
RESEARCH Open Access

Activity of phytochemical constituents of
Curcuma longa (turmeric) and Andrographis
paniculata against coronavirus (COVID-19):
an in silico approach
Kalirajan Rajagopal* , Potlapati Varakumar, Aparma Baliwada and Gowramma Byran

Abstract

Background: In early 2020, many scientists are rushing to discover novel drugs and vaccines against the coronavirus,
and treatments for COVID-19, because coronavirus disease 2019 (COVID-19), a life-threatening viral disease, affected first
in China and quickly spread throughout the world. In this article, in silico studies have been performed to explore the
binding modes of chemical constituents for natural remedies like Curcuma longa (turmeric) and Andrographis
paniculata against COVID-19 (PDB ID 5R82) targeting coronavirus using Schrodinger suit 2019-4. The molecular docking
studies are performed by the Glide module, in silico ADMET screening was performed by the QikProp module, and
binding energy of ligands was calculated using the Prime MM-GB/SA module.

Results: The chemical constituents from turmeric like cyclocurcumin and curcumin and from Andrographis paniculata
like andrographolide and dihydroxy dimethoxy flavone are significantly binding with the active site of SARS CoV-2
main protease with Glide score more than − 6 when compared to the currently used drugs hydroxychloroquine (−
5.47) and nelfinavir (− 5.93). When compared to remdesivir (− 6.38), cyclocurcumin from turmeric is significantly more
active. The docking results of the compounds exhibited similar mode of interactions with SARS CoV-2. Main protease
and the residues THR24, THR25, THR26, LEU27, SER46, MET49, HIE41, GLN189, ARG188, ASP187, MET165, HIE164,
PHE181, and THR54 play a crucial role in binding with ligands.

Conclusion: Based on in silico investigations, the chemical constituents from turmeric like cyclocurcumin and curcumin
and from Andrographis paniculata like andrographolide and dihydroxy dimethoxy flavone, significantly binding with the
active site of SARS CoV-2 main protease, may produce significant activity and be useful for further development.
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Background
Coronavirus disease 2019 (COVID-19) is a life-threatening
disease which was affected first in China and quickly spread
throughout the world [1–6]. According to the WHO data,
as of the second week of April 2020, there are 21.5 lakhs
peoples in the world affected by COVID-19, out of these
more than 1.5 lakhs peoples died. With more asymptomatic

infections being found among COVID-19 cases, it is worthy
of consideration the detailed current evidence and under-
standing of the transmission of SARS CoV, MERS-CoV,
and SARS CoV-2 and discussion on pathogen inactivation
methods on coronaviruses is very important [7–12].
In this emergency situation, it is very difficult to discover

novel drugs with all clinical trials and also determine the
side effects, adverse effects, etc. So, it is important to find
some natural remedies for the prevention and treatment
of COVID-19. From the literatures, the natural products
like Curcuma longa (turmeric) and Andrographis
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Table 1 Docking studies for phytochemical constituents of Curcuma longa (turmeric) and Andrographis paniculata with SARS CoV-2
main protease (5R82)

Cpd Glide score Lipophilic
EvdW

Phob En H bond XP electro Low MW Rot Penal XP penalties

T4_Cyclocurcumin − 6.77 − 4.12 0 − 2.36 − 0.35 − 0.27 0.18 0

N1_Andrographolide − 6.26 − 1.27 0 − 4.01 − 1.3 − 0.33 0.2 0

N7_dihydroxydimethoxyflavone − 6.23 − 2.69 0 − 2.44 − 0.84 − 0.45 0.08 0

T1_Curcumin − 6.13 − 4.14 0 − 1.46 − 0.72 − 0.27 0.37 0

T3_Bisdemethoxycurcumin − 5.36 − 4.13 0 − 0.7 − 0.6 − 0.47 0.5 0

T2_Demethoxycurcumin − 5.25 − 3.69 0 − 1.06 − 0.62 − 0.37 0.42 0

T7_Curcuphenol − 5.13 − 4.34 0 − 0.7 − 0.31 − 0.5 0.6 0

N3_14deoxy12hydroxyandrographolide − 5.11 − 2.89 0 − 2.12 − 0.27 − 0.33 0.27 0

T6_Curlone − 3.89 − 4.05 0 0 − 0.07 − 0.5 0.6 0

N2_14deoxyandrographolide − 3.88 − 1.96 0 − 2.07 − 0.54 − 0.39 0.29 0

T5_Turmerone − 3.78 − 3.87 0 0 − 0.01 − 0.5 0.6 0

N8_cinnamateester − 3.31 − 3.55 0 0 − 0.02 − 0.5 0.76 0

N5_Stigmasterol − 2.28 − 3.6 0 0 0.02 − 0.12 0.15 1

N6_βSitosterylfattyacidesters − 1.89 − 2.66 0 − 0.3 − 0.02 0 0.32 0

N4_betaSitosterol − 1.36 − 1.86 0 0 − 0.06 − 0.12 0.2 0

Hydroxychloroquine (Std) − 5.47 − 3.15 0 − 1.75 − 0.69 − 0.38 0.5 0

Table 2 In silico ADMET screening for phytochemical constituents of Curcuma longa (turmeric) and Andrographis paniculata

Compounds Mol. Wt. Dipole Donor HB Accpt HB QPlog o/w #metab Rule of five %Human oral absorption

T1_Curcumin 368.385 8.366 2 7 3.301 5 0 88.976

T2_Demethoxycurcumin 338.359 9.291 2 6.25 2.821 4 0 85.615

T3_Bisdemethoxycurcumin 308.333 8.477 2 5.5 2.585 3 0 81.091

T4_Cyclocurcumin 368.385 5.335 2 5.75 3.488 6 0 90.504

T5_Turmerone 218.338 3.649 0 2 4.036 6 0 100

T6_Curlone 218.338 3.147 0 2 3.991 5 0 100

T7_Curcuphenol 218.338 1.472 1 0.75 4.419 6 0 100

N1_Andrographolide 350.454 6.319 3 8.1 1.455 6 0 77.655

N2_14deoxyandrographolide 334.455 4.004 2 6.4 2.46 6 0 91.184

N3_14deoxy12OH_andrographolide 350.454 4.508 2 7.1 2.04 6 0 83.156

N4_betaSitosterol 414.713 2.542 1 1.7 7.643 3 1 100

N5_Stigmasterol 412.698 2.464 1 1.7 7.473 5 1 100

N6_βSitosterylfattyacidesters 526.885 3.304 0 2 9.625 3 2 100

N7_dihydroxydimethoxyflavone 314.294 3.726 1 4.5 2.682 4 0 93.829

N8_cinnamateester 218.295 4.054 0 2 3.983 0 0 100

Hydroxychloroquine (std) 335.876 6.854 2 5.7 3.369 5 0 93.213

Recommended values 130–725 1–12.5 0–6 2–20 − 2–6.5 1–8 max 4 > 80% is high
< 25% is poor

Mol. Wt. molecular weight of the molecule, Dipole computed dipole moment, Donor HB estimated number of hydrogen bonds that would be donated by the
solute to water molecules in an aqueous solution, Accpt HB estimated number of hydrogen bonds that would be accepted by the solute from water molecules in
an aqueous solution, QPlog o/w predicted octanol/water partition coefficient, #metab number of likely metabolic reactions, Rule of five number of violations of
Lipinski’s rule of five, %Human oral absorption predicted human oral absorption on 0 to 100% scale
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paniculata were reported for various biological activities
and used traditionally for curing many diseases. Also,
there is no or minimum side effects reported when com-
pared to allopathic drugs.
The dried and powdered root Curcuma longa (turmeric) is

belonging to the Zingiberaceae family, which is being culti-
vated in many countries worldwide. It has many uses such as
textile dyes, herbal medicines, or food products. The bio-
logical properties of its chemical components were reported
for inhibition of platelet aggregation [13], anti-diabetic [14],
anti-tumor [15–17], anti-inflammatory effects [18], antioxi-
dant effects [19], anti-platelet aggregation effects [20], gastro-
protective effects [21], lipid-lowering effects [22], Alzheimer's
effects [23], etc.
Andrographis paniculata was reported for the treat-

ment of liver diseases [24], fever, common cold [25],
acute diarrhea [26], hypertension [27], chicken pox, lep-
rosy [28], hepatitis [29], malaria [30], anti-inflammatory
effects [31], anti-cancer [32], diabetes [33], etc.
As part of our ongoing research on searching the potent

biological molecules against various diseases by in silico and
wet lab methods [34–44], we have designed and evaluated
various heterocyclic compounds for their biological activ-
ities. Using different modules (Glide, QikProp, and Prime)
of Schrödinger suite LLC various computational methods
like molecular docking, ADMET screening, and binding-
free energy, calculations were performed to find the interac-
tions responsible for SARS CoV-2 main protease inhibition.
These studies will provide the requirement of key structural
features in the design of potential drug candidates.

Methods
The 3D crystal structure of COVID-19 protein called SARS
CoV-2 main protease receptor co-crystallized with 6-(ethy-
lamino) pyridine-3-carbonitrile (PDB ID 5R82, resolution
1.31 Å) was retrieved from the protein data bank. The pro-
tein was prepared using the protein preparation wizard of
epic module of Schrödinger suite 2019-4. The protein
structure retrieved from the RCSB protein data bank is a
monomer with co-crystallized ligand. The protein was pre-
pared by using the protein preparation wizard by refining
bond orders, addition of hydrogens, and deleting water
molecules beyond 5Å, and missing chains are included by
using the Prime module [45] of Schrödinger suite 2019-4.
Protein minimization was performed using optimized po-
tentials for liquid simulations (OPLS3) molecular force field
with RMSD of crystallographic heavy atoms kept at 0.30 Å.
A grid box was generated to define the centroid of the ac-
tive site. All the compounds were docked into the catalytic
pocket of SARS CoV-2 main protease by using the Glide
module of Schrödinger suite 2019-4 in extra precision (XP)
mode [46]. The ligands with significant Glide scores have
more binding affinity towards SARS CoV-2 main protease
enzyme. To predict the free energy of binding for the set of
ligands in complex with a receptor, post-docking energy
minimization studies were performed using Prime molecu-
lar mechanics-generalized Born surface area (MM-GB/SA)
of Schrödinger 2019-4. The energy for minimized XP
docked pose of ligand-receptor complex was calculated
using the OPLS3 force field and generalized Born/surface
area (GB/SA) continuum VSGB 2.0 solvent model [47, 48].

Table 3 Binding free energy calculation using Prime/MM-GBSA approach

Compd MMGBSA_dG_Bind MMGBSA
_dG_Bind_
Coulomb

MMGBSA
_dG_Bind_
Covalent

MMGBSA_dG_Bind
Hbond

MMGBSA
_dG_Bind_
Lipo

MMGBSA_dG_Bind_vdW

T4_Cyclocurcumin − 36.0315 − 31.6404 8.0570 − 0.1385 − 11.6120 − 28.1951

N1_Andrographolide − 34.6766 − 28.4227 6.9893 − 1.9077 − 4.4014 − 28.5162

N7_diOHdiOMeflavone − 50.6953 − 41.1895 1.6877 − 1.5594 − 8.5302 − 26.2631

T1_Curcumin − 50.3408 − 18.0802 1.5801 − 2.6563 − 11.9153 − 42.2597

T3_BisdeOMecurcumin − 43.5559 − 22.2542 − 1.599 0.5231 − 11.2505 − 35.4184

T2_Demethoxycurcumin − 38.7071 − 9.1482 6.6291 − 1.3511 − 11.0807 − 42.2478

T7_Curcuphenol − 26.1402 − 11.4548 14.9959 0.0274 − 17.0435 − 27.3193

N3_14deoxy12OHandrographolide − 29.3622 − 5.8525 − 9.0786 0.1215 − 10.4797 − 33.9966

T6_Curlone − 22.3669 − 23.7502 2.6632 − 0.3572 − 9.3057 − 17.1282

N2_14deoxyandrographolide − 39.6148 − 17.6018 7.7512 − 1.4333 − 14.1630 − 35.8594

T5_Turmerone − 24.1033 14.8710 − 12.9950 3.1283 − 8.2392 − 37.1469

N8_cinnamateester − 30.7961 6.1548 1.5202 0.4830 − 10.6485 − 41.1941

N5_Stigmasterol − 31.5416 18.6211 − 6.1436 2.5054 − 15.3476 − 41.7355

N6_βSitosterylfattyacidesters 1.1272 27.1428 − 0.7667 3.0617 − 5.4991 − 29.3366

N4_betaSitosterol − 25.0588 − 5.7182 1.8587 1.9414 − 10.8267 − 31.8647

Hydroxychloroquine (std) − 26.9975 − 4.9621 2.1824 0.0011 -9.2894 − 33.0622
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Fig. 1 Structures of phytochemical constituents. a Chemical structures of selected major bioactive constituents of Curcuma longa (turmeric). b
Chemical structures of selected major bioactive constituents of Andrographis paniculata (Burm.f.) Nees. c Structure of hydroxychloroquine (Std)
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Results
Results are summarized in Tables 1, 2, and 3 and Figs. 1,
2, 3, 4, 5, 6, and 7. The results revealed that the SARS
CoV-2 main protease inhibitory property of the com-
pounds isolated from some natural products like Cur-
cuma longa (turmeric) and Andrographis paniculata
greatly depended on the chemical nature of the substit-
uents. The chemical structures of selected major
bioactive constituents of Curcuma longa (turmeric)
and Andrographis paniculata are given in Fig. 1a and
b. The anti-malarial drug which was currently recom-
mended in many countries like the USA, India, etc.
[49] for the treatment of COVID-19 is hydroxychloro-
quine (Fig. 1c).
The docking studies of the ligands to protein active

sites were performed by an advanced molecular docking
program Glide module of Schrodinger suite 2019
Maestro-12.2 version for determining the binding affin-
ities of the compounds. The designed analogues were
docked towards the SARS CoV-2 main protease (PDB
ID 5R82) in order to ascertain their inhibitory activity.
The analogues show best fit root mean square difference
(RMSD) value of 0.2.
The results are summarized in Table 1. Almost all the

compounds are docked in the same binding pocket.
The 2D-ligand interaction diagrams of T4_Cyclocurcu-

min, N1_Andrographolide, N7_dihydroxydimethoxyfla-
vone, and T1_Curcumin with SARS CoV-2 main protease
(PDB ID 5R82) are given in Fig. 3a–d. The 2D-ligand inter-
action diagram of hydroxychloroquine is given in Fig. 3e.

From the molecular docking study, it was revealed that
the ligands have shown agreeable Glide G score values
from − 6.13 kcal/mol (T1_Curcumin) to − 6.77 kcal/mol
(T4_Cyclocurcumin) when compared to the currently
recommended drugs for COVID-19 hydroxychloroquine
(G score − 5.47) and nelfinavir (− 5.93). When compared
to remdesivir (− 6.38), cyclocurcumin from turmeric is
significantly more active. From the obtained binding
modes, it was illustrated that the ligands formed hydro-
phobic interactions and hydrogen bonding interactions
with different residues THR24 to GLN192 surrounding
the active pocket which was shown in Fig. 4. The ligand
N1_Andrographolide exhibited hydrogen bonding inter-
action with some amino acid residues and with some
water molecules which are shown in Fig. 5. The presence
of aromatic features and different heterocyclic rings ma-
jorly contributed towards lipophilic factors (Fig. 6).
The Glide score of the standard compound hydroxy-

chloroquine was decreased because of the rotational pen-
alty of the side alkyl chain which was shown in Fig. 7.
Molecular docking was additionally assessed with MM-

GBSA free restricting vitality which is identified with the
post-scoring approach for SARS CoV-2 main protease
(PDB ID 5R82) target and the values are shown in Table 3.

Discussion
From the docking results, as shown in Table 1, it is clearly
demonstrated that some of the chemical constituents from
turmeric like cyclocurcumin and curcumin and from Andro-
graphis paniculata like andrographolide and dihydroxy

Fig. 2 Docked poses of all compounds with SARS CoV-2 main protease (5R82)
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Fig. 3 a Ligand interaction of compound T4_Cyclocurcuminwith SARS CoV-2 main protease (5R82). b Ligand interaction of compound
N1_Andrographolidewith SARS CoV-2 main protease (5R82). c Ligand interaction of compound N7_dihydroxydimethoxyflavonewith SARS CoV-2
main protease (5R82). d Ligand interaction of compound T1_Curcumin with SARS CoV-2 main protease (5R82). e Ligand interaction of compound
hydroxychloroquine (Std) with SARS CoV-2 main protease (5R82)
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dimethoxy flavone significantly bind with the active site of
COVID-19 main protease with Glide score more than − 6
when compared to the currently recommended drug hydro-
xychloroquine (G score − 5.47) and significantly inhibit
SARS CoV-2 main protease and may be active against
COVID-19 on further process. The above compounds
have good affinity to the receptor due to more lipophilic
character and also due to hydrogen bonding. From the
2D-ligand interaction diagrams, almost all the compounds
exhibited similar mode of interactions with SARS CoV-2
main protease and the residues THR24, THR25, THR26,
LEU27, SER46, MET49, HIE41, GLN189, ARG188,

ASP187, MET165, HIE164, PHE181, and THR54 play a
crucial role in binding with ligands.
From Fig. 5, the docking score of the ligand N1_Andro-

grapholide is increased due to hydrogen bonding inter-
action with SER46 (H-bond length 3.45 Å), GLY143 (H-
bond length 2.72 Å), and THR25 (H-bond length 1.90 Å)
residues and with some water molecules. From Fig. 6, it is
clearly demonstrated that most of the aromatic features
are covered in the lipophilic region (red color) which con-
tributed towards lipophilic factors.
From Fig. 7, the Glide score of the standard hydroxy-

chloroquine is decreased because of the rotational

Fig. 4 Best affinity mode of docked compounds with SARS CoV-2 main protease (5R82)
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penalty due to the rotation of the side alkyl side chain
present at the fourth position of quinoline.
From the results of MM-GB/SA studies, the dG

bind values were observed in the range of − 34.6766
(N1_Andrographolide) to − 50.69 kcal/mol (N7_dihy-
droxy dimethoxy flavone) for significantly active
compounds and also dG vdw values, dG lipophilic

values, and the energies are positively contributing
towards total binding energy. The accuracy of dock-
ing is confirmed by examining the lowest energy
poses predicted by the scoring function. The Glide
score and MM-GBSA free energy obtained by the
docking of ligands into the coupling pocket are more
stable.

Fig. 5 Hydrogen bonding interaction of cpd N1_Andrographolide with SARS CoV-2 main protease (5R82)

Fig. 6 Hydrophilic/lipophilic map of cpd T4_Cyclocurcumin with SARS CoV-2 main protease (5R82)
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Conclusion
From the results of the docking study, the chemical con-
stituents of Curcuma longa (turmeric) and Andrographis
paniculata demonstrated better arrangement at a dy-
namic site. The in silico structuring strategy embraced
in the present investigation helped for recognizing some
lead molecules and furthermore may somewhat clarify
their useful impact for further determinations like
in vitro and in vivo assessments. Results from the in
silico study exhibited that many of the chemical constit-
uents from Curcuma longa (turmeric) and Andrographis
paniculata family may be useful against COVID-19 by
inhibiting SARS CoV-2 main protease enzyme. Based on
in silico studies, the chemical constituents such as cyclo-
curcumin and curcumin from turmeric and androgra-
pholide and dihydroxy dimethoxy flavone from
Andrographis paniculata are significantly active against
COVID-19 by inhibiting SARS CoV-2 main protease en-
zyme with remedial possibilities and are probably going
to be helpful after further refinement. In conclusion,
consuming turmeric in our diet regularly may be a use-
ful remedy in the prevention of the coronavirus.

Abbreviations
COVID-19: Coronavirus disease 2019; MM-GBSA: Molecular mechanics-
generalized Born surface area; PDB: Protein data bank; OPLS3: Optimized
potentials for liquid simulations; XP: Extra precision
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