Marde et al. Future Journal of Pharmaceutical Sciences (2021) 7:66

; Future Journal of
https://doi.org/10.1186/s43094-021-00215-5

Pharmaceutical Sciences

REVIEW Open Access

Neurodegenerative disorders associated

. . . Crsaten,
with genes of mitochondria
Vaibhav S. Marde', Prerna L. Tiwari?, Nitu L. Wankhede®, Brijesh G. Taksande®, Aman B. Upaganlawar”,
Milind J. Umekar® and Mayur B. Kale®*

Abstract

Background: Over the last decade, aggregating evidences suggested that there is a causative link between mutation
in gene associated with mitochondrial dysfunction and development of several neurodegenerative disorders.

Main text: Recent structural and functional studies associated with mitochondrial genes have shown that mitochondrial
abnormalities possibly lead to mitochondrial dysfunction. Several studies on animal models of neurodegenerative
diseases and mitochondrial genes have provided compelling evidence that mitochondria is involved in the initiation as
well as progression of diseases such as Parkinson’s disease (PD), Alzheimer’s disease (AD), Huntington’s disease (HD), and

Friedreich ataxia (FA).

genes in the disease development and its progress.

Conclusion: In this mini-review, we have discussed the different etiologic and pathogenesis connected with the
mitochondrial dysfunction and relevant neurodegenerative diseases that underlie the dominant part of mitochondrial
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Background

Mitochondria basically allied with formation of adeno-
sine triphosphate (ATP) through oxidative phosphoryl-
ation process. However, mitochondria also take part in a
lots of necessary cellular functions like iron and calcium
homeostasis, steroids, pyrimidines and heme biosyn-
thesis [1, 2]. Mitochondria have both inner and outer
membrane, which is impermeable to charged ions in-
cluding all other molecules. The ATP generation process
occurs at the inner membrane of mitochondria through
electrons donation by nicotinamide adenine dinucleotide
(NAD) or flavin adenine dinucleotide (FAD) equivalents
formed by the tricarboxylic acid (TCA) cycle. This
process is called as the electron transport system [3, 4].
Mitochondrial DNA (mtDNA) involves circular struc-
ture of 569, 16 base pairs which are active in the synthe-
sis of proteins and mitochondrial ribonucleic acids
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(RNSs). This mtDNA encodes 13 polypeptides, 22 ribo-
somal RNAs and 22 transfer RNAs, all of which are im-
portant for ATP formation and electron transport,
consequently for normal cellular physiology. There are
many human diseases which are strongly related with
mutated mitochondrial genes [5-8]. Oxidative damage
and subsequent dysfunction are occurring to mitochon-
dria which is known to be a major site of free radical
generation in cells [9]. Mitochondrial genome (mtDNA)
is more susceptible to oxidative damage as compared to
the nuclear DNA [10]. Due to the decline of defense
mechanism in the cell, oxidative stress occurs and dam-
ages the nucleic acids. If the damage DNA is not
repaired then it is considered being highly mutagenic
upon DNA replication [11].

Basic mitochondrial genetics

It is well known that mitochondria contribute to ageing
and neurodegeneration through accumulation of mtDNA
mutation and generation of reactive oxygen species (ROS)
[12]. Excessive production of ROS stimulates several
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signaling molecule that governs the endogenous mito-
chondrial apoptotic pathway. Similarly, mtDNA dysfunc-
tion can be induced by many signaling molecule that are
regulated by nuclear gene and intrinsic factors involved in
mitochondrial metabolism. Thus, it is speculated that
mtDNA is directly linked with nuclear signaling pathway
and thus, can be influence ageing process and associated
neurodegeneration [13, 14]. In view of this background,
this review summarizes some possible pathophysiology of
mitochondrial dysfunction associated with mutation in
genes, as a cause of Parkinson’s disease (PD), Alzheimer’s
disease (AD), Friedreich's ataxia (FRDA), and Hunting-
ton's disease (HD).

Main text

Mitochondrial genes in major neurodegenerative
disorders

Parkinson’s disease (PD)

Parkinson’s disease is one of the progressive and most
common neurodegenerative diseases characterized by
some common clinical features such as bradykinesia, ri-
gidity, tremor, and some non-motor symptoms such as
depression, apathy, and sleep disorders [15]. Recently,
several reports demonstrated the involvement of mito-
chondrial genes in the pathogenesis of PD.

Synuclein alpha (SNCA)

SNCA encodes for a-Synuclein (a-Syn), a small polypep-
tide consisting of 140 amino acids. Even though its role
is not discovered, it has been observed that it mediates
the release of neurotransmitter at the presynaptic termi-
nals and interact with membranes of organelles, includ-
ing mitochondria. Interestingly, a-Syn has shown
influence on structure of mitochondria and its function
[16]. Initially, a-Syn was associated with PD as important
component of Lewy bodies [17]. Elevated levels of wild-
type (WT) a-Syn to a larger extent, leads to PD-associated
mutations such as E46K, H50Q, and A53T which induces
in vivo and in vitro mitochondrial fragmentation and re-
active oxygen species (ROS) formation. Further, a-Syn is
confined to mitochondria-associated membranes (MAM),
a special structure which forms an interface between the
mitochondria-endoplasmic reticulum (ER) is important
for the regulation of apoptosis and Ca®" signaling. Mutant
a-Syn was found to decrease binding to MAM and eleva-
tion in mitochondrial fragmentation, suggesting a role for
a-Syn in mitochondrial morphology regulation [18, 19].
Mutant «o-Syn was reported as reason of separation of
mitochondria and ER at MAM, which impairs Ca®" ex-
change and reduces ATP formation in mitochondria [20].
Additionally, a recent study has been reported that a-Syn
also affects mitochondrial biogenesis through peroxisome
proliferator-activated receptor gamma coactivator 1-a
(PGCla) [21]. Accordingly, treatment of dopaminergic
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neurons containing A53T with mitochondrial toxins such
as S-nitrosylation of transcription factor myocyte-specific
enhancer factor 2C (MEF2C), leads to reduced mitochon-
drial biogenesis through down regulation of PGCla [22].
a-synuclein aggregation is a pathological characteristic
common to PD, as well as other neurodegenerative dis-
eases, such as dementia with Lewy bodies (DLB), and mul-
tiple system atrophy (MSA) which are collectively called
“a-synucleinopathies” [22].

Leucine rich repeat kinase 2 (LRRK2)

In humans, LRRK2 gene encodes leucine rich repeat kin-
ase 2 (LRRK2) which is also called as dardarin and
PARKS is a kinase enzyme [23, 24]. Mutation in LRRK2
causes penetrant autosomal dominant type of PD and it
is the most common cause of familial PD. Basically,
LRRK2 is a type of protein kinase that is multifunctional
and LRRK2 mutants exerts their pathogenic action by
elevating kinase activity. The mutant LRRK2 may con-
tribute in elevating the mitochondrial toxins, ROS pro-
duction and defects in mitochondrial dynamics as shown
in Fig. 1 [22, 25]. In addition to this, a common hetero-
zygous mutation, 2877510G—A leads to idiopathic PD.
This heterozygous mutation leads to formation of gly-
cine to serine amino acid substitution at codon 2019
(Gly2019Ser) [22].

Vacuolar protein sorting-associated protein 35 (VPS35)

The relation between VPS35 and PD was observed first
in European PD cohorts with history of an autosomal
dominant inheritance [26—28]. The key role of VPS35 in
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mitochondria is the mitochondrial dynamics regulation
through interaction with mitochondrial fusion/fission
proteins. Multiple studies have been reported that muta-
tion in VPS35 can trigger mitochondrial fragmentation,
which leads to neurodegeneration [29, 30]. Apart from
this, it was reported that increased interaction of
dynamin-like protein (DLP) 1 with VPS35 mutant, sup-
ports change of the mitochondrial DLP1 complexes
through the mitochondria-derived vesicle—dependent
trafficking of various complexes to lysosomes for degrad-
ation. Interestingly, oxidative stress elevates the VPS35-
DLP1 interaction, which also observed to be raises in the
sporadic PD patients [30].

Coiled-coil-helix-coiled-coil-helix domain 2 (CHCHD?2)
Recently, it has been reported that CHCHD2 mutation
causes late-onset, autosomal dominant PD in three
Japanese families [31]. Mitochondrial inter-membrane
space protein CHCHD2 shows functions in the nucleus
and mitochondria. In normal conditions, CHCHD2 is
bound to mitochondrial complex IV and mutation of
CHCHD?2 has shown decreased mitochondrial complex IV
activity, which results into mitochondrial fragmentation
and increases in ROS production [32, 33]. Interestingly,
CHCHD?2 was found that it translocates in the nucleus and
act as a transcription factor under stress conditions. Fur-
thermore, several models expressing mutants associated PD
also shown biochemical and structural mitochondrial ab-
normalities leading to motor dysfunction and dopaminergic
neurodegeneration. The mutant CHCHD?2 leads to impair-
ment of mitochondrial function which results into the pro-
gression of PD [34].

Parkin protein gene (PARK2)

Parkin protein in humans is encoded by the PARK2
gene. Mutations in PARK2 gene cause Parkinson’s dis-
ease, especially autosomal recessive juvenile Parkinson’s
disease. Parkin is a cytosolic E3 ubiquitin ligase. Target
proteins for proteasomal degradation are ubiquitinated
by Parkin [35, 36]. Parkin plays key role in maintaining
healthy mitochondria by regulating their biogenesis and
degradation through mitophagy [36]. The removal of
damaged mitochondria from the healthy mitochondrial
pool and allows their degradation through the autophagy-
lysosomal pathway by the process of mitophagy. Parkin is
also known to regulate the functional mitochondrial pol
by mitochondrial biogenesis regulation [37]. In normal
condition, it interposes the degradation of parkin inter-
action substrate (PARIS), leading to transcriptional activa-
tion of nuclear translocation of PGCla and mitochondria-
associated genes [38]. Accordingly, loss in Parkin function
facilitates PARIS to accumulate and supress mitochondrial
biogenesis, which results in mitochondrial functional
defects.
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PTEN-induced kinase 1 (PINK1)

Mutations in PINK1 is very known common causes of
the autosomal recessive early-onset PD. PINKI1, which
plays an important role in balancing mitochondrial
homeostasis, impairs several aspects of mitochondrial
biology, including morphology, degradation, and traffick-
ing [39-41]. Most widely reported role of PINKI is in
the mitochondria mitophagy, promoting removal of
damaged mitochondria by activating and recruiting Par-
kin [42]. PINKI1 activates Parkin by two mechanisms: (1)
trans-activation by phosphorylation of ubiquitin at S65
and further binding to Parkin and (2) direct Parkin
phosphorylation at S65. Loss of PINK1 leads to wide
range of mitochondrial dysfunction in mice, cell models,
and Drosophila [41]. These mainly result into loss of
PINK1 mitophagy. Mutant PINK1 protein leads to de-
velopment of improperly folded proteins in the mito-
chondria. Mutations in the threonine/serine kinase
domain of PINK1 have been found Parkinson’s patients
[39, 43]. There are several studies reported that PINK1
is basically mitochondrial site located and this may show
a protective effect on cell that is affected by the muta-
tions, and that leads to increased susceptibility to cellu-
lar stress. This suggests a direct relation between the
pathogenesis of PD and mitochondria [39].

ATPase cation transporting 13A2 (ATP13A2)

An enzyme found in humans, probable cation-
transporting ATPase 13A2, mainly involved in the trans-
port of divalent transition metal cations [44]. Mutant
ATP13A2 causes Kufor-Rakeb syndrome (KRS). It is an
autosomal recessive juvenile-onset PD [45]. ATP13A2
mitochondrial function was firstly recognized in mito-
chondrial dysfunction in KRS patient-derived skin fibro-
blast [46]. Several studies have been also reported that
ATP13A2-deficient models demonstrates mitochondrial
dysfunction, decreased ATP production, elevated ROS
production, and increased mitochondrial fragmentation as
shown in Fig. 1. Additionally, deregulation of Zn** metab-
olism leads to lysosomal dysfunction, which further lead
to defective mitophagy. This shows that associated path-
ways is involved in the pathogenesis of PD [47, 48].

Alzheimer’s disease (AD)

Alzheimer disease (AD) is a very common and disabling
neurodegenerative disorder which is a form of dementia
of the aged [49]. Its incidence increases along with age
and thereby it is a significant public-health concern. In
the late stages of AD, severe memory loss is observed
and serious neurodegeneration is obvious [50].

Amyloid protein precursor (APP)
Highly conserved and an ancient protein APP is a pre-
cursor, produces amyloid beta (Ap), a polypeptide which
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contains 37 to 49 amino acid residues. In the brain of
Alzheimer’s patient the amyloid fibrillar form of Ap that
is amyloid plaques was observed [51]. Mutations in APP
gene, causes familial susceptibility to Alzheimer’s dis-
ease. It has been reported that APP duplications or APP
mutations located around the B cleavage site leads to the
overall increase in production of AP species which
causes early-onset Alzheimer disease (EOAD) [51].

Presenilin

Presenilin, a sub-component of y-secretase, is basically
responsible for the APP cutting. A y-secretase can inter-
cept APP at multiple points within protein, which leads
to the formation of AP of different lengths in relation
with Alzheimer’s disease; 40 and 42 amino acids long
[52, 53]. It has been reported that AP 42 have more
chances to form plaques in the brain than AB 40. Mu-
tant presenilin leads to an elevation in the ratio of Ap 42
production as compared to AP 40. This mutation also
results into a decrease in amyloid precursor protein-
derived amyloid B-peptide generation [54]. The loss in
presenilin function causes an incomplete degradation of
the amyloid B-peptide which contributes to an increased
vulnerability of the brain, and therefore became a cause
EOAD [55].

Avall16390
The human mitochondrial genome contains Avall in a
non-coding region. The frequency of Avall'®**® in the
Alzheimer’s brain was investigated [50]. The DNA se-
quence analysis of the Avall'®**° has been shown that
the major change in the sequence was a C to T transi-
tion mutation at position 5 of the Avall site [56]. In-
crease frequency of Avall'®** in the Alzheimer’s brain
may contribute to the formation of oxidative radicals.
Some studies found that no notable relation in between
the person age and Avall'®**° frequency [57].

Cytochrome ¢ oxidase CO1 and CO2

Cytochrome ¢ oxidase (CO) encoded exclusively by two
mitochondrial genes, COI (subunits I) and CO2 (sub-
units II). It was found that cytochrome ¢ oxidase activity
decline in peripheral tissue and brain especially in late-
onset AD patients [58]. Higher frequency of specific mis-
sense mutations in the mitochondrial COI and CO2
genes were AD showed the strong association in be-
tween the genes and AD. A mutant mitochondrial DNA
molecule revealed the decrease in CO activity and ele-
vated production of ROS [59]. It has been reported that
a CO defect may directly participate in a cascade of
events that result in AD. They again identified that AD
mother’s asymptomatic child had more number of these
mutations than child of AD fathers. These mutations are
maternally inherited [60].
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16S rRNA

Mitochondrial 16S rRNA alteration in most of the AD
patients is considering the possible reason for its in-
volvement in AD but additional studies are required to
clarify the possible role of rRNA mutations in pathogen-
esis. One of the possible roles of genetic mutation is to
interfere with the normal tRNA protection activity [61].

Apolipoprotein E (APO E)

APO E consists of three different isoforms such as apo
e2, e3, and e4 which are different at 299 amino acid
chain [62]. Presence of APO E e4 allele confers consider-
able risk for late-onset AD, which may be sporadic or fa-
milial [63]. The brain APO E is the principal cholesterol
carrier involve in the disease by cholesterol dyshomeosta-
sis [64]. Existing studies suggested that rise in the choles-
terol content, increased the risk of developing AD [65].

Huntington'’s disease (HD)

Huntington’s disease (HD) is an untreatable, late-onset,
slowly progressive, neurodegenerative disease caused
by genetic mutation which leading to an expanded
polyglutamine (polyQ) for which no suitable therapy is
currently available [66, 67]. HD is identified by ataxia,
chorea and dementia [68]. Another type of peptide
having 23 aa known as P42 shows protective action by
preventing the polyQ-hHtt aggregation [69]. The
neuropathological classification of HD disease in-
volved 5 classes (0-IV). Among all the classes, class-
IV is considered to be more severe which shows in-
crease loss of neurons [70].

Huntington (Htt) gene

Htt is a 3144 amino acids containing protein having mo-
lecular weight about 350 kDa, ever present in the brain
as well as peripheral tissues [71]. Htt mostly found in
the cell organelles like cytoplasm, along with the mito-
chondria [72]. The role of Htt protein is not well estab-
lished but various studies show that it may play a vital
role in the development of neurons [66, 73]. Huntington
protein is an essential for regulating axonal transport of
vesicles including brain-derived neurotrophic factor
(BDNF) [74].

Mitochondrial structural genes (Drp1, Fis1, Mfn1, Mfn2
and Opa1)

Different forces like fission and fusion are responsible
for changing morphology of mitochondria [75]. Various
mitochondrial structural genes are also known as shaping
proteins because which are responsible for maintaining
the proper morphology of mitochondria [76]. Free radical
in mitochondria activates the Dynamin-related protein 1
(Drpl) and mitochondrial fission 1 (Fisl) protein which
are responsible for the mitochondrial fission.
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Table 1 Neurodegenerative disorders associated genes

Sr. no. Neurodegenerative disorders Associated genes
SNCA

LRRK2

VPS35

CHCHD2

Parkin

PINKT1

ATP13A2

APP

1. Parkinson'’s disease

2. Alzheimer's disease
Presenilin
Avall'63%
Cytochrome C Oxidase
16S rRNA
Apolipoprotein E

3. Huntington's disease Htt Gene

Mitochondrial Structural Genes

4, Friedreich's ataxia Frataxin

a-Syn a-synuclein, LRRK2 leucine rich repeat kinase 2, VPS35 vacuolar protein
sorting-associated protein 35, CHCHD2 coil-helix-coiled-coil-helix domain 2,
PARK2 Parkin 2, PINKT PTEN-induced kinase 1, ATP13A2 ATPase 13A2, APP
amyloid protein precursor, rRNA ribosomal ribonucleic acid, APOE
apolipoprotein E, Htt Huntington

Mitochondrial fusion proteins are Mfnl (mitofusin 1),
Mfn2 (mitofusin 2), and Opal (optric atrophy 1) which
are the GTPase proteins [77]. Increase expression of fis-
sion proteins as well as decreased expression of fusion
proteins may be the reason for change in mitochondrial
dynamics which leads to neuronal damage in HD brain
[78].

Friedreich’s ataxia (FA)

The neurodegenerative disorder Friedreich’s ataxia (FRDA)
is an adolescent autosomal recessive disorder caused by
mutations in frataxin, a mitochondrial protein whose func-
tion remains controversial [79]. It is a prevalence of ap-
proximately 1 in 50,000. Dysarthria, progressive ataxia,
skeletal deformities, pyramidal features, hypertrophic car-
diomyopathy, and hyporefexia are the major clinical sign of
the FA [80]. Some established reports shows that mito-
chondrial enzymes such as pyruvate glutamate dehydrogen-
ase, a-ketoglutarate dehydrogenase, and dehydrogenase
activities are decreased in FA cells [81-83].

Frataxin

Friedreich’s ataxia is caused due the mutation of a 210
amino acid protein called frataxin [84]. Although the
exact role is not fully understood, it may be vital for the
proper functioning of mitochondria. The main cause in-
volves the tri-nucleotide GAA repeat expansion within
the intron of the frataxin gene [85]. The increase iron
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content has been reported in mitochondria suggesting
that frataxin plays a major role in transportation of the
iron [86]. Mutated frataxin result into the aconatse and
mitochondrial Fe-S (iron-sulfur) respiratory enzyme de-
ficiency in FA [87].

Conclusion

There are several reported factors which cause neurode-
generative disorders such as PD, AD, HD, and FRDA.
Among all these, mitochondrial dysfunction plays an im-
portant role in the etiology and pathogenesis of these
disorders. Hence, this article is mainly focusing on the
causality relationship between gene-associated mito-
chondrial dysfunction which leads to development of
neurodegenerative disorders as shown in Table 1. The
additional studies are needed to clarify the possible
pathogenic role of mtDNA mutations. Rapid advances in
these types of knowledge have created an unmatched
and great opportunity towards the study of mitochon-
drial dysfunction in neurodegenerative disorders. This
also creates an opportunity for the research and develop-
ment of drugs or therapies which targets mitochondrial
genes, whose mutation leads to the generation of neuro-
degenerative disorders.
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