disruptions in Ca®>* handling, and that can con-
tribute to the pathogenesis of many diseases [34-36].
There are various inflammatory mediators such as CD19
or CD20, B lymphocytes (10-15%), macrophages (15%),
and CD3" T lymphocytes (70-80%, mostly CD4 are im-
plicated in cases of Pca or BPH). Chronic inflammation
occurs in the prostate tissue due to the involvement of
multiple factors including the autoimmune responses
[4]. The present review briefly summarizes the latest ad-
vances in the development of photo-drug tools that are
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associated with Ca>* signalling and their applications in
remote cell modulation. Our goal is to provide a general
approach to choose biomarkers linked with Pca or BPH
for optical control of Ca®* signalling, thereby resulting in
better spatiotemporal control of drug action via advances
in photoswitch technologies. Ultimately, we can expect an
enhanced safety and efficacy profile of the photopharma-
ceutical agents that have lesser side effects compared to
other conventional treatment options [37, 38].

Photodynamic therapy for benign prostatic
hyperplasia

Boch et al. has used lemuteporfin as a photosensitizer to
kill the cells after its activation at nanomolar concentra-
tion. This helped in transurethral photodynamic treat-
ment and remedial consequences for lower urinary tract
side effects [39, 40]. The outcome additionally indicates
lemuteporfin photodynamic therapy is a novel treatment
approach for men with lower urinary tract symptoms
(LUTS) due to BPH [41]. In many cases, laser innovation
has been utilized to treat BPH condition. However, this
methodology plays an important role in minimizing the
BPH side effect as transurethral resection of the prostate.
Although the laser innovation offers the critical advan-
tages to BPH patients, further chronic studies warranted
to confirm the safety [42].

Promising targets of Pca (prostate cancer) and
benign prostatic hyperplasia associated with Ca*
signalling

Androgen receptor

In the cytoplasm, androgen receptor binds with active
form dihydrotestosterone (DHT) and is responsible for
the growth of prostate by encoded proteins. Androgen
receptor is a major factor for prostate enlargement, due
to the imbalance between cell death and proliferation; it
is used to treat BPH/LUTS. In the current treatment ap-
proaches, the dynamic function of testosterone is hin-
dered by utilizing 5a-reductase inhibitors, such as
finasteride. Drugs like finasteride inhibit the conversion
of testosterone to DHT [43-45]. The nuclear androgen
receptor and its proliferation is influenced by androgen-
induced calcium signalling pathways leading to distur-
bances in androgen receptor signalling via T-type Ca**
channels. This promotes the prostate cell growth and
significant morphological and biochemical changes [46—
48]. Cifuentes et.al revealed that calmodulin (CaM) has a
major role in proliferation in prostate cells so there is a
need of CaM antagonist for blocking the AR activity in a
wide variety of proliferated cells [49]. For using the
photoswitch drug, it has been studied that AR has a role
to increase cAMP which is potentiated by glucose-
stimulated insulin secretion (GSIS) [50] via the
mobilization of intracellular Ca®". However, the
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objective of targeting allosteric sites is troublesome. In
this way, they have utilized azobenzene determined pre-
arranged positive allosteric modulators (PAMs) struc-
tured and tried against the glucagon-like peptide-1
receptor (GLP-1R) movement offering better manage-
ment [51]. Simultaneously, there is a need for specific
switches of calcium channels that are being regulated by
androgen receptor which directly inhibits the prolifera-
tion of enlarged prostate cells as per the requirement.

Vitamin D receptor (VDR)

Increasing the expression of Ca** pumps is maintained
by low Ca** levels to maintain vitamin D levels [52]. Cal-
cium channels are regulated by VDR agonist which has
immunomodulatory, anti-proliferative, antibacterial, and
anti-inflammatory properties and could be an option to
treat BPH. Vitamin D increases VDR protein level in all
the tissues including prostate. Vitamin D metabolites in-
hibit the growth of normal and malignant prostate cells
and probably act via ligand-dependent stabilization.
Apoptosis, differentiation, and cell cycle are directly
linked with VDR response elements [53, 54].
Cyclooxygenase-2 articulation and prostaglandin E2 gen-
eration in BPH stromal cells additionally produce an in-
hibitory impact on the RhoA/ROCK pathway. Vitamin D
action at a dose of 6000 IU/day has shown to diminish
the increased prostate volume in BPH patients [55-58].
1,25-Dihydroxyvitamin D3 stimulation has also linked
with calcium-associated TRPV6 in proliferation, apop-
tosis, and resistance providing synergistic effect [59-62].
Lehen’kyi et al. referenced in his article that TRPV6 is
firmly controlled by intracellular Ca** fixations ([Ca®*];)
and leads highly calcium-selective currents in prostate
cells [63-66]. This allows Ca®>* entry via TRPV6 and
thereby promotes antiapoptotic pathways in cancer cells
[66]. Considering this, all VDR can be a potential target
in drug discovery of new photoswitch drugs.

Alpha (a)-1 receptors

Due to the rich source of al receptors in the prostate
gland [67], presently, alpha-1 blocker is utilized for treat-
ing BPH conditions by bladder obstruction [68] and in-
terrupts motor sympathetic nerve supply to prostate.
Alpha-1 adrenoceptors in human prostatic muscle pro-
vide a rationale for using a-blockers [69]. Alpha adreno-
ceptor subtypes interact with G proteins of the Gq/11
family and activate phosphoinositide turnover and cal-
cium signalling, although with different levels of effect-
iveness [70]. al blockers loosen up the prostate smooth
muscle and decline urethral obstruction, at last prompt-
ing help in LUTS which is a noteworthy job in the phar-
macotherapeutic management of BPH [69]. We talk
about the prospects for the particular conveyance of
light to these organs and the particular prerequisites for
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light-active drugs [71]. Photoswitchable drugs are in the
pipeline and identified with ionotropic glutamate recep-
tors; kinate receptors; AMPA receptors; metabotropic
glutamate receptors, adrenergic receptors, muscarinic
acetylcholine receptors, dopamine, histamine, and sero-
tonin receptors; calcium and potassium channels; and a
number of transporters [72]. Thebault et al. revealed that
alpha-1 adrenoceptors are directly regulating the activa-
tion of TRP-mediated Ca>* entry, with all the members
of the signalling cascade of al-adrenoceptors that serve
as targets for therapeutic interventions of cell prolifera-
tion which is ultimately responsible for the growth of
prostate cancer cells [67, 73].

B-adrenoceptor agonists

Pharmacological apparatuses grew further endeavors to
order prostatic -adrenoceptors. Human stromal cells
and epithelial cells appeared to raise adenylate cyclase by
B-adrenoceptor [74]. Sharma et al. gave the information
about coupling the beta-3 adrenoceptor to Kap and
BKc, channels initiating the tocolytic impacts, which in-
dicates the powerful trigger of B3-adrenoceptors in buf-
falo myometrium and intervening their impact through
ascent in c-AMP [30]. Similarly, f3-adrenoceptor mRNA
was recognized in human prostatic tissue. Haynes et al.
studies show that activation on beta-3 and beta-1 adre-
noceptor activation is decreasing the a;-adrenoceptor-
mediated contractions [75, 76]. In some clinical studies,
it is mentioned that the use of beta blockers by the pa-
tient increases the risk of BPH [77]. The beta-
adrenoceptor is a G(s)-protein-coupled receptor which
significantly increased cAMP in the smooth muscle cell
[78]. In the case of a hypertensive patient who took beta
blocker, there is more risk to develop BPH and also po-
tentiate the response of alpha-adrenoceptor which acti-
vated the phospholipase C. This ultimately formed
inositol-1,4,5-trisphosphate  (IP;) and diacylglycerol
(DAG), leading to the activation of myosin light-chain
(MLC) kinase by calcium-dependent mechanisms and
thereby contraction of the prostatic smooth muscle [75,
76, 79]. For treating the hypertensive patient, we have to
be more focused on the development and/or use of beta
blockers as photoswitches. This caution is important to
avoid the activation of «;-adrenoceptor-mediated con-
tractions in the prostate.

C-X-C motif chemokine ligand-5 (CXCL5)

Studies have demonstrated that the relocation and intru-
sion of prostate disease cells were significantly influ-
enced by the CXC-type chemokines CXC-12 and CXC-
5, in vitro and in vivo [80], while the CXCLS5 enacted
comparative pathways related to prostate epithelial cell
expansion or attack [81, 82]. CXCLS5 is involved in car-
cinogenesis and cancer progression has emerged, and it
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could be used for future role in both diagnosis and can-
cer therapy [83, 84]. The fundamental development of
CXCL is evoked by calcium signalling. P2X4 antagonist
causes inhibition of CXCL5 secretion and is unable to
find ways in the absence of extracellular Ca* [85]. Actu-
ation of both calcium-activated potassium channels and
chloride channels and tweak of L-type voltage-sensitive
calcium channels is animated by CCR5. This investiga-
tion has been led in a focal sensory system so further
examination is ought to be prompted in the Pca or BPH
[86—88].

Histone deacetylase (HDAC)

Photoswitchable histone deacetylase (HDAC) inhibitors
are potential antitumor specialists as reported [89]. The
protein articulation levels are increased in HDACI1 and
DNA methyltransferases (DNMTase) DNMT1 in pros-
tate cancer [90]. Inhibition of HDAC assumes a note-
worthy job in chemotherapy and chemoprevention in
androgen-subordinate prostate malignant growth and
androgen-autonomous prostate disease cells by utilizing
15 puM sulforaphane (SEN) in 40, 30, and 40% in BPH-1,
LnCaP, and PC-3 cells, respectively, which propose a
novel way to treat prostate malignancy [91]. Varga et.al
contemplate and demonstrate that in the upregulation of
HDAC inhibitors, protein articulation of Ca** pumps in
an assortment of breast cancer cell lines uncovered low
PMCA4b articulation in the ER-a-positive cells. So, we
can say that Ca>* pump levels shape the intracellular
Ca®* signals that influence a few downstream flagging
pathways which might be valuable to treat BPH or pros-
tate cancer [92]. Due to the depletion of ER calcium
stores, the advancement of photoswitchable HDAC in-
hibitors is assumed to have a major role for HDAC in-
hibitor development with lesser side effects [93].

Transforming growth factor (TGFf31)

Major inhibitory medications that are right now being
grown basically to treat fibrotic malady are summarized
[94]. Given the focal job of TGFp1 in fibrosis, drugs fo-
cusing on TGFB1 might be useful for the treatment of fi-
brosis [43]; however, along with the inflammatory
cytokine inhibition of IL-10 and TGE-p, it shows signifi-
cant cure rates after PDT [95]. TGF-betal induced intra-
cellular Ca®* signal [96], and it is generally a growth
inhibitor of both benign prostatic epithelial cells [97, 98]
and prostatic cancer cells [99]. TGF-betal treatment
brought about abatement in ATP amalgamation and to
a depolarization, prompting an arrival of Ca®>* from
mitochondria and diminished action of the Ca®>* pumps.
Zemfira et al’s report demonstrates that TGF-b1 is ex-
panded dimensions of calcium levels inside PC-3U cells.
The effect was analyzed as being due to an inhibitory ef-
fect of TGF-bl on the mitochondria of the cells [100].
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So, we can say that light-delicate calcium channel
blockers, calcium (CaV) channels, play pivotal jobs in
the age of activity possibilities and in the synaptic trans-
mission and are practical objectives for photopharmacol-
ogy. Isomerization of the photoswitch with 380 nm/
500 nm light abbreviated and stretched, unblocking and
obstructing the pore [27, 101]. So, to control the TGFB-
1 receptor, we can use the photoregulation procedure by
diminishing the prostate growth and malignant growth,
with decreasing impacts on another body.

Thromboxane A2

Jafari et al. [102] uncovered in his investigation on pros-
tate malignant growth that NSAIDs give some level of
defensive impact against prostate disease, yet further
examination is required. Expanded articulation of
thromboxane synthase was found in prostate tumors,
and tumor cell motility was weakened by inhibitors of
thromboxane synthase. This investigation was attempted
to explain how tumor motility is directed by TxA,. Here,
we can say that human prostate malignant growth cells
express useful receptors for TxA, (TP) [103, 104]. More-
over, thromboxane A, mediates smooth muscle contrac-
tion, and so, this inflammatory biomarker can be used to
treat BPH [105]. TXA, pathway may be a potential tar-
get for PCa prevention/therapy, because it is upregulated
in human prostate cancer [104]. The relation between
the calcium and thromboxane A, is also well studied
where cyclooxygenase products of AA, ie, PGH2 and
TXA,, caused mobilization of intraplatelet calcium
[106]. The studies show that the absence of Ca®"-
ATPase inhibitor-sensitive pool is responsible for the
formation of TXA, in the presence of calcium [107].
Kiefmann demonstrated there is increase in cytosolic
calcium in the TXA, receptor expression [108]. So,
thromboxane A, evoked intracellular calcium in vascular
smooth muscle cells [109], which indirectly related to
prostate enlargement and muscle contraction.

N-methyl-p-aspartate receptor (NMDAr)

The memantine is a foe of NMDAr which hindered the
in vitro development of cell lines, at 5 to 20 pg/ml (23 to
92 uM) memantine. Past studies demonstrate that N-
methyl-D-aspartate (NMDA) receptor levels are utilized
to balance for hippocampus-related learning and execu-
tion on specific memory undertakings in rodents by an-
drogens. Furthermore, the information likewise gives
proof to the articulation and action of NMDAr in pros-
tate malignant growth [110, 111]. NMDA receptors are
stimulated by direct depolarization and activated intra-
cellular Ca®* homeostasis and signalling [112]. Laprell
et al. synthesized an azobenzene-triazole-glutamate
(ATG) which is a diffusible photochromic glutamate
analogue used as a photoswitchable agonist and used for
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various neurological disorders and monitors the function
of the synaptic neuron [113, 114]. Apart from that, it will
also exacerbate NMDA-ACa* at the system [112]. So,
there is a need for the development of antagonist drugs
specific for NMDAR which ultimately controls the Ca**
homeostasis at the site of prostate cells with lower side
effects.

Transient receptor potential (TRPM2)

TRPM?2 is a prominent role in prostate cancer by show-
ing inhibitory activity while knocking down TRPM2 by
small interfering RNA technique. It is a protein located
in the nuclei in cancer cells [115]. The core cells con-
taining TRPM2 proteins are situated in the malignancy
cell. Oxidative stress is activated by Ca®"-permeable
channel. TRPM2 causes the survival and migration of
SCC cancer cells. So, it could be a potential target for se-
lective treatment [116], because inhibiting the nuclear
ADP ribosylation of the prostate cancer cells affects the
intracellular cell which is associated with the plasma
lemma of benign prostate epithelial cells [6, 115]. While
we know that due to deregulation of TRP channels, the
NO availability is decreased in vascular smooth muscle
[117]. The prostate cancer cells do not grow when there
is a knockdown of the TRPM2 [115]. In the previous lit-
erature, novel azobenzene photoswitch were used for the
optical control of TRPV1. So, there is a need to develop
a strategy to make TRPM2 as one of these compounds
which ultimately antagonizes and demonstrates a photo-
switchable antagonist and applied in such a way that
modulates ion channel activity [118].

TRPM2 testosterone-repressed prostate message-2

Miyake et al. distributed a movement in both in vitro
and in vivo techniques which indicates improved chemo-
sensitivity of TRPM2 in human androgen-autonomous
prostate malignant growth of PC-3 cells. TRPM-2 con-
cealment is not exacerbated by prostate development in
portion subordinate antisense (AS) oligodeoxynucleo-
tides (ODNs) AS ODN#2 in PC-3 cells. Thus, 60 to 80%
tumor volumes have been diminished by in vivo
organization of antisense (AS) ODN#2 in addition to ei-
ther paclitaxel or mitoxantrone. These discoveries rec-
ommend that TRPM-2 has a potential to treat prostate
disease with AS TRPM-2 ODN in addition to chemo-
therapeutics for patients [119]. TRPM-2 present in any
sort of mammalian cells, so it might be valuable to
recognize prostate amplification and utilized as a deli-
cate molecular marker. This item was specifically in light
of the fact that its union was not recognized in the typ-
ical rodent ventral prostate gland [120]. Typical investi-
gations demonstrate that calcium channel antagonists in
the initial 62 h of castration creating a dying effect on
testosterone-repressed prostate message-2 (TRPM-2)
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cells [121]. That ultimately improving the group of Ser-
toli cells [122]. Henceforth, clusterin (testosterone-re-
pressed prostate message-2) (TRPM-2) has been utilized
as a marker for apoptosis in the prostate, mammary
organ, and other strong organs, and clusterin articula-
tion in tissues, for example, the prostate and mammary
organ, gives off an impression of being bound to the
apoptotic pathway [123]. Kalka et al. demonstrate the in-
volvement of clusterin in PDT-mediated cell death [124]
which indicates overexpression of clusterin in the A431
cell line and no difference in clusterin was seen in the
apoptosis-safe RIF-1 cells [125]. TRPM2 gene is posi-
tively regulated in the castration-induced and shows
antiapoptotic property in LNcaP prostate cancer cells
[126]; upregulation of TRPM2 is inhibited by calcium
channel blocker due to activation of intracellular calcium
which further activated endonuclease and support apop-
totic pathways and delay progressions in Pca or BPH
[127]. It is reasoned that TRPM2 has a noteworthy rela-
tionship with calcium flagging and could be driving a
promising focus to treat Pca or BPH exactly.

Discussion

Here in the review, we discuss the role of calcium-
associated biomarkers which could be further useful in
the management of Pca or BPH and taken as potential
target (Fig. 1) to be controlled by light. Thus, the mole-
cules with anticancer potential with photo-induced cal-
cium signalling and modulation is a new type of
treatment to have lesser side effects for the cancer pa-
tient and targeted ion channel therapy [128, 129]. Devel-
opment of light-sensitive Ca>* channel blockers and
proteins that are involved in Ca®* signalling [130, 131]
and its regulation in Ca®* handling may lead to develop-
ing novel therapeutics for cancer [132-134]. All ligand-
gated receptors such as acetylcholine, glutamate, and
GABA receptors have been designed as photoswitchable
regulators [135-137]. The photoswitches are also used
to investigate neuronal circuit in all optical instruments.
Thus, the review discusses the design and the properties
and the application of these photoswitches, which can
be useful for future perspectives [138—140]. In the previ-
ous study, diltiazem (DIL) (non-competitive) and verap-
amil (VRP) (competitive) inhibitor used as a calcium
channel blocker. These drugs cause inhibitory effects of
methotrexate (MTX) accumulation through VRP and
DIL [141]. Therefore, calcium channel blockers (CCBs)
would be used to stop the cancer progression by a com-
plex mechanism in apoptosis [142] since the past exami-
nations recommended that low Ca®" levels forestall
cation-mediated charge balance of DNA, subsequent in
the incitement of apoptosis. It promotes apoptosis in
both transformed and non-transformed cell models and
produces effects of CCBs in Ca**-dependent and Ca**-



Sharma et al. Future Journal of Pharmaceutical Sciences (2020) 6:28

Page 6 of 11

Androgens

CoX-1 COX-2

Fnma

— —

_

— a::i:::wurﬂ_@—? HDT? =

> /
DNA

Nucleus-

Fig. 1 Regulation of downstream signalling cascade of different biomarkers responsible for prostate cancer or benign prostatic hyperplasia. Ca**
calcium channel; TRPM2 transient receptor potential cation channel, subfamily M, member 2; cAMP cyclin adenine monophosphate; TRP transient
receptor potential; TRPV2 transient receptor potential cation channel, subfamily V, member 2; CXCL5 C-X-C motif chemokine ligand-5; HDAC
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independent [143-145], so it might be possible that
androgen-dependent tissues will be treated by calcium
channel agonists for using simultaneous treatment [121].
Mazo et al. clarified in his examinations in regard to the
treatment of amiable prostatic hypertrophy (BPH), with
helium-neon low-dimension laser treatment (LLLT) in a
patient populace of 167. Twelve to 15 day by day ses-
sions of 20 min was required, with dosages of
19.0~20.8 J per session. It would be discovered that every
treated patient was demonstrated great reaction in pros-
tatic issues. The creator recommends that the positive
outcomes ought to energize such a twofold visually im-
paired preliminary to be set up and that helium-neon
low-dimension laser treatment (LLLT) connected trans-
rectally is a legitimate option or adjunctive treatment for
the negligibly obtrusive and easy treatment of prostatic
issues [146]. This result showed photodynamic therapy
indirectly linked with photopharmacology in which we
could say that photo-drug therapy consists in treating a
patient with a light-sensitive prodrug that is inactivated

in the dark after the compound has distributed in the
patient and the tumor; light irradiation on the tumor
area insures that the light-induced toxicity of the com-
pound is only released at the place of irradiation, i.e., in
the tumor or prostate enlargement [95, 147]. So, the an-
ticancer role with photo-induced calcium signalling and
modulation is a new type of treatment to reach lower
side effects for the BPH or prostate cancer [148] patient
and targeted photo-modulate ion channel therapy [37].
The development of light-sensitive Ca>* channel
blockers and proteins that are involved in Ca®* signalling
and its deficiencies in Ca®* handling may lead to the de-
velopment of novel therapeutics for cancer [37, 149].
Azobenzene photo-responsive components can be intro-
duced on yielding optical power over the cell capacity,
and synapse discharge regulating the channel movement
by photo-responsive elements weakens the development
of diseased cells, both in vitro and in vivo, which opens
another path for pharmaceutical research [135, 150].
When we design the photoswitch, there will be a
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different scheme for different photoswitches, and it can
be prepared by using proteins, drugs, and fatty acids
[151]. To prepare the photo-switch using drug and light-
responsive materials, we decided which drug (structure
is important here) and photo-switch we have to take and
then only we can derive its synthetic route [152]. In the
articles, they have used different photo-switches for dif-
ferent proteins and fatty acids [153, 154]. In this case,
we can modify the prostate cancer drugs or BPH drugs
or fatty acids which act as a biomarker in the photo-
switchable form, via targeting the biomarkers that asso-
ciated with calcium channels, so that it effects in helping
and making changes in the localized desired Ca** chan-
nels to inhibit the proliferation or the metastasis stage of
cancer [155, 156]. Velema et al. delighted in the anti-
microbial action of ciprofloxacin photoswitch conjugates
and converted it into spirofloxacin, which fundamentally
hindered the development rate of microorganisms within
the sight of 365 nm, astoundingly, for one of them has a
50-overlap increment in movement contrasted with the
first ciprofloxacin. Their antimicrobial action could be
constrained by light [157]. Similarly, Hodson et al.
showed in his study that light-sensitive drugs could be
administered in the form of a pill or activated by irradi-
ating a patch of skin with a blue LED (light-emitting
diode). When the light is switched off, the drug flips
back into the inactive form, because the active agent is
released only where it is required and it gives us a
controlled-release ~ form  which  prevents from
hypoglycemic activity [158]. It shows that with the use
of light, we can limit the side effects when used to treat
Pca or BPH disorder [151]. In other words, azobenzene-
derived drugs which demand UV light to activate have
cytotoxic properties. To overcome this situation, we
have to investigate the concentration range of UV range,
which helps to shift the wavelength of activation towards
red light in the therapeutic window [159].

Conclusion

The photopharmacology focuses on the tumor or cell
multiplication to prevent the metastasis in Pca or BPH.
Now the inquiry is emerging why we have to focus on
the calcium movement? In light of the fact that despite
the side effects, there are biomarkers that cause the cell
expansion with the help of calcium stores which eventu-
ally give the critical and synergistic advantages. So, there
is a need to have focused and balanced medication iden-
tified as photoswitches, which can limit the symptoms
and target just the abnormal proliferated cells.
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