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performance accuracy.

Background: Pharmaceutical excipient development is an extensive process requiring a series of pre-formulation
studies to evaluate their performance. The present study compares the conventional compaction and compression
pre-formulation studies with artificial intelligence (Al) modeling to predict the performances of thermally and
chemically modified starches obtained from Livingstone potato.

Results: The native starch was modified by three methods, and we obtained the following starches; pregelatinized
starch (PS), ethanol dehydrated pregelatinized starch (ES), and acid hydrolyzed starch (AS). Microcrystalline cellulose
(Avicel® PH101) was employed as a reference since its use in tablet direct compression has been established. The
role of compaction pressure on the degree of volume reduction of the tablets was studied using Kawakita and
Heckel models which highlighted that when the starch is modified by pregelatinization followed by ethanol
dehydration, and/and or acid hydrolysis modification, a directly compressible starch can be obtained that can
plastically deform. The data-intelligence results indicated the reliability of the Al-based models over the linear
models. Hence, the comparative results demonstrated that the Adaptive neuro-fuzzy inference system (ANFIS)
outperformed the other two models in modeling the performance of all of the four excipients with considerable

Conclusion: The compressibility indices have shown matching characteristics of AS and ES to Avicel® PH101 in
terms of direct compressibility potential than PS. Moreover, the data intelligence modeling demonstrates the
reliability and satisfactory of ANFIS as a hybrid model over the other two models with increased performance skills
in modeling the compaction properties of these novel pharmaceutical excipients.

Keywords: Artificial intelligence, Compaction, Direct compression, Excipient, Tablet

Background

Pharmaceutical excipients are substances other than the
active pharmaceutical ingredients (APIs) added to the
pharmaceutical dosage forms. They are added to achieve
the desired consistent volume of a dosage form since it
is not convenient to administer the raw API directly to
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patients in most cases. Pharmaceutical excipients include
solvents, diluents, or bulking agents such as lactose,
sweetening agents, fillers, wetting agents, flavors,
sustained-release matrices, preservatives, absorption en-
hancers, coloring agents, emulsifiers, and so on. The
principal role of pharmaceutical excipients is to provide
a defined volume and uniformity of dose of an API in a
dosage form be it in solid, semisolid, transdermal, paren-
teral, or liquid formulations, throughout the production
process [1]. Moreover, in some cases, they provide con-
venience in terms of the administration of medicine to
the patient, e.g., sweetening agents and flavors.
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In the past, excipients were considered inert, especially
those derived from natural origins. However, due to ad-
vancements in medicine and pharmaceutical technology
in the search for newer drug delivery systems and dosage
forms, the scope of pharmaceutical excipients has ex-
panded tremendously to include those from synthetic
and semi-synthetic origins. Consequently, excipients are
presently not considered completely inert substances be-
cause they often interact with the loaded API and could
generate unwanted impurities or impede the biopharma-
ceutical performance of the API loaded in a dosage
form. To ensure safety and qualification for use in phar-
maceuticals, manufacturers of pharmaceutical excipients
must ensure the absence of intrinsic toxicity of excipi-
ents, and materials for excipients development are
chosen from pharmaco-toxicologically inert substances
[1, 2]. To achieve these goals, many regulatory agencies
across the globe such as the US Food and Drug Admin-
istration (FDA), the European Medicines Agency (EMA),
and the Japanese Ministry of Health, Labour and Wel-
fare have set guidelines to guarantee the safety of excipi-
ents used by the pharmaceutical industries [1].

Pharmaceutical solid dosage forms, especially tablets,
account for over 60% of the global medicines consumed
[3]. Starch is prominent in the pharmaceutical dosage
form application, particularly for tablet formulations due
to its natural origin with limited toxicity potential and
wide availability from numerous sources [4]. However,
in its natural unmodified form, starch has some limita-
tions for pharmaceutical application. The low quality of
the native starches is attributed to their poor functional-
ity in terms of particle characteristics that directly affect
their flow rate, compactibility, and compressibility char-
acteristics. Through modification (chemical, physical, or
biotechnological), these properties could be improved to
obtain pharmaceutical-grade starches [3, 5]. The process
of such modification can be complex, consuming signifi-
cant resources and time. Therefore, coupling some of
these excipient development technologies with artificial
intelligence (AI) based modeling could reduce the time,
resources, and manpower needed for the development of
pharmaceutical-grade excipients including starch.

Al-based models are currently gaining popularity in
different areas of prediction and simulation in engineer-
ing, basic science, health science, and pharmaceutical
sciences owing to their promising capacities, fast learn-
ing speed, accuracy, and precision [6]. The major motiv-
ation for employing these models in this work is to
generate a consistent prediction result using various
models. Even though, this is not possible owing to the
dynamic nature of experimental data. It is, therefore, ne-
cessary for scientists to develop efficient and strong
models by employing the experimental data available.
Based on the established studies in the literature, the
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traditional linear models have been used widely, al-
though they generally exhibit lower accuracy and preci-
sion levels, and this gives room for the
implementation of Al-based techniques, which are
regarded as more accurate, precise, and non-linear
computational tools [7]. For instance, Simoes et al.
[8] reported the application of artificial neural net-
works (ANNs) in predicting the quality by the design
method. The drug particle size distribution was con-
sidered as a critical parameter in the study. The ANN
technique was employed in order to simulate the
in vitro dissolution of the drug manufacturing
process. Barmpalexis et al. [9] demonstrated the ap-
plication of various data-driven approaches including
multi-linear regression (MLR) and other non-linear
models such as ANN, genetic programming (GP), and
particle swarm optimization (PSO) for designing ex-
perimental implementation in order to determine the
effect of various diluents and particle size fractions of
three commonly used compression diluents. The re-
sults showed the reliability of the application of these
data-driven models. Many studies have proven the ef-
fectiveness of such techniques [10-16].

It can be seen from the previous studies involving
data-driven models that most of the works employed lin-
ear regression methods such as MLR and non-linear
data-driven approaches such as ANN. As a result of
some modeling issues such as slow learning ability and
overfitting, a novel and hybrid model adaptive neuro-
fuzzy inference system (ANFIS) is employed in order to
tackle the drawbacks of the traditional neural network
owing to its hybrid nature that combines the concepts of
both ANN and fuzzy logic. However, since the develop-
ment of computational models in the area of pharma-
ceutical sciences, there has been no published work in
the literature indicating the implementation of non-
linear data-driven algorithms (ANFIS and ANN) com-
bined with the classical linear regression MLR for mod-
eling the compaction performance of pharmaceutical
excipients. The aim of the present study is therefore to
apply AI modeling in predicting the compaction and
compressibility performances of modified starches de-
rived from Livingstone potato for application in tablet
formulations.

Methods

Materials

Materials include stearic acid, glycerol, and talc (BDH
Chemicals Ltd Poole, England); microcrystalline cellu-
lose (Avicel° PH101) (ATOZ Pharmaceuticals Ltd,
Ambaltur, India); absolute ethanol and hydrochloric
acid (Emerck Darmstadt, Germany); xylene (Loba
Chemic Laboratory Ltd, Mumbai, India); sodium
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hydroxide pellets (Avondale Laboratories Ltd., Ban-
bury, England).

Starch preparation and modifications

Livingstone potato (Plectranthus esculentus) was ob-
tained from the Vom area of Plateau State, Nigeria. The
tubers were identified in the herbarium of the Depart-
ment of Biological Sciences, Ahmadu Bello University,
Zaria, Nigeria, (Voucher number 28448). Starch extrac-
tion was done by wet milling technique, and starch mod-
ifications were performed by three methods, namely
pregelatinization, ethanol dehydrated pregelatinization,
and acid hydrolysis [3]. The modified starches were la-
beled accordingly as pregelatinized starch (PS), ethanol
dehydrated pregelatinized starch (ES), and acid hydro-
lyzed starch (AS), respectively. Microcrystalline cellulose
(Avicel® PH101) was adopted as a standard for compari-
son which is used commonly in direct compression tab-
let formulations.

Tablet compaction studies

Powder samples of the modified starches were made into
compacts by compressing 500 mg using a 10.5-mm die
and flat-faced punches on an Apex hydraulic hand press
(184 models, Apex Construction LTD, London). Varied
pressure (28—170 MNm ?) was used with a 30s dwell
time. The tablet compacts were kept in a desiccator
filled with silica for 1 day to enable elastic recovery and
hardening and also to prevent low yield values. The tab-
let properties thickness, diameter, and weights (W) were
then determined. The relative densities (D) of the tablets
were then calculated according to Eq. 1 below [3]:

D=W/V, (1)

where V is the tablet volume (cm®) and ps is the par-
ticle density (g/cm® of the compact material. The
Heckle plots [In (1/1-D) versus the compression pressure
P (MNm™2)] and Kawakita plots of applied pressure (P)
divided by the degree of volume reduction (C) [P/C ver-
sus P] were generated [3]. Also, the compressibility indi-
ces of the materials were obtained from the plot of
compact density (g/cm?) against the log of compaction
pressure. Bulk, tapped and true densities were generated
according to the method described by Khalid et al. [3].

Proposed methodology for Al modeling

In this work, various data-driven approaches were pro-
posed separately for modeling the performance of these
novel excipients. The primary data of this study were
collected from our experimental results. Furthermore,
two performances of these excipients were determined
as the output variables, i.e., tablet density and degree of
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volume reduction. The work employed the applications
of drug/excipient ratio (D/E ratio), friability (%), crush-
ing strength (C/strength), compression pressure (C/pres-
sure), and log of compression pressure (log C/pressure)
as the input variables for the corresponding out parame-
ters of the modified starches: PS, ES, and AS, with Avi-
cel” 101 as standard for comparison. Therefore, this
work proposes the development of three different data-
driven models, which include two non-linear models,
namely ANN (the most widely used data-driven model)
and ANFIS (as the hybrid learning algorithm), and a
traditional linear regression model (MLR, which is the
most commonly used linear model). The main aim of
employing different data intelligence algorithms is to
understand the nature and behavior of the models to-
wards different data sets, which in turn makes it difficult
for modelers to select a specific model while simulating
a certain data set. The complexity issue can be overcome
by choosing various models, which include the linear
data-driven algorithms despite their weakness towards
handling complex non-linear data. Regarding the imple-
mentation of this work, the models were evaluated by
applying various performance indices.

Artificial neural networks (ANN)

ANNs are generally new computerized tools that have
broad uses in resolving many complicated real-world
problems. The attraction of ANNs originates from their
outstanding information processing traits related mostly
to nonlinearity, fault and noise tolerance, learning, and
generalized abilities [17]. ANNs are also referred to as
neural networks (NNs) or connection model. It is an al-
gorithmic numerical model that mimics the behavior
characteristics of the biological brain neural network
and performs distributed mode and data processing.

Adaptive neuro-fuzzy inference system (ANFIS)
Nevertheless, ANNs tools are one of the broadly use AI-
based models which are motivated by copying the brain
of human beings, as a result of its resilience of mimick-
ing with a high complex connection between the input
and output models of the data collections [18].

ANFIS has been demonstrated to be a successful soft-
ware that incorporates the approach of the fuzzy Sugeno
model that benefits from both fuzzy logic and ANN in
one system. ANFIS has been recently used in predicting
and modeling complex datasets [15]. ANFIS is also a
real-world estimator because of its capacity to approxi-
mate real functions. In practice, several membership
functions (MF) are used including trapezoidal, triangu-
lar, sigmoid, and Gaussian, although the Gaussian func-
tion is the most frequent MF [19].



Khalid and Usman Future Journal of Pharmaceutical Sciences

Assume the FIS contains two inputs “x” and “y” and
one output “f;” a first-order Sugeno fuzzy has the follow-
ing rules:

Rule 1 :if p(x)is A; and p(y) isB; then f;
=px+tqy+n (2)

Rule 2 : if p(x)is Ay and p(y)is Bpthen f,
=PX+qQy t12 (3)

Aj, By, Ay, B, Parameters are membership functions
for x and y inputs.

P1 g1, '1.P2 qo, T2, are outlet function parameters. The
structure and formulation of ANFIS follow a five-layer
neural network arrangement.

Multi-linear regression (MLR)

Regression is generally categorized into two major do-
mains of simple and multiple linear regression; each one
can be applied according to the purpose of the simula-
tion. For example, if we aim to estimate a linear regres-
sion, which exists between a single input and single
output, such a model is known as a simple linear regres-
sion (SLR). Furthermore, if we want to simulate the lin-
ear relation between a single output and multiple input
parameters, it is called a multiple linear regression
(MLR) [20]. Usually, MLR is the linear regression type
that is generally used, and it involves analysis such that
each parameter of the inputs is correlated with the out-
put parameter [21]. Generally, MLR consists of estimat-
ing the rate of the relationship that exists between each
parameter, i.e., between the output and two or more in-
put parameters [22]. The entire expression of MLR is
shown in Eq. (4).

Y = b0 + b1 + b2x2 + ...b1x1 (4)

where x1 is the value of the predictor, b0 is the regres-
sion constant, and b1 stands for the coefficient of the
predictor.

Evaluation criteria and validation method for data-driven
models

Usually, for any form of the data-driven algorithm, the
performances of the models are evaluated using various
performance indices by comparing the simulated and ex-
perimental values. In this work, the determination coeffi-
cient of (R*) and correlation coefficient (R) as the
goodness of fit and two statistical errors, root-mean-
square error (RMSE) and mean- square error (MSE),
were used for the evaluation of the models:
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where N, Yo, Y, and Yeom; are the data number, ob-
served data, the average value of the observed data, and
computed values, respectively.

For the validation technique, different types of valid-
ation methods can be applied such as cross-validation
(i.e., k-fold cross-validation), holdout, and leave one out.
In this work, the k-fold cross-validation is used, which is
regarded as the process employed in order to reduce the
problems of overfitting [22]. In this technique, the initial
data set is categorized into same-sized subsets of k [23].

Results

Figure 1 represents the Kawakita plot showing that a lin-
ear relationship was attained at all compression pres-
sures with a correlation coefficient value of 0.999 for all
the modified starches and Avicel® PH101. From the
Kawakita profiles, the slopes and intercepts have shown
that the packed initial relative densities of the modified
starches with the application of small pressures and/or
tapping declined in the sequence: PS>ES>AS>Avicel®
PH101.

The order of the results confirmed what was observed
in the Heckel profiles (Fig. 2) where Avicel” PH101 ex-
hibited a low value for loose initial relative density in
comparison to the modified starches. A similar finding
was reported for microcrystalline starch obtained from
Manihot esculenta [24].

Compressibility implies the ability of a pharmaceutical
excipient to undergo a substantial volume reduction
when it is subjected to compression pressure. Previous
works have established a linear relationship between the
compaction pressure and the density of tablets [3].
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Therefore, the rate of increase of tablet density with an
increase in compaction pressure is expressed as com-
pressibility of a powder material used in pharmaceutical
tablet formulations [3]. The resultant slope from the
profile of tablet density plotted against the logarithm of
the compression pressure is considered to express the
compressibility index of a pharmaceutical powder mater-
ial; the greater the slope, the better the compressibility
behavior and the better its ability to reduce in volume
when pressure is applied [3, 22].

According to the values generated from Fig. 3, the
compressibility indices ranking is as follows: Avicel®
PH101>AS>PS>ES. Despite small variations, the results
for AS and PS showed closer characteristics to Avicel®

PH101 indicating an increase in the tablets’ compact
densities when compression pressure is increased, and
the ability to undergo plastic deformation which is an in-
dication of good compressibility. In contrast, ES exhib-
ited the lowest compressibility properties.

Data-driven algorithms results

Al-based models (ANFIS and ANN) with a linear model
(MLR) were employed to predict the performance of
three different novel pharmaceutical excipients (PS, ES,
AS), obtained from a natural origin (Livingstone potato)
and Avicel® PH101 using drug/excipient (D/E) ratio, fri-
ability (%), crushing strength, compaction pressure and
log compaction pressure, and degree of volume
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Fig. 2 Heckel profiles for modified starches (ES, PS, AS) and Avicel® PH101 of compact excipients as such
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reduction as the corresponding input variables. The per-
formance accuracy of the models was evaluated using
four different performance indices: determination coeffi-
cient (R?), root mean square error (RMSE), mean square
error (MSE), and correlation coefficient (R).

In the development of these models, the simulation
was done in MATLAB 9.3 (R2019a). For the ANN
model, a special algorithm is known as Levenberg—Mar-
quardt was used by employing 1000 iterations, coeffi-
cient of the momentum of 0.9, learning speed of 0.01,
and an MSE of 0.0001. The best architecture of the
model was optimized and selected through the use of
trial by error method.

Table 1 Tablet compact density modeling

Additionally, in modeling ANFIS, different kinds of
membership functions, as well as epoch iterations,
were employed through trial by error in order to de-
termine the desired structure. Tables 1 and 2 show
the results of the performance of the data-driven al-
gorithms models in modeling the performance of
these excipients in the form of tablet density and de-
gree of volume reduction.

Figure 4 demonstrates the response time series plot
for Avicel® PH101. According to the plot, the extent of
spread values between the experimental and predicted
values proved the result in Table 1.

Tablet density

Training Testing
R? RMSE MSE R? RMSE MSE R

Avicel® PH101-ANFIS 0.99950 0.00149 0.00003 0.99975 0.999736 0.022361 5.28E-05 0.999868
Avicel® 101-ANN 0.99091 0.00636 0.00061 0.99544 0.953647 0.296293 0.009271 0.976548
Avicel® PH101-MLR 0.99926 0.00181 0.00005 0.99963 0999168 0.039684 0.000166 0.999584
ES-ANFIS 0.99975 0.00105 0.00002 0.99988 0.999573 0.024083 8.54E-05 0.999787
ES-ANN 0.98760 0.00742 0.00083 099378 0995874 0.074871 0.000825 0.997935
ES-MLR 0.99282 0.00565 0.00048 0.99640 0.985244 0.141585 0.002951 0.992595
PS-ANFIS 0.99909 0.00201 0.00006 0.99954 0.999664 0.022804 6.72E-05 0.999832
PS-ANN 0.99895 000216 0.00007 0.99947 0.998751 0.043949 0.00025 0.999375
PS-MLR 0.99780 0.00313 0.00015 0.99890 0.997585 0061116 0.000483 0.998792
AS-ANFIS 0.99983 0.00087 0.00001 0.99992 0.999729 0.022669 5.42E-05 0.999864
AS-ANN 099932 0.00174 0.00005 0.99966 0.997109 0.074027 0.000578 0.998553
AS-MLR 0.99939 0.00165 0.00004 0.99969 0.999389 0.034041 0.000122 0.999694
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Table 2 Degree of volume reduction modeling
Degree of volume reduction

Training Testing

R RMSE MSE R R? RMSE MSE R
Avicel® PH101-ANFIS 0.99983 0.00086 0.00001 0.99992 0.999655 0.013453 6.89E-05 0.999828
Avicel® PH101-ANN 0.99446 0.00496 0.00037 0.99723 0.99722 0.03821 0.000556 0.998609
Avicel® PH101-MLR 0.99427 0.00505 0.00038 0.99713 0.980304 0.101712 0.003939 0.990103
ES-ANFIS 0.99986 0.00078 0.00001 0.99993 0.993002 0.036486 0.0014 0.996495
ES-ANN 0.99252 0.00577 0.00050 0.99625 0.986784 0.05014 0.002643 0.99337
ES-MLR 0.98164 0.00903 0.00122 0.99078 0.959839 0.087405 0.008032 0979714
PS-ANFIS 0.99904 0.00206 0.00006 0.99952 0.996078 0.026833 0.000784 0.998037
PS-ANN 0.99831 0.00274 0.00011 0.99916 0.993253 0.035197 0.001349 0.996621
PS-MLR 0.99530 0.00457 0.00031 0.99765 0.991564 0.039357 0.001687 0.995773
AS-ANFIS 0.99982 0.00090 0.00001 0.99991 0.995259 0.035777 0.000948 0.997627
AS-ANN 0.99978 0.00098 0.00001 0.99989 0.994208 0.039544 0.001158 0.9971
AS-MLR 0.95461 0.01420 0.00303 0.97704 0.987262 0.058643 0.002548 0.99361

Detailed and comprehensive results of the degree of Discussion

volume reduction for simulating the performance of
these novel excipients are shown in Table 2. According
to the results obtained from both the training and the
testing stages, the ANFIS model demonstrated better fit-
ness compared with the other two data-driven algo-
rithms. It is not surprising that the ANFIS data-driven
algorithm as a hybrid model as well as an emerging non-
linear system for simulation has shown a strong and
promising ability in elucidating complex data. Based on
the models’ performance efficiency, the hierarchical
order is as follows ANFIS>SANN>MLR.

Table 1 demonstrates the comparative prediction of the
tablet density of four different excipients using three dif-
ferent models. It has clearly shown that the non-linear
hybrid model ANFIS outperformed the traditional ANN
and the classical linear regression MLR. The table fur-
ther demonstrates that all the three models indicated
strong results for simulating the tablet density of the
four excipients in terms of the performance indices R?,
R, RMSE, and MSE. This can be attributed to the cross-
validation process conducted prior to the modeling,
which is very important in model evaluation.
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Fig. 4 Time series for the prediction of Avicel® PH101
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Fig. 6 Radar chart of modified starch PS in both training and testing

PS-ANN

The predictive result in terms of the determination co-
efficient (R*) indicated that ANFIS outperformed the
other two models (ANN and MLR) and enhanced their
performance efficiency up to 5% and 0.05% for Avicel®
PH101, 0.37% and 2% for ES, 0.1% and 0.2% for PS, and
finally, 0.3% and 0.034% for AS, respectively. On the
other hand, the simulated values have been demon-
strated graphically using a scatter plot to show the
goodness-of-fit between the measured values and the
predicted values (Fig. 5). It is clear from the scatter plots
that ANFIS demonstrates the best fitting agreement be-
tween the measured and simulated values. These find-
ings are in line with the literature [23, 25-28].

The quantitative results based on the performance in-
dices R, R?, RMSE, and MSE indicate that the ANFIS
model achieved higher performance accuracy and out-
performed the other two models (ANN and MLR) in

both the training and testing phases. The performance
of the models of these excipients, e.g., PS, can be further
compared, as shown in Table 2. Through analyzing the
results, it can be observed that the Al-based data-driven
algorithms (ANFIS and ANN) emerged as satisfactory
and reliable models. The predictive accuracy perform-
ance of these models was equally proved in various tech-
nical literature such as [15]. Furthermore, the coefficient
of correlation (R) as shown in Table 2, demonstrating
the performance of these two data-driven algorithms
compared with linear regression MLR. MLR perform-
ance generally fails to a certain extent, especially when it
encounters highly non-linear and complex data, which
can be due to the fact that MLR follows the least-
squares concept method that predicts the relationship
between the inputs and the output parameters in linear
form. Moreover, MLR simulation may result in the

AS-MLR

AS-ANN

RMSE

AS-ANFIS

u Testing ™ Training

0 0.02

Fig. 7 Comparison of the relative mean square error of the data-driven algorithms in the simulation of AS

0.04 0.06 0.08
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generation of many negative values, which can affect the
performance efficiency of the model. Figure 6 shows the
performance of the novel excipient PS in a surface radar
chart, which depicts the R scale in both the training and
testing stages of the models.

The radar chart shows that the results in terms of the
correlation coefficient (R) follow the following order:
ANFIS (0.9995, 0.9980), ANN (0.9992, 0.9966), and
MLR (0.9976, 0.9958) in the training and testing stages,
respectively. Generally, the scale of radar ranges between
0 and 1, where the best performing model approaches
one. The predictive comparison of the models based on
the radar chart can be arranged based on the following
order: ANFIS>ANN>MLR. Figure 7 demonstrates a pre-
dictive comparative analysis of these data-driven ap-
proaches based on their relative mean square error
(RMSE). ANFIS shows higher performance accuracy
compared with the other two models, as it records the
lowest error values in both the training and testing
stages.

Conclusion

Modifications of the native starch made by acid hydroly-
sis (AS) and pregelatinization followed by ethanol dehy-
dration (ES) gave rise to good table excipients that can
be used for direct compression tablet formulations based
on their compaction and compressibility characteristics.
This work employed the application of various models,
namely two artificial intelligence-based models (ANFIS
and ANN) and a linear model (MLR) for modeling the
performance of three novel pharmaceutical excipients
with one standard (Avicel® PH101) based on their com-
pact tablet densities as well as their degrees of volume
reduction. The results indicated the reliability of the AI-
based models over the linear model. Hence, the com-
parative results indicate that ANFIS outperformed the
other two models in modeling the performance of all of
the four excipients with considerable performance ac-
curacy. This method can be further exploited in the de-
velopment of other pharmaceutical excipients, not only
for solid dosage forms, but also for other excipients used
in semi-solid, transdermal, liquid, or injectable formula-
tions. The predictive results further suggested that other
data-driven models, as well as optimization algorithms
such as principal component analysis (PCA),
Hammerstein-Weiner (HW), genetic algorithms (GA),
and fuzzy logic (FL), could be employed in order to im-
prove the performance accuracy of the models.
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