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Abstract

Background: The meager physicochemical properties like low solubility and low dissolution rate of rosuvastatin
calcium remain as an obstruction for formulation development. In the present work, we explore the evolution of
rosuvastatin cocrystal, which may offer the synergetic physico-chemical properties of the drug. Cocrystal crafting
depends on two possible intermolecular interactions; heteromeric and the homomeric selection of compounds
with complementary functional groups are contemplated as a possible cause of supramolecular synthons in
cocrystal formation. Specifically, cocrystals of rosuvastatin with L-asparagine and L-glutamine with molar ratio (1:1)
were fabricated by using slow solvent evaporation and slow evaporation techniques. Novel cocrystals of
rosuvastatin-asparagine (RSC-C) and rosuvastatin-glutamine (RSC-G) cocrystals obtained by slow solvent evaporation
were utilized for preliminary investigation and further scale-up was done by using the solvent evaporation
technique.

Results: The novel cocrystals showed a new characteristic of powder X-ray diffraction, thermograms of differential
scanning calorimetry, 1H liquid FT-NMR spectra, and scanning electron microscopy. These results signify the
establishment of intermolecular interaction within the cocrystals. In both the novel cocrystals, rosuvastatin was
determined to be engaged in the hydrogen bond interaction with the complementary functional groups of L-
asparagine and L-glutamine. Compared with the pure rosuvastatin, RSC-C and RSC-G cocrystal showed 2.17-fold and
1.60-fold improved solubility respectively. The dissolution test showed that the RSC-C and RSC-G cocrystal exhibited
1.97-fold and 1.94-fold higher dissolution rate than the pure rosuvastatin in pH6.8 phosphate buffer respectively.

Conclusion: Modulation in the chemical environment, improvement in the solubility, and dissolution rate
demonstrated the benefit of co-crystallization to improve the physicochemical properties of the drug.
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Background
Among all the physicochemical properties of the active
moiety, dissolution and solubility are well deliberated to
be the rate-determining step of poorly water-soluble
drugs during oral absorption. Method selection for solu-
bility and dissolution rate enhancement is crucial in
attaining good oral absorption. Considering different
methods, pharmaceutical cocrystals offers the most
promising approach to improve physicochemical proper-
ties of the active moiety like solubility, melting point,

dissolution, and stability [1, 2]. Pharmaceutical cocrystals
are multi-component complexes containing two or more
molecules [3, 4]. The main edge in cocrystal formation is
the adjustment of physicochemical properties of drug
molecules through alteration in its supramolecular struc-
ture, without a change in its covalent structure [5]. An
important aspect in cocrystal crafting depends on two
possible intermolecular interaction heteromeric and the
homomeric selection of components with complemen-
tary functional groups that are contemplated as a pos-
sible cause of supramolecular synthons in cocrystal
formation [6, 7]. The co-crystallization approach is a
well productive choice that notably furnishes the active
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molecule with required physicochemical properties [8, 9]
and also donates the right of intellectual property pro-
tection [10]. Furthermore, accompanying high capability
without waste products and causing co-crystallization
and an influential chunk of Green chemistry [11].
Preparation methods of cocrystals include precipita-

tion, sublimation, solution crystallization, and solvent
evaporation [12–14]. In the solvent-free technique, the
intermittent phase is formed by co-grinding of the drug
and co-former [15]. Along with the above approaches,
various other techniques are also hired for the develop-
ment of cocrystals such as super-critical fluids, sonic
slurring, hot-melt extrusion, wet and dry compression,
and ultrasound [16–18].
Rosuvastatin, (E,3R,5S)-7-(4-(4-fluorophenyl)-2-(methyl(-

methylsulfonyl)amino)-6-propan-2-ylpyrimidin-5-yl)-3,5-
dihydroxyhept-6-enoate has been utilized for the treatment
of hyperlipoproteinemia, hypercholesterolemia, atheroscler-
osis, and avoidance of coronary heart diseases which
belongs to BCS class-II drugs [19, 20]. Rosuvastatin comes
under the statin family, known as “super statin” [21, 22],
which contains two oxydrilic group bound to asymmetric
carbon atoms which are part of side-chain linked to a
pyrimidine ring. The major trouble with this drug is low
water solubility (0.33 mg/ml) which displays low solubility
in gastrointestinal fluids [23]. Previously, various efforts to
enhance the solubility of rosuvastatin such as

polymerization [24], liquisolid technology [25], and nano-
emulsifying delivery systems [26] were ample in the litera-
ture. Cocrystals of rosuvastatin were formulated by utilizing
sorbitol [27] and vanillin [28] as co-formers. These cocrys-
tal inventions provided the feasibility in utilizing the rosu-
vastatin cocrystals to modulate and design better product
[29]. Ferrori et al. 2014 utilized three different rosuvastatin
co-crystal such as Rosuvastatin 2-aminopyrimidine hemihy-
drate, Rosuvastatin pyrazine hydrate, and Rosuvastatin qui-
noxaline in the rosuvastatin synthesis process [30].
Amino acids are Zwitterionic compounds that exist

under the GRAS group with low hazardous to the
biological system in comparison with other co-formers
[31, 32]. Moreover, their zwitterionic potentialities could
form charge-assisted hydrogen bondings in cocrystal for-
mation [33, 34]. Based on the synthon approach, cocrys-
tal formation mainly depends upon the functional
groups that are present in the drug molecule and the co-
former [35, 36]. Carboxyl groups and amino groups
present in amino acids act as good hydrogen bond ac-
ceptors and donors respectively, so these may be the sat-
isfying co-former candidate for rosuvastatin cocrystal
formulation.
In the present investigation, two amino acids contain-

ing the amide group, shown in Fig. 1, are preferred to
form cocrystal with rosuvastatin. Specifically, cocrystals
of RSC with L-asparagine and L-glutamine were

Fig. 1 Molecular structures of pure rosuvastatin calcium (RSC), L-asparagine (ASN), and L-glutamine (GLU)
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synthesized by the solvent evaporation technique. For
the novel cocrystals, structural characterization was done
by powder x-ray diffraction (PXRD), infrared spectros-
copy (FT-IR), differential scanning calorimetry (DSC),
1H liquid FT-NMR, and scanning electron microscopy
(SEM). In vitro evaluations were done by aqueous solu-
bility and in vitro dissolution drug release and these
were compared with the parent drug molecule.

Methods
Materials
Rosuvastatin calcium (RSC), L-asparagine, and L-glutam-
ine were procured from Lotus chemicals (Andhra
Pradesh, India). Methanol (chromatographic grade) was
procured from Balda chemicals (Andhra Pradesh, India).
All other chemicals utilized in the study were of
commercial grade.

Cocrystal designing
Rosuvastatin is characterized by the presence of two-
oxydrilic groups bound to asymmetric carbon atoms
which are part of a side chain linked to a pyrimidine
ring, presented in Fig. 1. Considering rosuvastatin func-
tional groups, co-former having an amide group may
have the chance of forming hydrogen bonds. L-aspara-
gine and L-glutamine are the amide-containing com-
pounds and also Zwitterionic compounds were selected
for the present study.

Synthesis of novel cocrystals
Slow solvent evaporation
The cocrystals are produced by a molar ratio of 1:1 was
as given: RSC (500 mg) with ASN (140 mg) and GLN
(156 mg). The drug and the conformer were dissolved in
a 3:1 ratio of ethanol and water in the test tube. The
container was sealed with aluminium foil and 3 to 4
holes were stabbed on the foil for slow evaporation. The
container was placed in the desiccator for 2 to 3 days
and the cocrystals obtained were utilized for preliminary
investigation.

Solvent evaporation
Two novel cocrystals of rosuvastatin calcium with L-as-
paragine and L-glutamine were prepared by the solvent
evaporation technique. The cocrystals are produced by a
molar ratio of 1:1 was as given: RSC (500 mg) with ASN
(140 mg) and GLN (156 mg). The drug was dissolved in
15 ml of methanol and the co-former in 5 ml of distilled
water. Both the solutions were stirred, and then ultraso-
nicated until the material was completely dissolved to
form a clear solution. Methanol solution containing RSC
was placed on the magnetic stirrer and the aqueous so-
lution containing co-former was added dropwise. The
stirring was continued until the solvent was completely

evaporated. The product formed was placed in a desicca-
tor overnight for complete drying of the cocrystals.

Structural characterization
Fourier transform infrared spectroscopy analysis
Fourier transform infrared spectroscopy spectra of RSC,
ASN, GLU, RSC-C, and RSC-G is recorded using Azilent
360 series spectrometer containing DLATGS detector
with 2 cm−1 spectral resolution. Then, 2–4 mg of each
sample was placed on the sample cell and scanned
through the wavelength of 4000–400 cm−1. The obtained
data was analyzed using spectrum software.

Differential scanning calorimetry analysis
The thermal behavior of the samples was analyzed by
utilizing differential scanning calorimetry. Each sample
(4–5 mg) of pure drug, co-formers, and novel cocrystals
were scanned by using Mettler Teledo DSC 8221e calor-
imetry. Each sample was sealed in aluminium sample
pan, and an empty sealed aluminium pan was used as a
reference. All the samples were scanned at a rate of 10
°C min−1 starting from 25 to 350 °C under nitrogen
purge (30 ml/min).

Powder X-ray diffraction analysis
Crystalline structure alterations of RSC and novel
cocrystals were analyzed by utilizing powder XRD dif-
fractometer. Each sample of the pure drug, co-formers,
and the cocrystals were placed in the sample holder then
scanned by utilizing Philips Xpert MPD diffractometer
with Cu target X-ray tube source which was operated at
30 kV and 15 mA for 2 scan axis. Maintaining a 5–65°
scan range with 0.02° of step width and 10.00°/min scan
speed.

1H liquid FT-NMR analysis
1H liquid FT-Nuclear Magnetic resonance spectra for
RSC, ASN, GLU, RSC-C, and RSC-G is recorded by util-
izing 400 MHz FT-NMR spectrometer (JNM-ECZ 400S)
USINF TMS as an internal standard. Each sample was
dissolved in deuterated dimethyl sulfoxide (DMSO-d6)
for analysis and operated at 400 MHz frequency. The
obtained spectra were integrated using JEOL Delta
software.

Scanning electron microscopy analysis
Morphological changes between the pure drug RSC and
the novel cocrystals were analyzed with scanning elec-
tron microscopy. Scanning electron microscopy (SEM)
analysis was done by using XL30ESEM with EDAX con-
taining backscattered and secondary electron detectors.
The particles were prepared for the analysis by placing
on aluminium stabs and coated with gold under vacuum.
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The samples were photomicrographed at different
magnifications.

In vitro evaluation
Apparent solubility
The equilibrium method [37] was utilized for deter-
mining the apparent solubility of pure drug RSC,
cocrystals RSC-C, and RSC-G. An excess amount of
each sample was placed in vials with caps containing
10 ml of pH 6.8 phosphate buffer. These solutions
were sonicated for 15 min and were placed in a water
bath shaker for 48 h with a rotating speed of 200
rpm at 30 ± 1 °C. The supernatant solution was fil-
tered through 0.45 μm filters. This filtrate was diluted
with methanol and the drug concentration was deter-
mined by utilizing UV-Spectrophotometer (V-630,
Jasco. Japan) at 244 nm. Apparent solubility analysis
was conducted in triplicate and the residual solids
were qualitatively analyzed by Fourier transform infra-
red spectroscopy (FT-IR).

In vitro dissolution study
The in vitro drug release studies were carried out tripli-
cate in Erweka DT600 USP apparatus-II (paddle
method). The highest dose of RSC (40 mg), RSC-C, and
RSC-G (Equivalent to 40 mg of pure drug) was put into
900 ml of dissolution media. The paddles were rotated

at 100 rpm by maintaining 37 ± 0.5 °C throughout the
study. Two milliliters of aliquot was collected at 10, 20,
40, 80, and 120 by replacing with fresh dissolution
medium. Collected aliquots were filtered through a 0.45
μ filter; the filtrate was diluted and estimated for drug
concentration using UV-Spectrophotometer (V-630,
Jasco. Japan) at 244 nm.

Results
Structural characterization
Fourier transform infrared spectroscopy
Alterations of intermolecular interactions in comparison
to parent molecules can be studied using FT-IR [38].
Figure 2 shows the FT-IR spectra of starting materials
and novel cocrystals. For RSC, the characteristic peaks
corresponding to carboxylic O-H stretch and N-H
stretch are assigned at 3382, 2968 cm−1 respectively [39].
For ASN, a sharp peak appeared at 3378 cm−1 was
assigned to O-H stretch, and a broad multiple peaks at
3099 was ascribed as N-H stretch [40]. For GLN, a char-
acteristic O-H peak was assigned at 2401, and a broad
multiple peaks corresponding to N-H stretch was as-
cribed at 3168 cm−1 [41, 42]. These are the main func-
tional groups that are responsible for hydrogen bond
formation.
The FTIR analysis RSC-C cocrystals showed the shift

in the O-H peak position of parent molecule from 3382

Fig. 2 FTIR spectra of RSC, ASN, GLN, RSC-C, and RSC-G
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cm−1 to and nitrogen peak of ASN from 3099 to 3369
cm−1; meanwhile, the carbonyl group shift from 1654 to
1686. RSC-G cocrystals exhibited a shift in the O-H peak
of RSC from 3382 and nitrogen peak of GLN from 3213
to 3401; meanwhile, the carbonyl group shifted from
1654 to 1684. A similar type of shift can be noticed in
both the novel cocrystals indicating a similar type of
interaction.

Differential scanning calorimetry
The cocrystals of RSC-C and RSC-G formulated by the
solvent evaporation technique were analyzed for their
thermal behavior concerning the starting compounds.
Differential scanning calorimetry (DSC) was widely used
in investigating the compatibility status and structural
alterations in the molecule [43]. DSC thermograms of
the starting material and novel cocrystals were shown in
Fig. 3. RSC presented an endothermic peak between 65
and 80 °C, which is considered as a water loss peak, to
the next RSC showed multiple endothermic melting
peaks between 230 and 300 °C displaying the semi-
crystalline structure of the molecule [44]. Co-formers
ASN and GLN showed a sharp endothermic melting
peak at 241 °C and 193 °C respectively.
In RSC-C novel cocrystal broad endothermic between

60 and 80 °C indicates the lattice water existence and a
sharp endothermic event at 129 °C ascribed as the

melting point which is a major alteration when com-
pared to the parent molecule. RSC-G cocrystal presented
a sharp endothermic peak at 198 °C indicating the melt-
ing point deviation with the parent molecule. In both
the cocrystal, the multiple endothermic melting peaks of
the parent molecule have vanished, confirming the loss
of semi-crystalline nature of the compound.

Powder X-ray diffraction
Most of the drugs exhibit various forms in their solid-
state like crystalline, amorphous polymorphs, and
solvates. In turn, these forms can vary extensively in
their physicochemical properties [45]. Along with the
DSC, powder X-ray diffraction (PXRD) analysis has the
ability to determine the crystallinity of the drug
molecule. PXRD spectra of the starting materials and
the novel cocrystals were shown in Fig. 4. PXRD pattern
of RSC indicated the semi-crystalline nature of the
molecule, which is in agreement with the previous litera-
ture [44].
RSC-C cocrystal showed the major characteristic peaks

of 2Ɵ scattering angles at 9.14°, 10.28°, 20.85°, 24.61°,
32.93°, and 40.06° which were absent in the drug
molecule and differ from co-former. RSC-G showed the
major characteristics peaks of 2Ɵ scattering angles at
20.61°, 23.58°, 24.20°, 26.74°, 29.41°, 3.58°, 34.98°, 39.39°,
and 40.95° which are new for RSC and differ from GLN.

Fig. 3 DSC thermogram of RSC, ASN, GLN, RSC-C, and RSC-G
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1H liquid FT-NMR
Alteration in the chemical environment can be readily
detected through the chemical shift in NMR spectrum.
Both the Novel cocrystals, RSC-C and RSC-G, showed
the co-existence of resonance peaks from the starting
materials with significant chemical shift indicating the
new phase generation [46]. A solvent peak (DMSO-d6)
at δ = 2.6 can be detected in both the starting materials
and the co-crystals. Plain RSC showed the proton peaks
at δ = 1.16, 2.10, 3.50, 3.35, 3.71, 6.45, 7.22, and 7.65, in
which 3.35 and 3.71 are assigned to protons of two oxy-
drilic groups which are considered to be the main char-
acteristic groups that involved in hydrogen bond
interaction. All the proton peaks assigned were clearly
indicated in Fig. 5. RSC-C cocrystals showed a major
peak shift in these oxydrilic groups to 2.65 and 3.68 re-
spectively. Whereas, RSC-G cocrystal exhibited the
chemical shift in oxydrilic groups to 3.32 and 3.69
respectively.

Scanning electron microscopy
The habit of the starting materials and the novel cocrystals
prepared from solvent evaporation as shown in Fig. 6.
Plain RSC presented as plate-shaped particles with irregu-
lar surface morphology and random sizes. Co-formers
ASN and GLN appeared as stick-shaped crystalline and

with smooth surface morphology. In RSC-C cocrystals,
the plate-shaped particles were converted to an irregular
closely fitted crystalline structure. Whereas the RSC-G
exhibited as stick-shaped closely fitted clusters. This alter-
ation within the habit of the cocrystals might be due to
the intermolecular hydrogen bonds between the drug and
the co-former.

In vitro evaluation
Apparent solubility
The apparent solubility analysis was assessed for pure
drug and the novel cocrystals in pH 6.8 phosphate buf-
fer. Quantification of RSC was assessed by UV spectro-
photometer, and the outcomes are presented in the
Table 1. The samples were assessed after 4 h, 24 h, and
48 h as described in the “Methods” section. The solubil-
ity enhancement of the cocrystals was reduced after 4 h.
The solubility of RSC cocrystals was presented to be very
less after 24 h, and no solubility enhancement was seen
after 48 h. This reduction may be due to the breakdown
of cocrystals into its parent molecules.
Apparent solubility of novel cocrystals was compared

with that of pure drug RSC. Plain RSC showed the solu-
bility of 1.427 mg/ml, whereas RSC-C cocrystals exhib-
ited 3.466 mg/ml which is almost 2.17-fold higher to
that of the parent molecule, followed by RSC-G

Fig. 4 Powder X-ray diffraction pattern of RSC, ASN, GLN, RSC-C, and RSC-G
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Fig. 5 1H liquid FT-NMR spectra of RSC, ASN, GLN, RSC-C, and RSC-G

Fig. 6 Field emission scanning electron microscopy (SEM) micrographs of RSC, ASN, GLN RSC-C, and RSC-G
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cocrystals that showed 2.283 mg/ml which is 1.64-fold
higher to parent molecule within 4 h (Smax) of the solu-
bility analysis. The residual material was analyzed by FT-
IR after 4 h, 24 h, and 48 h to find any alterations in
cocrystals. These results showed that there is no change
in cocrystals up to 4 h; after 24 h, the FT-IR spectra of
the residual materials find similar to that of the pure
drug [47] which was shown in Fig. 7.

In vitro dissolution studies
The in vitro drug release profiles of RSC, RSC-ASN
physical mixture, RSC-GLN physical mixture, RSC-C,
and RSC-G were analyzed in pH 6.8 phosphate buffer
and were shown in Fig. 8. In the media, the plain
RSC, RSC-ASN physical mixture, and RSC-GLN phys-
ical mixture exhibited almost similar dissolution with
23.4% to 49.5%, 25.6% to 52.4%, and 24.9% to 50.8%
drug release in 120 min respectively, which is in
agreement with the previous literature [44]. Whereas
RSC-C and RSC-G cocrystals showed fastened and al-
most maximum drug release (> 80%) within 120 min
of the study. RSC-C cocrystals exhibited 91.4% to

97.7% of the drug release within 120 min, which is al-
most 1.97-fold higher than that of pure drug. RSC-G
cocrystals showed 84.6% to 86.3% of the drug release
which is of 1.74-fold enhancement of drug release in
comparison to pure drug. The studies pointed out the
increased dissolution performance of RSC upon co-
crystallization with L-asparagine and L-glutamine,
which is in good agreement with apparent solubility
studies.

Discussion
Cocrystals are cognominated among the products that
are obtained from the crystal engineering approach with
ionic/non-covalent intermolecular interaction between
two or more disparate molecules with a certain stoichio-
metric ratio in a crystal lattice [48, 49] at most one
molecule should be active moiety. Generally, the choice
of co-former should be done from GRAS (Generally
recognized as safe) or EAFUS (Everything added to food
in united states) list, which is frequently without
pharmacological efficacy [50, 51]. Therefore, it contrib-
utes a practical approach in organizing the physicochem-
ical properties with no medical efficacy diversity [52, 53].
The co-former selected should essentially carry a group
able to develop molecular synthons with the active moi-
ety. In this framework, amino acids appear to be a bene-
ficial option as an applicable companion. Amino acids
exist under the GRAS group, besides pretty low toxicity
and inexpensive. Many of the salt, that is formed from

Table 1 Apparent solubility of rosuvastatin calcium

Chemical
moiety

Solubility in pH 6.8 phosphate
buffer (mg/ml)

Enhancement

RSC 1.427 ± 0.034 –

RSC-C 3.466 ± 0.057 2.17-fold

RSC-G 2.283 ± 0.066 1.64-fold

Mean ± SD, n = 3

Fig. 7 FT-IR spectra of the residual materials after 24 h of solubility analysis
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the amino acids with various classes of therapeutic
agents, were reported in previous literatures [54, 55].
The shift in the wavenumber points out the new

chemical interactions of the drug and the co-former
that impact the functional group position. Both the
novel cocrystals show the O-H, which was converted
to a broad single peak, and the nitrogen peak of the
co-former was comparatively suppressed. This out-
come confirms the merging of two functional groups
through hydrogen bond formation between the hy-
droxyl group of the drug and nitrogen group of the
co-former.
Based on the study of Perlovich [56], 55.3% of cocrys-

tals exhibit the melting point in the middle, 28.9% of
cocrystals with low, and 14.5% exhibit higher endotherm
than the starting materials. RSC-C presented a melting
point at 129 °C, which melts at the temperature below
the melting point of the drug and the co-former. This
decrease in enthalpy and melting point in comparison to
pure compounds indicates the formation of the weak
crystalline structure [57, 58]. RSC-G presented a melting
point at 198 °C indicating the melting point of cocrystal
is in the middle of the drug and the co-former, which is
a very common phenomenon in 1:1 stoichiometric
cocrystals [56].
In DSC study, the nature of the novel cocrystal is

represented by the position and shape of endothermic
melting peaks. The sharp and narrow endothermic peaks
presented by novel cocrystal indicate a high degree of
purity and crystallinity of formed non-covalent

derivatives [59]. The shift in the endothermic event
within the formulation due to the alteration in the crys-
talline geometry of RSC induced by the interaction of
free hydroxyl groups of RSC with the amine group of
co-former. However, the presentation of peak distinctly
indicates the absence of ionic interaction between the
drug and the performer.
In PXRD analysis, the appearance of the new charac-

teristic peaks in the novel cocrystals indicates the new
phase generation. PXRD results confirm the conversion
of the semi-crystalline nature of the drug into a new
weak crystalline form in both the cocrystals. This new
phase may be the cocrystal formation due to the hydro-
gen bond interaction between the drug and the co-
former which was found to be in accordance with DSC
and FT-IR studies.
Apparent solubility of novel cocrystals was compared

with that of pure drug RSC. Plain RSC showed the solubil-
ity of 1.427 mg/ml, whereas RSC-C cocrystals exhibited
3.466 mg/ml which is almost 2.17-fold high to that of the
parent molecule, followed by RSC-G cocrystals showed
2.283 mg/ml which is 1.64-fold high to parent molecule
with within 4 h (Smax) of the solubility analysis.
In FT-NMR analysis, both the cocrystal showed the

downfield nature of chemical shift values indicating the
involvement of both oxydrilic groups in bond formation.
This chemical shift value alteration confirmed the
cocrystal formation between drug and the co-former
probably due to the interaction of free hydroxyl groups
of drug with co-formers. Furthermore, the outcomes

Fig. 8 In vitro dissolution studies of RSC, RSC-ASN physical mixture, RSC-GLN physical mixture, RSC-C, and RSC-G
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attended by the FT-NMR analysis were in good agree-
ment with DSC, PXRD, and FT-IR analysis.
This enhancement of solubility until 4 h is sufficient

to increase the absorption of the drug. This mechanism
is known as the spring and parachute effect showed by
many of the cocrystals [60, 61]. According to this mech-
anism, after breaking down of cocrystals (after 4 h), the
more soluble part (co-former) of cocrystal is drained out
of the crystal lattice into the solution. While the drug
component evolves supersaturated in biological medium.
This increase in energy of the drug molecule is known
as spring energy. This condition lasts for sufficient time
(parachute effect) to facilitate proper absorption.
In in-vitro dissolution analysis, RSC-C and RSC-G

cocrystals showed fastened and almost maximum drug
release (> 80%) within 120 min of the study. RSC-C
cocrystals exhibited 91.4% to 97.7% of the drug release
within 120 min, which is almost 1.97-fold higher than
that of pure drug. RSC-G cocrystals showed 84.6% to
86.3% of the drug release which is of 1.74-fold enhance-
ment of drug release in comparison to pure drug. The
studies pointed out the increased dissolution perform-
ance of RSC upon co-crystallization with L-asparagine
and L-glutamine, which is in good agreement with ap-
parent solubility studies. The strategy of converting the
idea of cocrystals into the application was well explained
in the previous literatures, which may be helpful for
process development in the future investigation [62–64].

Conclusion
Although extensive research was dedicated to cocrystals,
most of the literature reported novel cocrystal produc-
tion and its modification in physicochemical properties;
there is a lack of information regarding the selection of
co-former and their effect on the biological system.
Hence, the present study showed amino acids that exist
under the GRAS group with low hazardous to the bio-
logical system as a suitable choice as co-former in
cocrystal preparation. These amino acids, due to their
zwitterionic potentialities, act as good hydrogen bond
acceptors and donors. This study has demonstrated the
formulation of rosuvastatin cocrystals through both L-as-
paragine and L-glutamine as the co-formers. The cocrys-
tal structure alteration is compared with the spectral
data of the parent molecule, implying the intermolecular
interaction established within the cocrystals. In both
cases, RSC was determined to be engaged in the hydro-
gen bond interaction with the complementary functional
groups of ASN and GLN. Improvement in the solubility
studies demonstrated the benefit of co-crystallization to
improve the physicochemical properties. Furthermore,
the outcomes of solubility analysis are in concurrence
with the in vitro dissolution study. However, in the
present investigation, the in vivo performance of the

cocrystals like Cmax and AUC have not been covered
and will be taken up in our next publication. The out-
comes clearly indicate the modulation in the chemical
structure, solubility enhancement, and dissolution en-
hancement of RSC through co-crystallization.
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