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Marine‑derived pipeline anticancer natural 
products: a review of their pharmacotherapeutic 
potential and molecular mechanisms
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Abstract 

Background:  Cancer is a complex and most widespread disease and its prevalence is increasing worldwide, more 
in countries that are witnessing urbanization and rapid industrialization changes. Although tremendous progress has 
been made, the interest in targeting cancer has grown rapidly every year. This review underscores the importance of 
preventive and therapeutic strategies.

Main text:  Natural products (NPs) from various sources including plants have always played a crucial role in cancer 
treatment. In this growing list, numerous unique secondary metabolites from marine sources have added and gain‑
ing attention and became potential players in drug discovery and development for various biomedical applications. 
Many NPs found in nature that normally contain both pharmacological and biological activity employed in pharma‑
ceutical industry predominantly in anticancer pharmaceuticals because of their enormous range of structure entities 
with unique functional groups that attract and inspire for the creation of several new drug leads through synthetic 
chemistry. Although terrestrial medicinal plants have been the focus for the development of NPs, however, in the 
last three decades, marine origins that include invertebrates, plants, algae, and bacteria have unearthed numerous 
novel pharmaceutical compounds, generally referred as marine NPs and are evolving continuously as discipline in the 
molecular targeted drug discovery with the inclusion of advanced screening tools which revolutionized and became 
the component of antitumor modern research.

Conclusions:  This comprehensive review summarizes some important and interesting pipeline marine NPs such as 
Salinosporamide A, Dolastatin derivatives, Aplidine/plitidepsin (Aplidin®) and Coibamide A, their anticancer properties 
and describes their mechanisms of action (MoA) with their efficacy and clinical potential as they have attracted inter‑
est for potential use in the treatment of various types of cancers.

Keywords:  Marine NPs, Anticancer therapy, Dolastatin 10/15, Marizomib, Aplidine/plitidepsin, Coibamide A, 
Apoptosis
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Background
Cancer is a most widespread complex disease and its 
prevalence is increasing worldwide [1, 2], more in coun-
tries that are witnessing urbanization and rapid indus-
trialization changes [3–7]. It is a normal pathologic 

condition in which dysfunctional mechanisms in cell 
cycle regulation and insufficient programmed cell death 
(PCD) [8–10]. Inhibition of PCD or apoptosis plays a 
prominent role in the origin and progression of can-
cers [11]. In recent years, technical advancements made 
an increased attention toward cancer progression both 
at cellular and molecular level [12–16], this increased 
attention on multiple human malignancies witnessed 
huge development which will fight the cancer in multiple 
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fronts by adopting novel diagnosis and therapeutic 
options.

Cancer therapy played a key role in the control of 
tumor progression and help to cure and prolong the 
life of patients [17–20]. The most acceptable preventive 
and therapeutic approach is to circumvent the expo-
sure to the causative agents of cancer, to enhance the 
host defence mechanism against cancer, to alter the liv-
ing style, chemoprevention and treatment using natural 
products and their derivatives [21–23]. This highlights 
the necessity to explore more novel effective and less 
toxic chemotherapeutic natural drug components and 
their sustainable supply for cancer therapy [24].

Natural products and their contributions to alleviate 
human diseases
About 60% of the chemotherapeutic drugs that are in 
current use are either natural products (NPs) or small 
compounds, which are mostly NP based drug leads [25–
28]. However, the characterization of these NPs and their 
direct access is still pose a great challenge [29]. Though 
majority of the traditional and the most commonly 
available medicinal plants have proved to be an excel-
lent source for the bioactive components and are prom-
ising as an antitumor agents. In this growing list, a vast 
diversity on chemical structure with potent biological 
activity from the marine environment also offers novel 
structural entities which demonstrates to be an excel-
lent resource for the new and unique source of antican-
cer drugs [28, 30–33]. In addition to the chemical novelty 
related to those compounds they also possess novel and 
new mechanism of action [34, 35]. However, the intense 
toxic nature of certain marine bioactive compounds like 
maitotoxin, brevetoxin B prevents them from being used 
in therapeutic applications, whereas others such as paly-
toxin, okadaic acid and fluorescent proteins from marine 
organisms are used as an indispensable tools for drug 
development, mostly in clinical or under preclinical tests 
[36, 37].

Early investigations of National Cooperative Drug 
Discovery Program (NCDDP), an inspired program 
conducted by the National Cancer Institute (NCI) [38, 
39] was not translated the jewel of marine entities into 
well-known drug leads or pharmaceutical components. 
This may be due to the inadequate connections between 
the academic researchers and the pharma industries. 
At present, subsequent to the collaborative interactions 
between the academics and the major pharmaceutical 
sectors have encouraged and paved way to the discovery 
of large number of marine NP materials being tested in 
modern assays [40].

Main text
Marine NPs and the drug leads possess a very distinct 
structural feature compared to their counterparts on 
earth [32, 33], which is either due to the alterations in 
the evolutionary origin or the environmental condi-
tion which are specific to the marine world [41]. When 
exposed to extreme conditions those marine organisms 
that live in complex habitats are capable of producing a 
vast variety of secondary metabolites which is not pos-
sible by other organisms [42]. Moreover, the production 
of very potent marine-derived molecules like polyun-
saturated fatty acids (PUFAs), sterols, proteins, polysac-
charides, antioxidants and pigments have led to inhibit 
various types of human cancers both in vitro and in vivo 
murine and human trials. This led to tremendous atten-
tion toward other marine sources including cyanobac-
teria [43], which yielded compounds like curacin A and 
dolastatin 10. As a result, Eribulin (a synthetic derivative 
based on the structure of halichondrin B), and monome-
thyl auristatin E (MMAE or vedotin), pipeline warheads 
of dolastatin 10 derivatives have been approved by FDA 
for human applications [44]. Some of the clinically 
approved marine drugs for various human cancers [45] 
are listed in Table 1.

There are about 592 marine natural products have 
exhibited very strong antitumor and cytotoxic activities. 

Table 1  List out some of U.S FDA approved clinical drugs for various human diseases obtained from marine sources

Compound name Marine organism Molecular target Indication Approval date

Trabectedin Tunicate Tunicate DNA (minor groove) Soft tissue sarcoma and ovarian cancer October 23, 2015

Brentuximab vedotin Mollusk/cyanobacteria CD30, microtubules Anaplastic large T‑cell systemic malig‑
nant lymphoma, Hodgkin’s disease

August 19, 2011

Eribulin mesylate Sponge Microtubules Metastatic breast cancer 0 November 15, 2010

Omega‑3‑acid ethyl esters Fish Triglyceride‑producing enzymes Hypertriglyceridemia November 10, 2004

Ziconotide Cone snail DNA polymerase Severe and chronic pain December 28, 2004

Vidarabine Sponge Viral DNA polymerase Herpes simplex virus infection 1976 current status: 
Discontinued

Cytarabine Sponge DNA polymerase Leukemia 1969
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Besides, nearly 666 additional chemicals have demon-
strated various pharmacological actions, which include 
anticoagulant, antimicrobial, antiplatelet with varied 
mechanisms of actions on multiple systems like car-
diovascular, nervous, endocrine and immune were also 
included in the marine pharmaceutical pipeline world-
wide during the period 1998–2008 [37]. Inspite of various 
successes and setbacks, worldwide focus toward marine 
compounds as preclinical cum pharmaceutical pipeline 
drugs still remains very active (Table  2). In this regard, 
though there are many compounds that have entered 
the clinical trials for cancer; however, only eight marine 
drugs have been recognized and approved by FDA and 
European Agency for the Evaluation of Medicinal Prod-
ucts (EMEA), they are Cephalosporin C, Cytarabine 
(Ara-C), Yondelis® (ET743), Vidrabine (Ara-A), Zicono-
tide (Prialt), omega-3-acid ethyl esters (Lovaza), ET-743 
(Yondelis), E7389 (Halaven), Brentuximab vendotin 
(SGN-35) [36, 46].

An undeniable fact is that the constant supply, isola-
tion, and characterization of NPs is a major challenge 
for the marine as well as other sources as they are one 
of the major inevitable components in antitumor drug 
discovery research. However, in recent years, modern 
approaches are emerging to overcome these obstacles. 
In the competitive industrial pharmaceutical grounds, 
the most widely employed methods for antitumor drug 
discovery is high-throughput  in vitro assay, which per-
mits to examine interactions between small molecules 
and their target proteins. [14, 47–50]. However, these 
sophisticated high-throughput screening systems typi-
cally requires collaborative efforts, enabled by a mutual 
research between marine combinatorial chemists and 
molecular and cell biologists [51]. Developments and 
events in various technologies such as sampling strate-
gies, total chemical synthesis, fermentation, nanoscale 
nuclear magnetic resonance (NMR) for structure deter-
mination, recent biotechnology advancements are immi-
nent for achieving goals to see marine NPs as potential 
pipeline drug leads. A high degree of novelty and mod-
ernization in the area of marine compounds has led to a 
new arena in the regeneration of new pharmaceuticals in 
the coming years [29].

Different mechanisms have been proposed for the 
drugs discovered from marine organisms including cell 
death like apoptosis, effect on the tubulin-microtubule 
equilibrium or induction of angiogenesis inhibition. 
Though these findings has augmented our understanding 
of these new marine drug leads and their properties and 
seen as a new option for acquiring enormous potential 
drug-lead molecules on pharmaceutical discovery [50, 
52]. Despite the huge effort made progress of anticancer 
compounds from marine resources, but in reality this 

domain of research is stand at the infant stage because 
only few marine compounds have been identified and 
isolated till date when compared with other natural 
sources.

Regardless of the above fact, it is evident that the bio-
logical properties of marine NPs potentially interfere 
with the genesis and progression of many human dis-
eases including cancer [52, 53]. Therefore, to facilitate 
the importance of jewels of these unique marine world 
this review summarizes the existing scientific knowledge 
and highlights few selected potential pipeline marine NPs 
(such as Salinosporamide A, Dolastatin 10/15 derivative, 
Aplidine/plitidepsin (Aplidin®) and Coibamide (Figs. 1, 2, 
3, 4, 5), which are currently under clinical evaluation as a 
pipeline anticancer agents to fight against cancer.

Anticancer potentials of pipeline marine NPs
Salinosporamide A in cancer treatment
In the academic drug discovery arena, marine microbes 
are now emerging as a new sustainable source for novel 
drug chemical substances [40, 41, 53]. Actinomycetes 
marine bacteria is one such rich source for novel com-
pounds, which belongs to genus Salinispora [54–56]. 
One of the most promising drug lead is salinosporamide 
A, a natural product, which is highly potent proteasome 
inhibitor discovered by [57]. It is a chlorinated clinically 
promising anticancer agent, isolated from marine bacte-
rium (Actinomyces)  Salinispora tropica  and  Salinispora 
arenicola [54] and is initially assessed in multiple mye-
loma (MM) xenograft models [58] but later in a series 
of clinical trials (phase 1) as a single agent against other 
types of solid tumors and lymphomas [57, 59–62] and 
under the name NPI-0052/Marizomib (Fig. 1).

Subsequent studies further revealed the mechanism of 
action of this compound as a proteasome inhibitor [63, 
64]. Since proteasome inhibitors play a crucial role in 
controlling the level of proteins in the control of cancer 
[65]. Till date, the only clinically approved proteasome 
inhibitor is bortezomib [66] and others are under clini-
cal trials. Currently, Salinosporamide A is in clinical tri-
als for MM treatment either as a single agent [67–70] or 
with an aid of the existing treatments [71]. Salinospora-
mide A covalently binds to the threonine residues in the 
proteasome active site and inhibits the proteasome 20 s 
activity. The proteasome inhibition has been applied as 
an effective strategy in the treatment of MM and some 
lymphomas [64, 70], as they block nuclear factor-kappa 
B (NF-κB) activity by interfering with the growth and 
survival signaling [72–78]. As this drug has moved ahead 
to phase—I clinical evaluation, salinosporamide A is 
at present being manufactured by saline fermentation 
process [79], to increase the yields and lower the cost of 
production.
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Marizomib® (NPI‑0052)
Marizomib® (NPI-0052), the second-generation protea-
some inhibitor of Salinosporamide A is a more promis-
ing pipeline drug and had shown a best clinical activity 
in bortezomib-resistant cancers. Besides the above, it 
was effectively developed and found to hold on to various 
pharmacological properties and broader anticancer activ-
ity. Marizomib binds to the active site of the proteasome 
[69, 77, 80] and has exposed its clinical activity either as a 
single drug lead or in combination with other antitumor 
compounds such as dexamethasone. Marizomib shares 
analogous properties but often is known to exhibit higher 
efficacy than its parental drug. It also exhibited higher 
activities in multiple non-clinical tumor models treat-
ment of patients with hematologic and solid tumors [54, 
60–62]. MM is a fatal disease with the excessive prolif-
eration of plasma cells. Due to the development of these 
kinds of novel agents, the survival rate of patients suf-
fering from MM has been improved significantly [81]. 
Over and above, it also portrayed synergistic effects in 
the cancer models when combined with immunomodula-
tory agent lenalidomide, and a range of histone deacety-
lase inhibitors [82].

Molecular mechanism of Marizomib
Proteasome is an intracellular enzyme complex that is 
capable of regulating the protein levels in the cell by 
degrading the ubiquitin-tagged proteins. Proteasome 
is categorized into its subcomponents based on their 
Svedbergs sedimentation coefficient. The 20S protea-
some is a collection of four stacked disks that forms a 
hollow complex, each of which includes 7 subunits that 
are called as α7-β7-β7-α7 structure [83] and three kinds 
of β-subunits: post-glutamyl peptidyl hydrolytic-like 

(PGPH, β1), trypsin-like (T-L, β2) and chymotrypsin-
like (CT-L, β5) activity area that are capable of perform-
ing unique enzyme activities respectively [83, 84]. These 
β-subunits are distinguished from the other proteases by 
the presence of an amino terminal (N-terminal) threo-
nine residue in all the three catalytic sites that provide as 
a nucleophile for proteolysis [74, 85].

Multiple evidences demonstrate that a dysregulation 
of critical regulatory proteins that relates various signal-
ing pathways lead to cell cycle arrest as apoptosis is been 
created by the inhibition of proteasome [86, 87] and 
also exhibited numerous anticancer properties against 
numerous types of cancer using various xenograft models 
like prostate [88] pancreatic [89]) lymphoma [90], head 
and neck [91] melanoma [92], lung [93], breast [94], and 
leukemia [95]. Thus cancer treatments can accomplished 
via programmed cell death caused by proteasome inhibi-
tors [96–98]. The nuclear factor of ĸB (NF-ĸB) [88, 99], 
tumor suppressor p53 [100], cyclins [101, 102] etc. are 
some of the proteasome substrates. While in most cases, 
the cell death resulting due to proteasome inhibition 
which requires the activation of caspases [103] and has 
been linked to increased levels of oxidative radicals [88, 
93, 104]. Commonly, both Bortezomib and Marizomib 
are well to increase caspases 3, 4, 8 and 9 activity [105, 
106], yet, NPI-0052 exhibits its potency mostly through 
caspase-8-dependent pathway [107].

Besides, the evaluation of antitumor efficacy of both 
bortezomib and Marizomib was carried out by assessing 
the efficacy of the agent using various preclinical studies 
[108–113]. In view of the fact that, bortezomib largely 
interacts with the CT-L and T-L active sites of protea-
some and NPI-0052 potently inhibits all the three active 
sites, it is proposed that using both bortezomib with NPI-
0052 would benefit more and seen as a viable approach 
for wide range of manifestations. In line with this, pre-
vious study has established that that the combination 
strategy of these two agents evident with synergistic anti-
MM activity in both in  vitro and in  vivo models [114]. 
To support this findings, similar results were obtained 
with the combination of Marizomib and lenalidomide 
combination [68, 79, 104, 115]. However, the molecu-
lar mechanisms of the synergetic actions, which include 
the inhibition of proteasome, activation of caspases-8, 9 
and 3, and PARP cleavage [79]. Therefore, Marizomib is 
viewed for their unique exceptional profiles after three 
verified clinical trials [116].

Dolastatins and their analogs in cancer treatment
In addition to the above, in recent years, microtubules are 
the prime target and serve as the components of antican-
cer therapy by using taxanes and vinca alkaloids which 
are acting as an antimitotic agent that target intracellular 
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organelle tubulin [117, 118]. Even though these anti-
mitotic drugs are highly successful in the treatment of 
a many types of cancers, the major clinical problem lies 
are both acquired and intrinsic resistance to these com-
ponents. Avast array of potential new generation antimi-
totic drug leads are now under clinical trials. In line with 

this, Dolastatins and their analogs are emerging as anti-
cancer drugs because they function as a vascular disrupt-
ing agent (VDA) [119, 120].

Dolastatin 10 (Fig.  2a), a linear pentapeptide has 
numerous unique amino acid subunits, originally 
isolated from the sea hare Dolabella auricularia 
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[121–125], commonly originate from cyanobacteria, 
which belongs to the genera Symploca and Lyngbya 
upon they feed [126–129]. Elucidating the structure 
of Dolastatin has taken nearly 15  years for comple-
tion due to very little information on this active prin-
ciple [130, 131] Preliminary studies have indicated 
that [129], the binding of the Vinca alkaloids to tubu-
lin and the microtubule assembly is strongly inhibited 
by Dolastatin 10 [130]. A tripeptide portion of Dolas-
tatin 10 which do not significantly inhibit the binding 
of vincristine or the exchange of nucleotides however 
efficiently inhibits the tubulin polymerization and GTP 
hydrolysis [131]. Besides, another sea hare D. Auricu-
laria and cyanobacterial origin is antimitotic Dolasta-
tin 15 (Fig.  2b), results are again strongly implicating 

that this metabolite is potent pipeline agent as marine 
cyanobacteria once again proven as a source for the iso-
lation of numerous dolastatin 15–related peptides [122, 
125, 132, 133].

Mechanism of action of Dolastatins
Dolastatin 10 has demonstrated its potency against vari-
ous human cancers such as lymphomas, leukemias and 
solid tumors [129, 134, 135]. At very low concentrations, 
dolastatin 10 cause microtubules depolymerization and 
produced mulitpolar spindles leading to cell apoptosis 
[130, 131, 136]. Subsequent research investigation sup-
ported that dolastatin 10 binds to the rhizoxin/maytan-
sine binding site [137], which is next to Vinca alkaloid site 
as well as exchangeable to the guanosine triphosphate site 
on tubulin, causing cell cycle arrest in metaphase [138]. 
Currently Dolastatin 10 derivatives are in the clinical tri-
als of both phase I and phase II [1254] as a pipeline com-
pound for treatment of several solid tumors [127, 128]. 
However, it failed to show any significant clinical activity 
in Phase II clinical trials due to certain issues such as the 
productivity based on the multistage chemical synthesis 
steps and the lack of water solubility, analouges such as 
TZT-1027 (auristatin PE) (Fig.  2c) [139–141]. Despite 
the above, these analogs are at phase III clinical trials 
[142]. This synthetic analog of dolastatin 10, exhibited 
an enhanced activity in pilot studies using various ani-
mal models and showed its synergistic antitumor prop-
erty in combination with Cisplatin [136] in the human 
(HCT-116) and murine colon (26 adenocarcinoma) can-
cer model [143]. It is interesting to note that the outcome 
of TZT-1027 on tumor blood vessels and HUVEC were 
considerable when compared to Vincristine. Moreover, 
TZT-1027 was effective in MX-1 breast carcinoma and 
LX-1 lung carcinoma [144]-the two human xenograph 
models.

In line with this, Tasidotin (Fig.  2d) is an analog of 
Dolastatin with tubulin-interactive activity that inhibits 
tubulin polymerization very weakly, but suppresses the 
dynamic instability of microtubules strongly. [129]. At 
present it is at the Phase III trials [145] and had success-
fully completed the Phase I trials [134, 135]. Results sug-
gested that both TZT-1027 and Tasidotin with a putative 
protein kinase-dependent mechanism targeted a quick 
attack of the vascular system of the advanced cancers and 
thus blocked the blood flow in the tumor. Henceforth, 
TZT-1027 has made a tremendous progress and proven 
as powerful agent for tumor therapy.

Cematodin (LU-103793; Fig.  2e), is a water-soluble 
and a stabilized analog of dolastatin 15 [146] was syn-
thesized in the year 1995, with a original dolapyrrolidone 
replaced by benzylamine moiety terminal. It is capa-
ble of disrupting tubulin polymerization and inducing 

Fig. 3  Chemical structure of an Mediterranean marine tunicate 
Aplidium albicans derived Aplidine/plitidepsin (Aplidin®)
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depolymerization of preassembled microtubules through 
the retention of high cytotoxicity like parent compound 
[147]. In addition, Synthadotin (Fig.  2f ), ILX-651 an 
orally active a 3rd generation dolastatin 15 synthetic 
analog possessing a terminal tert-butyl moiety when 
compared to the original dolapyrrolidone is under phase 
II clinical trials using patients with locally advanced or 
metastatic non-small cell lung tumors and patients with 
hormone-refractory prostate cancer previously treated 
with Docetaxel [148]. A clinical outcome of this phase II 
trial, in which patients with inoperable advanced or met-
astatic melanoma treated with ILX-651 for consecutive 
5  days on a 3  week period indicated that it was a “safe, 
well-tolerated treatment for locally advanced and meta-
static melanoma patients” [149].

Plitidepsin (Aplidine) in Cancer treatment
Plitidepsin (Fig.  3), also known as dehydrodidemnin 
B, (trade name Aplidin) is a cyclodepsipeptide isolated 
from Aplidium albicans, which is a Mediterranean tuni-
cate [147, 150]. Plitidepsin is considered as a new gen-
eration didemnin that portrays higher anticancer activity 
and better therapeutic indexes than didemnin B at non-
toxic concentrations and now being developed by total 
synthesis. Plitidepsin is a well-tolerated drug which has 
exhibited its strong antitumor property both in in  vitro 
and mouse model using numerous human cancer cell 
lines. To support this, both Phase I and Phase II clinical 
trials also showed hopeful results of anticancer activity 
[151–155] and currently undergoing phase III trial as a 
therapeutic agent for relapsed/refractory MM patients. 
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Previous studies has demonstrated that plitidepsin is 
capable of inducing cell cycle arrest either by cell-specific 
or dose-dependent manner [152, 156, 157]. Besides, a 
sustained activation of JNK and p38 MAPK is made pos-
sible by the combined actions like early oxidative stress 
induction, activation of Rac1 GTPase and inhibition of 
protein phosphatases activity [158].

Mechanism of action of plitidepsin
The mechanism of action of plitidepsin on tumor cells 
is well described [152]. In brief, after an interaction 
with the high affinity binding site in the cell membrane, 
plitidepsin leads to the rapid activation of Rac1 and the 
persistent phosphorylation and activation of JNK and 
p38/MAPK that eventually induce apoptosis [152, 159, 
160]. Activation of JNK and p38 MAPK results in the 
downstream signaling events like cytochrome c release, 
activation of caspases-9 and -3 and PARP cleavage, 
thus signifying the mediation/significance of the mito-
chondrial apoptotic pathway in this process. In addi-
tion, several pathways have also involved in Alphidine’s 
mechanism of action which includes cell cycle arrest and 
protein synthesis inhibition [161, 162] in leukemic cells 
with the involvement of translocation of Fas/CD95 in 
lipid rafts [163–166]. Moreover, the induction of oxida-
tive stress by Plitidepsin incites a stress on the endoplas-
mic reticulum (ER) also associated to cell death [152]. 
In this regard, Plitidepsin activates important molecular 
machinery of the classical ER stress-induced unfolded 
protein response (UPR) as well as the phosphorylation of 
eIF2α and JNK. Due to its fast degradation by the ubiq-
uitin/proteasome machinery Plitidepsin also induces the 
decrease of CHOP protein levels. [167].

Coibamide A in cancer treatment
Coibamide A (Fig.  4), is a marine product from Leptol-
yngbya cyanobacterium, mostly available in Panama 
[168–170] and identified as a novel and an effective anati-
proliferative depsipeptide anticancer drug. The structure 
represents a methyl-stabilized cyclic depsipeptide with a 
lariat side chain, and the activity of the structure portrays 
that there is a direct effect on Coibamide A, if there is a 
loss in the N-methylation which results in the disjoining 
of the cyclic and the side chain structures of the molecule 
or just a drastic linearization of the molecule [171]. Thus 
it induces the apoptotic activity by activting caspase-3 
and caspase-7 and non-apoptotic cell death activity in 
the apoptosis-resistant human cancer cells which include 
U87-MG, NCI-SF-295 glioblastoma (GBM) respectively 
and works in concentration-dependent and cell cycle 
active [168, 171] manner. The cell death also observed 
in the wild-type and autophagy-deficient (ATG5-null) 
and knockout (KO) mouse embryonic fibroblasts (MEFs) 

indicates its novel mechanism of action [171]. A cyto-
static effect that arrested the G1 phase cell cycle with 
minor change in G2/M and loss of S phase was portrayed 
in the flow cytometric analysis. In addition, it also inhib-
its the glioma cell motility especially invasion and not 
migration [169]. Besides the above, the mutations that 
occur throughout the GBM, results in the activation and 
enhancement of receptor tyrosine kinases EGF, PDGF as 
well as attenuation of the tumor suppressor genes such as 
p53 and PTEN (phosphatase and tens in homolog [172]. 
Thus, an increase in the cell signaling is observed due 
to MAPK (Mitogen Activated Protein Kinase) and PI3K 
(Phosphatidylinositol 3- kinase) pathways leading to 
the promotion of the cell survival and henceforth GBM 
attains resistance to apoptosis. A test for the antican-
cer activity using 60 cancer cell lines demonstrated that 
Coibamide A portrayed a high potential of activity in a 
range that falls between 2.8 and 7.6 nM but mostly selec-
tive to 4 different cell lines such as breast (MDAMB-23, 
melanoma (LOX IMVI), human leukemia (HL-60) and 
glioblastoma (SNB-75), however exhibited significant 
histological selectivity for breast, CNS, colon and ovarian 
cancer cells [168].

Moreover, the effect of this peptide on mTOR pro-
tein was studied and concluded that Coibamide A pos-
sess mTOR independent cellular response and induces 
rapid and regular and also sustained autophagic response 
[171]. Besides, it was potrayed that Coibamide A induced 
cell death could be accomplished through apoptotic or 
non-apoptotic pathways not necessarily by autophagy 
alone. To support the above, evidences show that many 
cytotoxic marine anticancer NPs trigger apoptosis by 
targeting multiple cellular proteins by involving both 
intracellular and extracellular pathways [173]. Those 
marine NPs that are capable of inducing apoptosis were 
primarily recognized as cytotoxic agents, however their 
apoptotic activity was discovered later by various second-
ary pharmacological evaluations. In fact, Coibamide A 
has also displayed potent caspases-dependent apoptotic 
activity in different cancer cells.

Conclusions
In summary, the past two decades have witnessed a resur-
gence and revolution on new drug discovery from marine 
sources. In this review, we have discussed the role of few 
important pipeline marine peptides, their mode of action 
(Fig.  5) and the hitches related to the transfer of marine 
NPs into various phases of clinical trials. The peptide mol-
ecules reviewed are acquired from different marine sources 
and each of those portrays a different but unique mecha-
nism of action and exhibited their anticancer activities. The 
peptides from marine sources share a diversified style and 
class and the presence of more number of cyclic peptides 
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or depsipeptide is an important property of the marine 
organisms. Though several marine peptides display anti-
cancer activities on multiple tumor targets. The available 
results clearly indicate that these potential pipeline drugs 
such as Salinosporamide A, Marizomib, Plitidepsin, Coi-
bamide A appears to be very potent and promising pipeline 
drugs not only biomedical science but also serve as cancer 
therapeutics. Hence, the diversity of marine peptides both 
in terms of structure and mode of action provide a valuable 
source for the drug design and serve as novel new pharma-
ceuticals for a wide variety of human cancers.
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