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Abstract

Background: Transdermal delivery of drugs is a quite challenging task for pharmaceutical scientists. The transdermal
route is preferred over the oral route due to various advantages like avoidance of the first-pass effect, non-invasive-
ness, and high patient compliance. Therefore, it is necessary to develop an effective carrier system that enables the
effective passage of the drug through the dermal barrier.

Main body of abstract: Various novel drug delivery systems are used to enhance the permeation of a variety of
drugs through the skin barrier. Researchers around the globe have explored nanofibers for the transdermal delivery of
various therapeutic agents. Nanofibers are designed to have a high concentration of therapeutic agents in them pro-
moting their flux through various skin layers. Polymeric nanofibers can be explored for the loading of both hydrophilic
and lipophilic drugs. Biopolymer-based nanofibers have been also explored for transdermal delivery. They are capable
of controlling the release of therapeutic agents for a prolonged time.

Short conclusion: The literature presented in this review paper provides significant proof that nanofibers will have

Graphic abstract:

an intense impact on the transdermal delivery of different bioactive molecules in the future.
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Background

Skin is the outermost lipidic barrier of the body with a
thickness of 20-25 pum [1]. Besides the barrier function,
it also helps in the absorption of various therapeutic
and non-therapeutic molecules [2]. The presence of skin
appendages like hair follicles can also be responsible for
the passive absorption of drug molecules through the
transdermal route (Fig. 1) [3]. Since drug molecules can
directly enter into the systemic circulation after cross-
ing this barrier, therefore, this route has attracted phar-
maceutical scientists to perform research in the field of
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drug delivery for the last two decades [4]. The transder-
mal route is considered a better alternative to the oral
route of drugs due to the prevention of dose fluctuations,
first-pass hepatic metabolism, and increased bioavail-
ability [5]. Moreover, the non-invasive nature and ease
of application of dosage form through this route have
helped to gain popularity among patients [6]. Numerous
factors should be considered before developing transder-
mal delivery systems of drugs like skin barrier only allows
penetration of hydrophobic drug molecules through it
with molecular weight less than 500 kDa (kilodaltons)
[7]. The rate of influx of drugs is very slow through this
barrier. However, the effective delivery of hydrophilic
drugs through the skin is still a challenging task [8].
There are various nanocarrier systems like liposomes,
niosomes, solid lipid nanoparticles, nanostructured
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lipid carriers, ethosomes, and polymeric nanoparticles
which are explored for effective transdermal delivery of
drugs [9]. However, polymeric micro or nanofibers have
gained special attention for effective transdermal deliv-
ery of drugs for the last decade [10]. Various methods
explored for the production of nanofibers are electro-
spinning, template synthesis, and phase separation [11].
However, electrospinning is the most widely used tech-
nique among all of them due to its cost-effectiveness and
simplicity [12]. Nanofibers are generated in the form of
the mat from electrospinning (Fig. 2) revealing various
advantages like high surface area, nanopore size, and
unique physicochemical properties [13]. These character-
istic traits of nanofibers make them a suitable candidate
for the delivery of drugs and genes [14]. Nanofibers may
be an excellent choice for tissue engineering and dressing
wounds due to their capability to produce a local effect
[15]. There are various categories of drugs like antican-
cer, NSAIDs (Non-steroidal anti-inflammatory drugs),
and antibiotics which are delivered through the trans-
dermal route exploring nanofibrous mats [16]. This paper
summarizes the utility of nanofibrous mats/scaffolds for
transdermal delivery of various categories of bioactive
molecules.

Main text

Methods of production of nanofibers

Nanofibers come under the category of nanostructured
vehicles having a diameter of individual fiber below
100 nm [17]. Although developed fibers with a diam-
eter in the range of 100-1000 nm are also designated as
nanofibers and they are generally manufactured using
a technique known as electrospinning [18]. Various
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Fig. 1 Schematic illustration of human skin. (Adapted with
permission from [3] copyright 2015 Lee et al.)
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methods explored for the production of nanofibers are
shown in Fig. 3.

Self-assembly method

There is a spontaneous arrangement of atomic/molecu-
lar aggregates into structurally defined nanofibrous form
in this method. This method leads to the production of
nanofibers of a size range up to 100 nm. This method
requires a higher time to generate nanofibers, therefore,
less commonly implemented. However, nanofibers man-
ufactured through a self-assembly method can mimic
natural materials like chitin (polysaccharide) very closely
that has been explored in tissue engineering [19].

Template synthesis method

Template synthesis involves the use of nanoporous
membranes that are available in the form of templates
to extrude available fibers of different sizes into the
nanoscale size range. The size of nanofibers produced lies
in the range of 200—400 nm [20].

Phase-separation method

This method involves lyophilization of polymeric blend
resulting in the formation of the nanofibrous mat. How-
ever, this method is very time-consuming and nanofibers
obtained through this method are shorter in length with
a size range of 50—-500 nm [21].

Melt-blown technology

Melt blown method involves extrusion of polymer blend
across a minute orifice followed by passage through
heated air stream with a very high velocity. The size
of nanofibers produced exploring this method is 150—
1000 nm [22].

Electrospinning

Electrospinning is the most widely used technique for
nanofiber production. Fibers generated through the
electrospinning method may lie in the nanometer to
the micrometer size range. It is considered a cheap and
scalable technique for the production of nanofibers [23].
Nanofibers are also produced by a modified electrospin-
ning technique known as ‘nanospider. This technique
generates nanofibers in the form of nonwovens with a
diameter range of 50-300 nm [24]. Nanofibrous nonwo-
vens are widely explored in various fields of biomedical
engineering like wound dressing and tissue engineer-
ing, transdermal drug delivery, and enzyme immobili-
zation [25]. Electrospinning involves the preparation of
polymeric melt/solution initially followed by application
of electric charge on it after its extrusion from nozzle/
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with permission from [13] copyright 2003 Frenot and Chronakis)

Fig. 2 Scanning electron micrographs showing flat ribbons formation during electrospinning of PET (polyethylene terephthalate) from a solution
of 13 wt.% in 1:1 dichloromethane and trifluoroacetic acid. Left magnification x 1000, right: an enlarged image with magnification x 3500. (Adapted

syringe/pipette [26]. Finally, the developed nanofibers
are collected on the aluminum wall due to electrostatic
attraction between polymer and wall (due to the presence
of opposite charge on both) (Fig. 4) [27].

Methodologies of drug loading in nanofibers
Various methodologies of loading drugs into nanofibers
are discussed below:

Co-electrospinning

This approach involves the simple mixing of the poly-
meric solution with the drug before the initiation of
electrospinning. A homogeneous solution of drug and
polymer in a single solvent is further subjected to elec-
trospinning and this type of electrospinning is called
co-electrospinning [28]. This technique shows high load-
ing efficacy and homogeneous drug distribution within
the nanofibrous network [29]. The loading efficiency
of nanofibers produced through this method depends
on the physicochemical properties of the polymer used
followed by the interaction of polymers with drug mol-
ecules [30]. The morphology of nanofibers and the dis-
tribution of drug molecules within them may affect their
release kinetics [31]. Various natural polymers like gela-
tin, collagen, and chitosan are used to develop nanofibers
loaded with hydrophilic drugs due to their complete dis-
solution in the aqueous phase [32]. Nanofibers produced
through this method collapse during the cross-linking
process creating problems in the electrospinning process.
This can be due to the reduced viscosity of the solution
and this problem can be overcome by using synthetic

Template synthesis method
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Fig. 3 Different manufacturing methods of nanofibers

hydrophilic polymers like PEO (Polyethylene oxide) addi-
tionally. Nanofibers developed through this method can
lead to a burst release effect also [33].

Immobilization of drug molecules on the surface

of nanofibers

Various therapeutic drug molecules can be loaded in
nanofibers following the surface immobilization method
through various physical and chemical mechanisms.
Various forces involved in physical immobilization are
electrostatic forces, hydrogen bonding, or weak van der
Waals forces [34]. Chemical immobilization involves the
direct attachment of drug molecules over the nanofiber
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surface through functionalization with various groups
like thiol, carboxyl, hydroxyl, and amine [35]. The surface
immobilization method does not cause denaturation of
drug molecules as observed in the case of the co-electro-
spinning method due to excessive use of organic solvents
and high voltage [36]. The amount of drug to be immobi-
lized on the surface of nanofibers can also be controlled
by using this technique through optimization of drug
feeding ratio. This approach is also capable of block-
ing initial burst release from nanofibers promoting slow
release kinetics [37].

Co-axial electrospinning

Immiscibility between drug molecules and the polymer
may create problems in the co-electrospinning process.
Therefore, for loading different kinds of drugs having
a difference in solubilities in polymers a new technique
named ‘co-axial electrospinning’ is used [38]. Co-axial
electrospinning is done with the help of a spinneret nee-
dle having one inner and one outer nozzle organized
concentrically. There is the presence of two different
chambers for the handling of sheath solution and core
solution. The final solution is ejected from the co-axial
cone (Fig. 5) [39]. This technique enables the electrospin-
ning of two non-miscible polymers having therapeutic
agents in core and sheath as well [40]. Electrospinning
through this technique results in high drug loading
capacity and prevention of initial burst release due to
the presence of a stagnant sheath [41]. Generally, hydro-
philic polymers and therapeutic agents like proteins are
enclosed in the core portion while hydrophilic elements
remain in the sheath. Co-axial electrospinning requires
controlling a large number of factors like the feeding
speed of polymeric solution, voltage application, and
concentration of therapeutic agents for the production of
nanofibers with proper core and sheath structure [42].
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Fig. 4 Overview of electrospinning technique. (Adapted with
permission from [27] copyright 2015 Wang et al.)

Page 4 of 17

Emulsion electrospinning

Emulsion electrospinning involves the emulsification
of an aqueous solution of a therapeutic agent or protein
with a lipophilic polymeric solution [43]. Furthermore,
the drug-loaded phase is disseminated in the nanofibers
at the termination of electrospinning (Fig. 6). While using
this method, the distribution of drug molecules within
the nanofiber is totally dependant on the ratio of hydro-
philic to the lipophilic solution used [44].

Therapeutic agents and polymers can be dissolved
in suitable solvents using this technique. This method
involves minimal exposure to the therapeutic agent with
an organic solvent [45]. The emulsion electrospinning
method allows the use of a variety of hydrophilic drugs
and lipophilic polymer combinations [46]. The existence
of interfacial tension and strong shearing forces between
two phases of the emulsion can degrade the proteina-
ceous drug molecules due to their high sensitivity [47].
The use of ultrasonication methodology in this elec-
trospinning technique can damage the drug molecules
reducing the efficacy of nanofiber produced [48].

Applications of nanofibers in transdermal delivery

of various therapeutic agents

Various categories of drugs that are delivered through a
transdermal route using nanofibers are discussed below:

Antibiotics or antimicrobial drugs

Cutaneous wounds infection may be responsible for
increased healing duration, a longer period of hospi-
talization, and death of the patients many times [14].
Skin infections can be effectively treated by using
antibiotics/antimicrobial drugs locally. Pharmaceu-
tical scientists have investigated various antibiot-
ics/antimicrobial drugs impregnated into nanofibers
for the treatment of cutaneous wounds [16]. Kataria
et al. [49] investigated ciprofloxacin-loaded polyvi-
nyl alcohol and sodium alginate-based nanofibers for
localized delivery and to treat the wound in rabbits.
Ciprofloxacin-loaded nanofibers showed drug release
in-vitro following Higuchi and Korsmeyer—Pep-
pas model. The wound healing capacity of nanofib-
ers was determined using hydroxyproline assay in
wounds. Ciprofloxacin-loaded nanofibers showed the
highest amount of hydroxyproline (8.39/100 mg of
wound bed) in the animal wound after twenty days
compared to the marketed formulation of ciprofloxa-
cin (7.91/100 mg of wound bed) indicating their high
effectiveness [49]. Furthermore, nanofibers com-
posed of polymers poly(vinyl alcohol) and lysine and
impregnated with ibuprofen (an anti-inflammatory
agent) and lavender oil (anti-bacterial agent) were
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Fig. 5 A schematic of coaxial electrospinning. (Adapted with
permission from [39] copyright 2016 Lu et al.)
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Fig. 6 Schematic mechanism for the formation of core-sheath

composite fibers during emulsion electrospinning. (Adapted with

permission from [44] copyright 2006 Xu et al.)

investigated by Sequeira et al. [50] for the acceleration
of the wound healing process. Ibuprofen was loaded
using the co-electrospinning technique while lavender
oil was loaded using the surface adsorption technique
in nanofibers. Nanofibers loaded with ibuprofen dis-
played a reduction in the time scale of the wound heal-
ing inflammatory phase. However, lavender oil-loaded
nanofibers showed a very high in-vitro antibacterial
efficacy against S. aureus and P. aeruginosa compared
to nanofibers loaded with ibuprofen without affecting
dermal fibroblasts [50] (Fig. 7).

Later on, Igbal et al. [51] determined the efficacy of
chitosan/poly(vinyl alcohol) nanofibers loaded with
cefadroxil monohydrate against resistant gram-pos-
itive bacteria S. aureus responsible for chronic skin
fungal infection. Nanofibers with 30:70 of chitosan/
poly(vinyl alcohol) were considered as optimized and
these developed nanofibers showed high in-vitro anti-
microbial activity against resistant S. aureus followed
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by low toxicity towards epidermal keratinocytes as
depicted in MTT assay. They were considered a bet-
ter alternative for the treatment of chronic skin fun-
gal infections [51]. Table 1 gives a brief overview of
nanofibers for transdermal delivery of various antimi-
crobial/antibiotic drugs.

Antifungal drugs
Polymeric electrospun nanofibers are also explored
for transdermal delivery of various antifungal drugs.
Harini et al. [61] investigated the antifungal potential
of polycaprolactone (PCL)/egg lecithin-based nanofib-
ers impregnated with terbinafine hydrochloride to treat
skin fungal infections. Developed nanofibers with diam-
eter 127.7+43.7 nm were found non-cytotoxic towards
human dermal fibroblasts as revealed through confo-
cal microscopy and they also showed excellent in-vitro
antifungal activity against different fungal strains like
Epidermophyton and  Trichophyton mentagrophytes
responsible for topical fungal infections [61]. Further-
more, Paskiabi et al. [62] formulated nanofibers loaded
with terbinafine hydrochloride (TFH) using polymers
polycaprolactone (PCL) and gelatin (50:50 w/w) using
glutaraldehyde (GTA) as a cross-linking agent. TBH-
loaded nanofibers showed non-cytotoxic behavior as
evaluated in 1929 cells. Cross-linked nanofibers loaded
with TBH showed 100% drug loading followed by a high
in-vitro antifungal activity against T. mentagrophytes
and A. fumigates and less effective against C. albicans
(Fig. 8) [62]. Later on, voriconazole impregnated polyvi-
nyl alcohol (PVA)/sodium alginate nanofibers were for-
mulated by Esentiirk et al. [63] and further cross-linked
with glutaraldehyde (GTA) for effective delivery through
the transdermal route. Cross-linked polymer compos-
ite nanofibers loaded with voriconazole showed high
drug loading (96.45+5.91%) followed by low in-vitro
cytotoxicity against mouse fibroblast cells. Voricona-
zole impregnated polyvinyl alcohol (PVA)/sodium algi-
nate nanofibers showed high in-vitro antifungal activity
against C. albicans and deeper penetration of drug in the
lower skin layer compared to the solution of voriconazole
in propylene glycol [63]. Esenturk et al. [64] explored pol-
yurethane/polyvinylpyrrolidone/silk nanofibrous mats
loaded with sertaconazole nitrate for transdermal treat-
ment of fungal infection caused by C. albicans. Devel-
oped nanofibers showed approximately 89.97 +1.40%
loading of sertaconazole nitrate and sustained its release
for up to 168 h in-vitro. Sertaconazole nitrate loaded in
nanofibers showed fungistatic action towards C. albicans
and excellent in-vitro biocompatibility for mouse fibro-
blast cell lines as revealed in the CCK-8 assay [64].

Later on, Azarbayjani et al. [65] developed nanofib-
ers of Polyvinyl alcohol and chitosan for transdermal
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delivery of hydroquinone and investigated the effect of
chitosan on their efficacy. Optimized hydroquinone-
loaded nanofibers showed a diameter of 537.24+52.5 nm
and drug loading of 4.4%. Increasing the concentration of
chitosan up to 2% in the formulation did not cause any
significant changes in nanofiber diameter, loading per-
centage, and in-vitro antifungal activity against Candida
albicans, however, it was able to increase the in-vitro
release of hydroquinone at 32 °C compared to 25 °C [65].

Anti-inflammatory drugs

Electrospun nanofibers have also been investigated by
pharmaceutical scientists for the transdermal delivery of
many anti-inflammatory drugs. Shi et al. [66] investigated
Cellulose acetate/poly(vinyl pyrrolidone) based nanofib-
ers impregnated with ibuprofen for transdermal delivery.
Optimized nanofibers showed a diameter of 167 + 88 nm
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and X-Ray Diffraction analysis of nanofibers revealed
uniform distribution of ibuprofen in the nanofibrous net-
work in amorphous form. Developed nanofibers showed
better in-vitro skin permeation of the drug followed by
increased water vapor permeability compared to the con-
ventional transdermal patch of the same drug indicating
their high thermodynamic stability [66]. Furthermore,
rosmarinic acid (RosA) loaded cellulose acetate (CA)
nanofibers were evaluated by Vatankhah [67] for in-vitro
anti-inflammatory activity (determination through pro-
tein denaturation assay), cytotoxicity, and antioxidant
effect. Nanofibers formulated using 10% rosmarinic acid
were considered as optimized and they showed diam-
eter 331+85 nm and drug loading (%) 84 +4%. These
nanofibers were capable of extending the release of ros-
marinic acid up to 64 h through the Fickian diffusion
mechanism and higher in-vitro anti-inflammatory activ-
ity compared to the ibuprofen solution. A promising
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in-vitro antioxidant effect was observed for nanofibers

120 + .
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Fig. 9 Relative cell viability of epithelial cells cultured with RosA
containing media and extraction media from neat and RosA loaded
CA nanofibers (The relative cell viability of the control was defined as
100%). x indicates significant differences. (Adapted with permission

from [67] copyright 2018 Vatankhah)

followed by very low cytotoxicity in epithelial cells
(Fig. 9) [67].

Later on, an evaluation of poly(vinyl alcohol) based
nanofibers loaded with diclofenac enclosed in zein nano-
particles was carried out by Ghalei et al. [68]. Developed
nanofibers showed a diameter of 324.42+72.80 nm and
good tensile properties for topical application. Nanofib-
ers containing diclofenac loaded inside zein nanopar-
ticles were considered best for wound healing due to
their better in-vitro attachment in fibroblasts followed
by the promotion of their proliferation [68]. The utility
of nanofibers for transdermal delivery of various anti-
inflammatory drugs is given below in Table 2.

Anticancer drugs

The local effect of anticancer drugs in the skin can be
improved by loading them into a nanofibrous mat.
Rengifo et al. [74] developed pyrazoline H3TMO04
loaded nanoparticles and further impregnated them into
nanofibers composed of polyethylene oxide-chitosan for
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®Day7 mDayl4
Fig. 10 Percentage of tumor cells in PCL and Mol-PCL treated zebra
fishes on Day 7 and Day 14. PCL Blank polycaprolactone nanofibers;
Mol-PCL polycaprolactone nanofibers loaded with molybdenum
oxide nanoparticles. (Adapted with permission from [75] copyright

2018 Janani et al.)

4 Co-PT-0

—o— CO-PT-5 sec
90 4 —d— C0-PT-20 sec
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~—e— C0-PT-60 sec|

Cumulatlve drug release (%)
H

A\ A
L] 10 20 kL 40
DRUG RELEASE TIME PERIOD (hours)

Fig. 11 Cumulative drug release measurements using UV
spectrophotometer showing 35-95% release of vitamin B, with
plasma treatment. (Adapted with permission from [81] copyright

2018 Madhaiyan et al.)

the treatment of skin cancer. Optimized nanoparticles
loaded nanofibers showed a diameter of 197.8+4.1 nm
and uniform distribution of nanoparticles throughout
the nanofiber matrix followed by the extended-release
of pyrazoline H3TMO04 up to 120 h. Developed nanofib-
ers also enhanced in-vitro transport pyrazoline H3TMO04
across the epidermal skin layer followed by excellent in-
vitro cytotoxicity against BI6F10 melanoma cells [74].
Furthermore, molybdenum oxide-loaded nanoparticles
were prepared by Janani et al. [75] and impregnated into
polycaprolactone (PCL) nanofibers for evaluation of their
skin anticancer potential in zebrafish. Nanofibrous mat
loaded with molybdenum oxide nanoparticles showed
an average diameter of 200 nm and a significant reduc-
tion in in-vitro cell viability (>50%) in A431 cells through
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mitochondrial dependant apoptosis. Nanofibers loaded
with molybdenum oxide nanoparticles showed reduced
skin cancer progression in zebrafish by more than 30%
within two weeks (Fig. 10) [75].

Table 3 discloses the role of polymeric nanofibers in the
transdermal delivery of various antineoplastic drugs.

Other categories of drugs
There are other categories of drugs other than those dis-
cussed above which can be delivered through the trans-
dermal route exploring nanofibers for producing the
evident pharmacological effect. Madhaiyan et al. [81]
investigated polycaprolactone polymer-based nanofibers
loaded with Vitamin B, for effective delivery through the
transdermal route. Vitamin B, loaded nanofibers showed
an average diameter of 1.226+0.108 pm and 89% drug
loading capacity followed by high mechanical strength
and excellent surface wettability. Surface treatment
of Vitamin B,, loaded nanofibers with plasma greatly
affected in-vitro release ate of Vitamin B, from nanofib-
ers. Nanofibers treated with plasma for 60 s showed
the highest release of Vitamin B;, within 50 h (Fig. 11).
This could be due to the increased hydrophilicity of the
nanofiber membrane after treatment with plasma [81].
Furthermore, hydrocortisone-loaded polyacrylonitrile-
based nanofibers were formulated by Hemati Azandary-
ani et al. [82] and were investigated for topical treatment
of psoriasis by varying amounts of surfactant Tween 80
in nanofiber composition. Nanofibers produced using
polyacrylonitrile polymer along with 5% Tween 80 sur-
factant showed the lowest diameter (160.11+30.11 nm)
and maximum tensile strength (15.35 MPa) followed by
the highest in-vitro drug release for 12 h and minimum
cytotoxic effect against HUVEC cell lines indicating their
efficacy in transdermal drug delivery for the treatment of
psoriasis [82].

The role of polymeric nanofibers in transdermal drug
delivery of various therapeutic agents is given in Table 4.

Biopolymer based nanofibers in transdermal delivery

Biopolymers are polymeric materials that are manu-
factured from natural provenance. Biopolymers are
chemically produced from biological materials or their
complete biosynthesis can be done by living organisms
[90]. Various examples of biopolymers are cellulose, chi-
tosan, hemicellulose, silk, and lignin. These biopolymers
may be biocompatible and biodegradable promoting
their use in drug delivery [91]. Nanomaterials that are
derived usually derived from cellulose are called nano-
cellulose materials. These materials can be classified
into three categories namely nanofibrillated cellulose,
bacterial nanocellulose, and nanocrystalline cellulose
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[92]. nanocellulose based materials show elevated sur-
face area, ease of chemical modification, and a higher
value of specific strength. Hence, nanocellulose can be
explored as a good candidate for various biomedical
utilities [93]. EI-Wakil et al. [94] investigated the wound
healing potential of coffee extract impregnated into bac-
terial cellulose (produced from kombucha tea fungus)
biocomposites. Biocomposites composed of minimum
coffee extract and cellulose amount disclosed maximum
tensile strength (3.35 MPa) and transmission of water
vapors (3184.944198.07 g/m?/day) followed by least
release of polyphenols in-vitro in PBS (pH 7.4) consid-
ered suitable for wound healing [94]. Furthermore, Shan
et al. [95] developed cellulose nanocrystal incorporated
calcium cross-linked sodium alginate/gelatin nanofib-
ers for efficient wound healing. Developed nanofibers
showed in-vitro non-toxicity against mouse embryonic
fibroblast and improved cell adhesion. The cellulose
nanocrystal incorporated calcium cross-linked sodium
alginate/gelatin nanofibers showed excellent wound heal-
ing in Sprague Dawley rats through a re-epithelialization
mechanism compared to the control group [95].

Description of patents related to the use of nanofibers

for transdermal delivery of various therapeutic agents

A detailed literature investigation revealed the excellent
therapeutic potential of nanofibers to treat various abnor-
mal conditions of the skin. These nanofibrous scaffolds
can be explored as a better alternative to conventional
drug delivery systems for the transdermal treatment of
various skin disorders. Hence, pharmaceutical research-
ers are filing patents regarding the use of nanofibers for
transdermal drug delivery of various therapeutic agents.
Table 5 discloses the list of patents granted regarding this
context.

Limitations and challenges in the exploration of nanofibers
for transdermal drug delivery

Polymeric nanofibers have shown promising potential
in transdermal drug delivery, however, many significant
challenges must be taken into consideration. All the
research investigations available in the literature describe
either in-vitro or in-vivo (in different animal models)
efficacy of transdermal nanofibers. However, the clinical
efficacy determination of nanofibers explored through
the transdermal route is still a challenge. Clinical evalua-
tion of nanofibers will be exorbitant and laborious. It will
require high speculation by the industries or government
funding agencies of the countries. The second major
concern will be regarding the scale-up of transdermal
nanofibers. Nanofibers are effectively produced through
the electrospinning process following a low flow rate of
polymeric solution, making the production process more
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time-consuming. Nanofibers production is also affected
by humidity, hence it might be a challenging factor for
bulk processing and scale-up of nanofibers. Further-
more, the production of transdermal nanofibers with
GMP (Good manufacturing practices) standards will be
required. The development of standard and universally
accepted electrospinning protocol will govern their quick
entrance into the pharmaceutical market.

Conclusions

Nanofibers have been explored for transdermal drug
delivery due to their various merits like high drug load-
ing, surface-to-volume ratio, and similarity with the
extracellular matrix. Successful production of the nanofi-
brous mat is dependent on appropriate polymers and
solvent selection for electrospinning. A nanofiber suit-
able for transdermal drug delivery can be produced using
multiple polymer blends for electrospinning. Polymeric
nanofibrous mat loaded with a therapeutic agent has
the caliber to control/prolong its release transdermally.
Transdermal nanofibers have shown their therapeutic
potential in various preclinical investigations carried
out by various pharmaceutical scientists. However, their
entrance into the pharmaceutical market will be gov-
erned by developing effective scale-up technologies and
detailed clinical evaluation.
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