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mechanism for amelioration of diabetic
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Abstract

Background: Diabetes mellitus is a metabolic disorder which is associated with debilitating complications including
eye disease, kidney disorder, and diabetic foot disease. One of the mechanisms implicated in the pathogenesis of
diabetic complications is the polyol pathway. This study evaluated the inhibitory effect of aqueous extract of four
tropical fruits, namely apple (Malus domestica Borkh.), banana (Musa paradisiaca Linn.), pawpaw (Carica papaya
Linn.), and watermelon (Citrullus lanatus (Thunb.) Matsum & Nakai), on the activities of polyol pathway enzymes
(aldose reductase and sorbitol dehydrogenase).

Results: All the fruits, with the exception of banana, displayed stronger inhibition of sorbitol dehydrogenase than
aldose reductase which culminated in low IC50 for the inhibition of sorbitol dehydrogenase. Of the fruit extracts
tested, pawpaw inhibited both aldose reductase and sorbitol dehydrogenase most effectively with IC50 of
150.78 μg/mL and 46.30 μg/mL, respectively. Lineweaver-Burk plot also revealed that the pawpaw extract inhibited
aldose reductase competitively while sorbitol dehydrogenase was inhibited in a mixed non-competitive manner.

Conclusion: Aqueous extract of pawpaw fruit effectively inhibited polyol pathway enzymes, and this may be
attributed to rich nutritional and phytochemical composition of the fruit. Consequently, the consumption of
pawpaw fruit may contribute to the amelioration of diabetic complications.
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Background
Polyol pathway is an alternative pathway for the metabol-
ism of glucose, in which glucose is converted to sorbitol
and fructose, with the aid of aldose reductase and sorbitol
dehydrogenase, respectively [1]. This pathway is activated
in many cells when intracellular glucose concentrations are
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high and caused accumulation of sorbitol and fructose [1],
which elicit myriad of pathological processes including oxi-
dative stress and formation of advanced glycation end prod-
ucts. Oxidative stress and formation of advanced glycation
end products (AGEs) is implicated in many diabetic com-
plications such as retinopathy, neuropathy, and nephropa-
thy [2, 3]. These complications are associated with reduced
productivity and life span of the patients and caused huge
cost to the individual and government.
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In order to manage diabetes and its complications, the
ultimate goal is glycemic control [4], and this can be
achieved via strict dietary regimen, engagement in physical
activity, and use of oral hypoglycemic agents/insulin.
Consumption of diets rich in fruits has been attributed to
reduced risk of diabetes and effective management of
diabetes-induced hyperglycemia as well as secondary
complications [5, 6]. Fruits are important component of
diet which contains several nutrients (e.g., minerals and
vitamins) and phytochemicals (e.g., polyphenols) that con-
tributes to their pharmacological effects in both healthy
and diseased states [7]. They come in various colors and
taste which may be a function of the nature of the phyto-
chemicals present in them.
Due to the high clinical and economic burden placed

on diabetic individuals by debilitating complications,
there is the need to consciously include fruits in the
management of diabetes mellitus. Though some studies
have examined the beneficial effect of consumption of
fruits in diabetes and its complications [8, 9], there is
dearth of information on the potential mechanisms by
which these effects are elicited. Consequently, this study
is aimed at evaluating the inhibitory effect of some fruits
on polyol pathway enzymes (aldose reductase and sorb-
itol dehydrogenase) and their kinetics of inhibition. This
will determine the potency of the selected fruits in man-
aging diabetes and its complications.

Methods
Chemicals
Human recombinant aldose reductase, DL-glyceraldehyde,
glucose, lithium sulfate, 2-mercaptoethanol, NADPH,
quercetin, dimethylsulfoxide, sorbitol, sorbitol dehydro-
genase, and NAD+ were obtained from Sigma-Aldrich (St.
Louis, MO). All other chemicals and solvents were of ana-
lytical grade and were obtained from local companies.

Sample collection and preparation
Fresh samples of selected fruits, apple (Malus domestica
Borkh.), banana (Musa paradisiaca Linn.), pawpaw (Car-
ica papaya Linn.), and watermelon (Citrullus lanatus
(Thunb.) Matsum. & Nakai), were obtained from desig-
nated fruits store in Ojo Area (6.4579° N, 3.1580° E) of
Lagos, Nigeria. Proper identification and authentication of
the fruits were done at the Department of Botany, Lagos
State University, Lagos, by Dr. O. J. Sharaibi with the ref-
erence numbers LSH/20/651, LSH/20/652, LSH/20/653,
and LSH/20/654 for apple, banana, pawpaw, and water-
melon, respectively. The fruits were washed under run-
ning tap water to remove sand. Pawpaw, watermelon, and
apple were peeled and sliced, and their seeds were re-
moved, while banana was only peeled. This is followed by
extraction of the juice from all the fruits using household
juice extractor. The juice was centrifuged, filtered, and the
supernatant freeze-dried in a lyophilizer. The percentage
yield of the extracts of apple, banana, pawpaw, and water-
melon is 10.50%, 6.71%, 23.24%, and 45.27%, respectively.
Extracts were dissolved in distilled water to give stock so-
lutions of 1.0 mg/mL and different concentrations (12.5,
25, 50, 100, and 200 μg/mL) of the extracts were prepared
using serial dilution method with distilled water. All
extracts were stored at 4 °C prior to analysis.

Aldose reductase inhibition assay
The aldose reductase inhibition assay was performed ac-
cording to the method of [10] with minor modifications.
The reaction mixture contained 0.15 mM NADPH, 10
mM DL-glyceraldehyde, 5 μL of aldose reductase, and
100 μL of fruit extract (12.5–200 μg/mL) or distilled
water in a total volume of 1.0 mL of 100 mM sodium
phosphate buffer (pH 6.2). After the reaction mixtures
were incubated at 25 °C for 5 min in advance, the reac-
tion was initiated by addition of the enzyme, and then
the change in absorbance was measured at 340 nm for
10min using a Cary50 Bio UV-VIS spectrophotometer.
The aldose reductase inhibition activity was calculated
as percentage inhibition, thus
% Inhibition = [(ΔAbscontrol − ΔAbsextract)/ΔAbscontrol] × 100
The inhibition assay of the standard (quercetin) was

performed using the same procedure but replacing the
extract with quercetin (12.5–200 μg/mL). The concen-
tration of extract or standard (quercetin) that inhibited
50% of aldose reductase activities (IC50) were evaluated
using Microsoft Excel (2010).

Kinetics of inhibition of aldose reductase by C. papaya
The kinetics of inhibition of aldose reductase by aqueous
extract of pawpaw (Carica papaya) was performed
according to the method described by [11]. In one set of
tubes, the reaction mixture contained 0.15 mM NADPH,
DL-glyceraldehyde (10–200 mM), 5 μL of aldose reduc-
tase, and 100 μL of pawpaw extract (50 μg/mL) in a total
volume of 1.0 mL of 100 mM sodium phosphate buffer
(pH 6.2). In another set of tubes, 100 μL distilled water
replaced the pawpaw extract and this serves as control.
The change in absorbance was measured at 340 nm and
converted to reaction velocities. Lineweaver-Burk plot
was plotted to determine the mode of inhibition.

Sorbitol dehydrogenase inhibition assay
Sorbitol dehydrogenase inhibition activity was determined
in accordance with the method of [12]. The assay mixture
contained 100mM tris-HCl buffer (pH 9.0), 0.5 mM
NAD+, 50 μL sorbitol dehydrogenase, 100mM sorbitol
(substrate), and fruit extract (12.5–200 μg/mL). The reac-
tion was initiated by the addition of NAD+. The rate of
change in the absorbance of the mixture was measured at
340 nm using a Cary50 Bio UV-VIS spectrophotometer.
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The sorbitol dehydrogenase inhibition activity was calcu-
lated as percentage inhibition, thus
% Inhibition = [(ΔAbscontrol − ΔAbsextract)/ΔAbscontrol] ×

100
The inhibition assay of the standard (quercetin) was

performed using the same procedure but replacing the
extract with quercetin (12.5–200 μg/mL). The concen-
tration of extract or standard (quercetin) that inhibited
50% of aldose reductase activities (IC50) were evaluated
using Microsoft Excel (2010).

Kinetics of inhibition of sorbitol dehydrogenase by C.
papaya
The kinetics of inhibition of sorbitol dehydrogenase by
aqueous extract of pawpaw (Carica papaya) was per-
formed according to the method described by [13]. In one
set of tubes, the reaction mixture contained 100mM tris-
HCl buffer (pH 9.0), 0.5 mM NAD+, 50 μL sorbitol de-
hydrogenase, sorbitol (100–500mM), and 50 μg/mL
pawpaw extract. In another set of tubes, distilled water re-
placed the pawpaw extract and this serves as control. The
change in absorbance was measured at 340 nm and con-
verted to reaction velocities. Lineweaver-Burk plot was
plotted to determine the mode of inhibition.

Phytochemical analysis
Due to the low IC50 values of pawpaw extract for the inhib-
ition of aldose reductase and sorbitol dehydrogenase, the
qualitative and quantitative phytochemical composition of
the pawpaw extract was determined using the modified
spectrophotometric methods of [14, 15], respectively.

Statistical analysis
All analyses were performed in triplicates unless other-
wise stated. Data were expressed as mean ± SEM and
statistical significance was considered at p < 0.05. IC50

values were obtained from percentage inhibitions using
Microsoft Excel software (Microsoft, 2010). Analysis of
variance (ANOVA) was used to assess differences in the
percentage inhibitions and IC50 values of the extracts as
well as standard. Kinetics of inhibition of enzymes were
determined by linear regression using GraphPad Prism
statistical package (GraphPad Software, USA).

Results
Figure 1 shows the inhibitory potential of four selected
fruits on the activities of aldose reductase and sorbitol de-
hydrogenase. At higher concentrations, there are signifi-
cant differences (p ˂ 0.05) between percentage inhibition
of aldose reductase and sorbitol dehydrogenase by apple
extract. However, their values are similar at 12.5 μg/mL
(Fig. 1a). Banana extract displayed a higher inhibition of
aldose reductase at all concentrations tested but was only
significantly different at 25 and 50 μg/mL (Fig. 1b). At all
concentrations tested, pawpaw and watermelon extract
significantly inhibited the activity of sorbitol dehydrogen-
ase than aldose reductase (Fig. 1c, d).
Table 1 shows the IC50 values for the inhibition of aldose

reductase and sorbitol dehydrogenase by selected fruits.
Pawpaw extract exhibited the lowest IC50 for the inhibition
of both aldose reductase (150.78 μg/mL) and sorbitol de-
hydrogenase (46.30 μg/mL) among all the fruits. These IC50

values are comparable to the values displayed by the stand-
ard, quercetin. Banana and apple extract also exhibited
similar IC50 values as pawpaw extract for the inhibition of
aldose reductase and sorbitol dehydrogenase, respectively.
Due to the low IC50 values displayed by pawpaw for both

enzymes, the kinetics of inhibition of aldose reductase and
sorbitol dehydrogenase by pawpaw extract is presented in
Fig. 2. From the double reciprocal plot, it revealed that al-
dose reductase was competitively inhibited by the pawpaw
extract (Fig. 2a), due to similar maximum reaction velocity
(Vmax) (0.10 and 0.11mM/min) and different Michaelis
constant (Km) between the control and inhibited reaction
(Table 2). It also inhibited sorbitol dehydrogenase in a
mixed non-competitive manner (Fig. 2b), as a result of dif-
ferences in both their Vmax and Km (Table 2).
Qualitative phytochemical screening of the pawpaw ex-

tract showed the presence of flavonoids, glycosides, phe-
nolics, tannins, and alkaloid. Quantitative analysis revealed
that pawpaw extract contains 2.75mg/g flavonoids (quer-
cetin equivalent), 63.15 mg/g phenolics (gallic acid equiva-
lent), and 2.13mg/g tannins (tannic acid equivalent).

Discussion
The rising global incidence of diabetes mellitus and se-
verity of its associated complications necessitated the
need for safer and more effective strategies to combat it.
As such, several processes have been targeted in the
pathogenesis and progression of diabetes for possible ex-
ploit for therapeutic purposes. These include the hexosa-
mine pathway, protein glycosylation, oxidative stress,
and polyol pathway [16]. Several studies have established
the inevitable link between polyol pathway and develop-
ment of diabetic complications like kidney disease, cata-
ract, and cardiovascular disorder [2, 17].
In this study, we evaluated the inhibitory effect of

polyol pathway enzymes by four fruits, apple (Malus
domestica), banana (Musa paradisiaca), pawpaw (Carica
papaya), and watermelon (Citrullus lanatus), as a pos-
sible mechanism underlying hypoglycemic potential of
the fruits. Of the fruits selected, pawpaw displayed the
lowest IC50 for the inhibition of both aldose reductase
(150.78 μg/mL) and sorbitol dehydrogenase (46.30 μg/
mL). This is an indication that pawpaw effectively inhib-
ited the activities of both enzymes in the polyol pathway.
The mechanism involved is that the enzyme inhibition
prevents the intracellular accumulation of sorbitol and



Fig. 1 Inhibitory effect of a apple (Malus domestica), b banana (Musa paradisiaca), c pawpaw (Carica papaya), d watermelon (Citrullus lanatus)
extract, and e quercetin on the activities of aldose reductase and sorbitol dehydrogenase. ADR, aldose reductase; SDH, sorbitol dehydrogenase.
Asterisk indicates values are significantly different at p ˂ 0.05

Kazeem et al. Future Journal of Pharmaceutical Sciences            (2020) 6:96 Page 4 of 7
fructose [18], thereby mitigating osmotic stress and gly-
cation, respectively. It also prevents the depletion of
NADPH [1], which is normally required by the cell for
regeneration of reduced glutathione, which plays the role
of antioxidant. Inhibition of the enzymes by pawpaw
Table 1 IC50 values for the inhibition of aldose reductase and sorbit

Fruits IC50 (μg/

Aldose r

Apple (Malus domestica) 171.63 ±

Banana (Musa paradisiaca) 159.16 ±

Pawpaw (Carica papaya) 150.78 ±

Watermelon (Citrullus lanatus) 189.13 ±

Quercetin 153.85 ±

The values are expressed as means ± SEM of triplicate determinations. Means down
0.05) from each other
extract, therefore, prevents cellular oxidative stress and
redox imbalance, thereby ameliorating diabetic compli-
cations (Fig. 3).
The fact that IC50 values (for the inhibition of aldose

reductase and sorbitol dehydrogenase) exhibited by
ol dehydrogenase by selected tropical fruits

mL)

eductase Sorbitol dehydrogenase

5.42a 56.52 ± 4.95a

5.01b 185.10 ± 13.40b

4.53b 46.30 ± 1.59a

14.37a 96.60 ± 7.04c

5.38b 67.50 ± 0.83a

vertical column not sharing a common letter are significantly different (p <



Fig. 2 Modes of inhibition of a aldose reductase and b sorbitol dehydrogenase by aqueous extract of pawpaw (Carica papaya) fruit. Control,
absence of the inhibitor; Pawpaw, presence of the inhibitor
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pawpaw is similar to the standard (quercetin) depicts the
high potency of pawpaw. This is because quercetin has
been demonstrated to possess strong inhibition against
enzymes of the polyol pathway and is therefore used
widely as positive control [19]. This is due to the posses-
sion of structural features required for binding to the ac-
tive site of the enzymes. Quercetin also inhibits aldose
reductase and sorbitol dehydrogenase in a variety of
mechanism including competitive, non-competitive, and
uncompetitive inhibition [20].
As a follow-up to the inhibitory potential, aqueous extract

of pawpaw was used to determine the kinetics of inhibition
of both aldose reductase and sorbitol dehydrogenase.
Double reciprocal plot revealed that pawpaw extract inhib-
ited aldose reductase and sorbitol dehydrogenase in com-
petitive and mixed non-competitive manner, respectively.
The competitive inhibition of aldose reductase by the
pawpaw extract implies the inhibitory component of the
extract compete with the normal substrate (glucose) for
binding to the active site of the enzyme, thereby forming
enzyme-inhibitor complex and preventing catalysis [21].
This competition may be due to the structural resemblance
between the inhibitor and the substrate. The mixed non-
Table 2 Enzyme kinetics for the inhibition of aldose reductase
and sorbitol dehydrogenase by pawpaw (Carica papaya) fruit
extract

Enzyme Sample Km (mM) Vmax (mM/min)

Aldose reductase Control 0.33 0.10

Pawpaw 1.16 0.11

Sorbitol dehydrogenase Control 0.35 0.42

Pawpaw 0.42 2.04

Values presented were obtained from the double reciprocal plot prepared
using GraphPad Prism statistical package. Km Michaelis constant, Vmax

maximum velocity of reaction
competitive inhibition of sorbitol dehydrogenase by the
pawpaw extract suggests the inhibitory components
bind to either the enzyme or enzyme-substrate complex
but have different affinities for both the enzyme and
enzyme-substrate complex [22]. This also prevents ca-
talysis and the polyol does not proceed, thereby ameli-
orating diabetic complications.
The fact that pawpaw extract displayed the most effect-

ive inhibition of polyol pathway enzymes is a confirmation
of plethora of studies that reported hypoglycemic and an-
tidiabetic potentials of pawpaw [23–27]. The ripe fruit of
pawpaw is eaten raw or can be cooked as soup with other
spices. Due to its huge nutritional and medicinal effects,
the ripe fruit is fermented with food-grade yeast to pro-
duce fermented pawpaw preparation and marketed across
the globe [28]. The fermented pawpaw preparation has
been validated to possess hypoglycemic activity in both
animal model of diabetes mellitus and diabetic subjects
[29]. The wound-healing activity of the aqueous extract of
pawpaw [30, 31] and fermented pawpaw preparation in
diabetic animals has also been reported [32].
The potent inhibitory effect of the pawpaw extract on

aldose reductase and sorbitol dehydrogenase depicts that
one of the antidiabetic mechanisms of the fruit is the
inhibition of polyol pathway enzymes. This inhibitory
activity may be due to the presence of phytochemicals
such as phenolics, flavonoids, tannins, glycosides, and alka-
loids [23]. Pawpaw fruit is characterized with the presence
of several classes of bioactive compounds including pheno-
lics (e.g., myricetin, quercetin, kaempferol, caffeic, and
ferulic acid) and carotenoids (such as lycopene and β-
carotene) [33, 34]. The presence of these phytochemicals
especially phenolics may be responsible for polyol pathway
enzymes’ inhibitory effect of the fruit, which may contrib-
ute to the amelioration of diabetic complications.



Fig. 3 Possible mechanisms involved in the inhibition of polyol pathway enzymes by pawpaw (Carica papaya) extract, and its amelioration of
diabetic complications. ADR, aldose reductase; SDH, sorbitol dehydrogenase; GSH, reduced glutathione; GSSG, glutathione disulfide; NADP+,
nicotinamide adenine dinucleotide phosphate; NADPH, reduced nicotinamide adenine dinucleotide phosphate; NAD+, nicotinamide adenine
dinucleotide; NADH, reduced nicotinamide adenine dinucleotide
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Conclusion
It can therefore be concluded that fruits tested in this
study displayed some inhibitory properties against polyol
pathway enzymes. However, pawpaw exhibited the best
inhibitory properties against the enzymes, and the mode
of inhibition of aldose reductase and sorbitol dehydro-
genase is competitive and mixed non-competitive inhib-
ition, respectively. The inhibition of polyol pathway
enzymes by the pawpaw extract may contribute to the
amelioration of diabetic complications. This potential
may be attributed to the inherent phytochemicals
present in the fruit. Bioassay-guided fractionation is re-
quired to isolate the bioactive compounds responsible
for the enzyme inhibition and confirmation in in vivo
model of diabetic complication.
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