
Ejeh et al. Futur J Pharm Sci           (2021) 7:219  
https://doi.org/10.1186/s43094-021-00373-6

RESEARCH

Computational insight to design 
new potential hepatitis C virus NS5B 
polymerase inhibitors with drug‑likeness 
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Abstract 

Background:  Hepatitis C virus (HCV) is considered a worldwide health problem since it affects over 3% of the popu-
lation and causes 300,000 fatalities per year. Chronic infection causes high morbidity and mortality in patients, leading 
to liver cirrhosis, hepatocellular carcinoma, fibrosis, liver cancer, and other HCV-related illnesses. Finding novel and 
better HCV treatments is a top international health goal right now. As a result, the pressing need for new HCV antiviral 
drugs has fueled research into the structural requirements of NS5B polymerase inhibitors at a molecular basis.

Results:  In this study, an in silico technique was applied to study 79 compounds with HCV inhibitory bioactivity, with 
the best statistical results ( R2 = 0.7051, Q2 = 0.6455, R2pred = 0.6992, cR2r  = 0.6570, SEE = 0.2694).

Conclusions:  This QSAR investigation allowed the research team to evaluate the influence of straightforward 
descriptors, shedding insight into the critical elements that guide the design of innovative effective molecules. Most 
of the innovative effective molecules exhibited better binding affinity (− 195.6 kcal/mol) than dasabuvir the reference 
drug (− 171.0 kcal/mol) with the target receptor (hepatitis C virus NS5B RNA polymerase). ADMET prediction dis-
closed enhanced pharmacokinetic properties with lower MRTD (maximum tolerated dose) of some new derivatives.
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Background
Hepatitis C Virus (HCV) is considered a worldwide 
health problem since it affects over 3% of the population 
and causes 300,000 fatalities per year [1]. Chronic infec-
tion causes high morbidity and mortality in patients, 
leading to liver cirrhosis, hepatocellular carcinoma, 
fibrosis, liver cancer, and other HCV-related illnesses [2]. 
HCV is an encapsulated single-strand linear positively 
oriented RNA virus belonging to the species Hepacivirus, 

which belongs to the Flaviviridae family. It has six gen-
otypes and various subtypes, each with a different geo-
graphic distribution [1].

The host ribosomes translate HCV-RNA into a poly-
protein, which is then processed by host and viral pro-
teases into ten proteins: three structural proteins (core, 
E1, and E2), an ion channel (p7), and six non-structural 
proteins (NS2, NS3, NS4A, NS4B, NS5A, and NS5B) [2]. 
The virus nucleocapsid is made up of structural proteins, 
while non-structural proteins are involved in virus devel-
opment, maturation, and reproduction. The HCV NS5B 
protein is a multifunctional RNA binding protein that 
is critical for virus duplication. NS5B protein inhibition 
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has been shown in multiple studies to successfully sup-
press viral replication [3]. As a result, the NS5B protein 
is a well-established therapeutic target for which several 
medicines have been licensed and released.

Anti-HCV vaccination is currently unavailable; none-
theless, in the 1990s, interferon-alpha was used to treat 
HCV, and in the next decade, pegylated interferon-alpha 
in a mixture with ribavirin was used to treat HCV. Inter-
feron-alpha inhibitors, DNA and RNA polymerase inhib-
itors, NS3/4A RNA protease inhibitors, NS5 RNA serine 
protease inhibitors, and NS5B RNA polymerase inhibi-
tors have all been licensed for use in clinical trials since 
2011 [1, 4].

Current HCV medication has a low continued viral 
success rate, quick onset of drug resistance, especially 
in genotype 1 HCV patients, and considerable adverse 
effects, all of which lead to therapy cessation [5]. As a 
result, better anti-HCV medications with fewer problems 
are urgently needed. Finding the most essential molecular 
descriptors can aid in the discovery of new biologically 
active chemicals that can be used as anti-HCV medica-
tions and provide clinically successful treatment [6].

With advances in computational algorithms and simu-
lation software, computer drug design has become widely 
used for drug discovery and development because of the 
advantages of being less time-consuming, cost-effective, 
and high effectiveness in silico screening and prediction 
of candidate medications [7]. Throughout the previous 
few decades, QSAR procedures have been developed 
and widely employed in a diversity of sectors, includ-
ing chemical/biological, chemistry, and associated fields 
[4]. In this study, a QSAR model was proposed based on 
the structure of drugs having significant NS5B polymer-
ase inhibitor bioactivity, and the model was externally 
validated to evaluate its genuine predictive capabilities. 
Based on the good efficacy of QSAR and molecular dock-
ing, the proposed model was efficient in understanding 
the relationship between structure and bioactivity and 
making suitable structure modifications for more prom-
ising suppression. Drug-likeness and ADMET pharma-
cokinetic characteristics were also tested on the novel 
compounds.

Methods
Dataset
79 compounds of HCV NS5B polymerase inhibitors were 
employed, which were sourced from online resources 
(https://​pubch​em.​ncbi.​nlm.​nih.​gov/). The EC50 (µM) val-
ues of the identified compounds’ bioactivity were pro-
vided. The bioactivity in EC50 was transformed to Log (1/
EC50), which gives pEC50 [8]. Additional file 1: Table S1 in 
the Additional file 1 contains the datasets.

Optimization and descriptors calculation
The optimization was carried out using the quantum 
mechanical approach in Spartan 14 and the density func-
tion theory B3LYP/631G** [9]. PaDEL-Descriptors were 
used to create roughly 2000 molecular descriptors for every 
species using the preprocessing molecules.

Dataset treatment, division, and Selection of optimal 
descriptors
The Drug Theoretics and Cheminformatics Laboratory 
software (DTC-QSAR v1.0.5) freely available to the public 
at http://​dtclab.​webs.​com/​softw​are-​tools was used in per-
forming the dataset pre-treatment, division, and selection 
of optimal descriptors for Model building [10]. The total 
dataset was split into two parts: 70% model building data 
and 30% model test data [8]. The DTC-QSAR tool v1.0.5’s 
Genetic Function Algorithm (GFA) was used to choose a 
set of descriptors that best explained the diversity in bio-
activity values of the investigated compounds. GFA is a 
heuristic search approach for locating exact or approxi-
mate answers to optimization and search issues. It has the 
advantage of constructing many models, use the lack of fit 
function to avoid overfitting, and allowing the user to regu-
late the length of the equation [11, 12].

Model applicability domain (AD)
The length of projection methodology was used to set up 
the AD for QSAR models in the research, which is estab-
lished on leverage principles of the research compounds 
and standardized residual (SR) of the model. The hori-
zontal component of the hat state vector was used to cre-
ate compound leverages (hi) as given in Eq. (1):

XT is the transpose of X, and X is the descriptor array. SR 
is calculated using the model’s error function with Eq. (2)

p represents the actual bioactivity value for the trained 
or test data, p . represents the model’s estimated bioactiv-
ity value and n stands for the number of molecules in the 
trained or test data.

The borders > − 3, < 3 and < h* were used to design the 
AD models, where h* stands for caution leverage, which 
is calculated using Eq. (3)

t is the proportion of structural properties in the model 
and n has the same meaning as in Eq. (2) [13].

(1)hi = X
(

XTX
)

−1

XT

(2)SR =
p− p

√

∑n
i=1

(p−p)2

n

(3)h∗ =
3(t + 1)

n

https://pubchem.ncbi.nlm.nih.gov/
http://dtclab.webs.com/software-tools
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Design of new chemical entities
New chemical entities are designed by a careful selection 
of template molecule (T) with high bioactivity, low stand-
ardized residual and within the model AD from the data-
set and making modifications based on the description of 
the descriptor selected for optimal model (see Additional 
file 1: Table S3).

Accessing the design entities
To determine the reliability of these new design entities, 
they were evaluated using the online tools SwissADME 
(www.​swiss​adme.​ch/) and pkCSM (http://​struc​ture.​bioc.​
cam.​ac.​uk/​pkcsm) to estimate the drug-likeness and 
pharmacokinetics ADMET profile.

Docking process
The target receptor was accessed from a protein data 
bank deposited in 2013 by Schoenfeld and co-worker 
[14] with the following information: PDB ID of 4MKA, 
the resolution of 2.05  Å, and the R value free of 0.217. 
The co-crystallized molecule was removed after which 

the target receptor was imported into the Molegro Vir-
tual Docker tools (MVD) and the Preparation tab was 
selected on the dialog and Assign All was set to Always. 
This ensures that all preparation will be done by MVD. 
The detailed docking process was applied as described in 
our previous work [13]. The target receptor is presented 
in Fig. 1

Results
Three mathematical models relating the bioactivity of 
hepatitis C virus NS5B RNA polymerase inhibitors with 
its structure were built in the present research, and the 
QSAR models are presented in Table  1 with their coef-
ficient of determination (R2), standard error of estimate 
(SEE), and mean average error (MAE) values.

The R2 and the error measurement (SEE and MAE) 
were used to assess the performance of QSAR models, 
resulting in model 2 being chosen for further investiga-
tion. The better the model, the higher the R2 scores or the 
lower the error values. In addition, the Tropsha param-
eters [8] were utilized to assess the top models’ reliability. 
All the statistical tools and necessary predictive capabil-
ity as a benchmark for a good QSAR model are listed in 
Table 2.

The descriptors included in the selected model, as well 
as their descriptions, are listed in the Additional file  1: 
Table S2, and the numerical values of the descriptor used 
in the selected model are presented in Additional file 1: 
Table  S3, while Table  3 presents observed EC50, pEC50, 
predicted pEC50, and residual of the entire datasets.

William’s plots were generated and are presented in 
Fig.  2 for the selected QSAR model, based on the plot 
of standardized residual (SR) versus leverage values 
(hi), to get an immediate and straightforward graphical 
detection of both the Y outliers and the X outliers of the 
model, and Fig. 3 depicts a display of estimated vs actual 

Fig. 1  Structure of the target receptor (hepatitis C virus NS5B RNA 
polymerase) in complex with dasabuvir

Table 1  Developed models and the coefficient of determination (R2), standard error of estimate (SEE), and mean average error (MAE) 
values

R2, coefficient of determination; SEE, standard error of estimate; MAE, mean average error

Model Equation R2 SEE MAE

1 pEC50 = 96.89265− 0.72022 ∗ ATSC5e + 0.0737 ∗ bpol

+ 0.00432 ∗ ATSC3i + 0.00949 ∗MDEC − 22− 15.60553

∗ SpMax5Bhm − 12.73215 ∗ SpMin6Bhv − 9.24232 ∗ SpMin5_Bhm

0.7044 0.2697 0.1553

2 pEC50 = 2.42246+ 0.06217 ∗ VR2Dzi − 0.587 ∗ GATS6p

− 0.24467 ∗ nX + 5.9672 ∗ GGI10− 0.6542 ∗ ATSC5e

+ 3.05767 ∗ GATS2p− 0.14821 ∗MDEC − 24

0.7051 0.2694 0.1307

3 pEC50 = −24.0199− 4.8512 ∗ SpMax5Bhv + 15.7646 ∗ SpMax6Bhp

− 0.6268 ∗ ATSC5e + 2.9609 ∗ SpMin8Bhs − 0.0319

∗ AATS7m− 3.9737 ∗ SpMin5Bhs + 0.2919 ∗ AATS8s

0.7038 0.2700 0.1448

http://www.swissadme.ch/
http://structure.bioc.cam.ac.uk/pkcsm
http://structure.bioc.cam.ac.uk/pkcsm
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bioactivity over the whole data, revealing a strong link 
between actual and estimated bioactivity levels in the 
models.

Based on the proven and verified QSAR model, mol-
ecule 16 in dataset Table (Additional file 1: Table S1), pic-
tured in Fig. 4, was utilized as a standard to characterize 
the molecule. Molecule 16 was utilized as a foundation 
for developing new molecules because this was chosen 
cautiously from Fig. 2, recognizing the data point as more 
active, low SR, and detected inside the existing model’s 
AD.

The bioactivity of the precursor drug, newly created 
molecules, and reference molecule (dasabuvir) was pre-
dictable using the previously proved QSAR model (model 
2). All modified variants, as well as dasabuvir, had a 
greater pEC50 value than the prototype, according to the 
data except N5 (see Additional file 1: Table S4).

The interaction of molecules N15, R, and T with the 
target receptor (hepatitis C virus NS5B RNA polymerase, 
PDB ID: 4MKA) was visualized using the Discovery Stu-
dio software and the Molecular Operating Environment 
(MOE) software, as shown in Figs. 5, 6, and 7, respectiv
ely.

A molecular docking assessment utilizing Molegro Vir-
tual Docker version 6.0 verified that molecule N15 had 
the most energetically favorable ligand conformation 
with the MolDock scoring function value of − 195.6 kcal/
mol which is better than that of the reference drug 
of − 171 kcal/mol. The results of the ligand–receptor 
interactions of the novel molecule (N15) in Fig.  5, the 

reference molecule (R) in Fig.  6, and the template mol-
ecule (T) in Fig. 7 are summarized in Table 4.

To establish the viability of these molecules as medi-
cations, the research team looked at the drug-like and 
pharmacokinetic properties (ADMET) of these novel 
compounds, using dasabuvir as a reference. The ADMET 
properties given in Table  6 were estimated using the 
pkCSM software, while the drug-likeness attributes pre-
sented in Table 5 were originally assessed using the web 
tool SwissADME. Drug-likeness characteristics are an 
important criterion for drug candidates in the early 
stages of development [15]. The practice of correlating a 
molecule’s physicochemical characteristics with its biop-
harmaceutical characteristics in the human body, nota-
bly its impact on oral bioavailability, is also known as the 
drug-likeness approach [16].

Discussion
The selected QSAR model is statistically sound because 
it met the conditions listed in Table 2 as a threshold, and 
hence, has an appropriate predictive capability. Model 2 
met Tropsha’s and the Organization for Economic Coop-
eration and Development’s (OECD) requirements [12, 
17] as it explains 71% and predicts 70% of the variances 
of the HCV NS5B polymerase inhibitors with their bioac-
tivity as presented in Table 2. It indicates that the models 
precisely regressed the data and that it can predict the fit-
ting training set for the model, as it predicted around 70% 
of the data and so met the minimum criteria of 60% [11]. 
The result of the y-randomization test demonstrates that 

Table 2  Model parameters, formula, threshold values, and models scores

Parameter Formula Threshold Model score

Model 1 Model 2 Model 3

R2
[
∑

{

(Yobs−Yobs)×(Ypred−Ypred)
}]2

∑

(Yobs−Yobs)
2
×
∑

(Ypred−Ypred)
2

R2 > 0.6 0.7044 0.7051 0.7038

R2adj
(N−1)×R2−P

N−1−P
R2adj > 0.6 0.6604 0.6611 0.6597

R2pr 1−
∑

(yexp(Test)−yest(Test))
2

∑

(

yexp(Test)−yTraining

)2

R2pr > 0.6 0.6109 0.6992 0.6552

Q2

1−

∑n
i=1 (Yexp−Ypred)

2

∑n
i=1 (Yexp−Y)

2

Q2 > 0.6 6217 0.6455 0.6211

F ∑

(Ypred−Yobs)
2

∑

(Yobs−Ypred)
2 ×

N−P−1
P

F > 0.33 .00 16.05 15.95

SEE Standard Error of Estimate Smaller the better 0.2697 0.2694 0.2700

MAE Mean Average Error Smaller the better 0.1553 0.1307 0.1448

Rr An average of the correlation coefficient 
for randomized data

Rr < 0.5 0.3224 0.3047 0.3712

R2r An average of determination coefficient 
for randomized data

R2r < 0.5 0096 0.1036 0.1496

cR2r R ×
√

R2 − R2r
cR2r > 0.5 0.6504 0.6570 0.6311
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Table 3  The PubChem compound ID (CID), EC50, pEC50, 
predicted pEC50, and residual of the entire datasets

ID PubChem CID EC50 [µM] pEC50 Predicted pEC50 Residual

Training set compounds

2 118728148 0.020 7.699 7.720 − 0.021

3 118730993 0.011 7.959 8.091 − 0.132

4 118730994 0.010 8.000 8.036 − 0.036

5 118730995 0.013 7.886 7.876 0.010

6 118730996 0.008 8.097 8.174 0.077

7 118730997 0.015 7.824 7.790 0.034

8 118730999 0.009 8.046 8.232 − 0.186

9 118731000 0.013 7.886 7.500 0.386

10 118731179 0.020 7.699 7.615 0.084

11 118731180 0.053 7.276 7.348 − 0.072

12 118731181 0.022 7.658 7.627 0.031

13 118731182 0.089 7.051 7.263 − 0.212

14 118731184 0.012 7.921 7.706 0.215

15 118731185 0.006 8.222 8.511 − 0.289

16 118731186 0.002 8.699 8.113 0.586

17 118731187 0.005 8.301 8.291 0.010

19 118731189 0.007 8.155 8.215 − 0.06

21 118731191 0.005 8.301 8.327 − 0.026

22 118731192 0.003 8.523 8.665 − 0.142

23 118731193 0.012 7.921 7.975 − 0.054

24 118731194 0.044 7.357 7.628 − 0.271

26 118731196 0.006 8.222 7.555 0.667

27 118731197 0.036 7.444 7.697 − 0.253

31 118731202 0.004 8.398 8.119 0.279

32 118731203 0.004 8.398 8.460 − 0.062

33 118731204 0.004 8.398 8.280 0.118

35 118731206 0.005 8.301 7.944 0.357

36 118731207 0.005 8.301 8.239 0.062

37 118731208 0.005 8.301 8.630 − 0.329

38 118731209 0.006 8.222 8.122 0.100

39 118731210 0.016 7.796 7.739 0.057

41 118731212 0.013 7.886 7.743 0.143

42 118731213 0.005 8.301 8.000 0.301

43 118731214 0.018 7.745 7.628 0.117

44 118731216 0.006 8.222 8.215 0.007

46 118731218 0.015 7.824 7.720 0.104

47 118731219 0.012 7.921 7.769 0.152

49 118731221 0.013 7.886 7.807 0.079

50 118731222 0.050 7.301 7.455 − 0.154

58 118731232 0.017 7.770 7.689 0.081

61 118731235 0.012 7.921 7.920 0.001

63 118731237 0.016 7.796 7.861 − 0.065

64 118731238 0.023 7.638 7.420 0.218

65 118731240 0.003 8.523 8.722 − 0.199

66 118731241 0.017 7.770 7.659 0.111

67 118731242 0.050 7.301 7.316 − 0.015

68 118731243 0.026 7.585 7.432 0.153

70 118731245 0.055 7.260 7.085 0.175

Table 3  (continued)

ID PubChem CID EC50 [µM] pEC50 Predicted pEC50 Residual

71 118731246 0.330 6.481 6.802 − 0.321

72 118731248 0.027 7.569 7.493 0.076

74 118731250 0.031 7.509 7.636 − 0.127

75 118731251 0.030 7.523 7.749 − 0.226

76 118731252 0.040 7.398 7.459 − 0.061

77 118731376 0.390 6.409 7.774 − 1.365

79 118731379 0.014 7.854 7.924 − 0.07

Test set compounds

1 118728143 0.013 7.886 8.223 − 0.337

18 118731188 0.005 8.301 8.132 0.169

20 118731190 0.012 7.921 7.829 0.092

25 118731195 0.018 7.745 7.760 − 0.015

28 118731198 0.082 7.086 7.281 − 0.195

29 118731200 0.012 7.921 8.190 − 0.269

30 118731201 0.003 8.523 8.637 − 0.114

34 118731205 0.005 8.301 8.386 − 0.085

40 118731211 0.011 7.959 8.045 − 0.086

45 118731217 0.009 8.046 7.862 0.184

48 118731220 0.013 7.886 7.511 0.375

51 118731224 0.010 8.000 7.946 0.054

52 118731225 0.032 7.495 7.415 0.080

53 118731226 0.043 7.367 7.233 0.134

54 118731227 0.037 7.432 7.308 0.124

55 118731228 0.056 7.252 7.029 0.223

56 118731229 0.049 7.310 7.331 − 0.021

57 118731230 0.185 6.733 6.935 − 0.337

59 118731233 0.047 7.328 8.113 0.169

60 118731234 0.021 7.678 7.811 0.092

62 118731236 0.012 7.921 7.766 − 0.015

69 118731244 0.044 7.357 7.287 − 0.195

73 118731249 0.029 7.538 7.838 − 0.269

78 118731377 0.575 6.240 7.351 − 0.114
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the model’s random R2 (cR2p = 0.6570) is significantly 
greater than the recommended value of 0.50, indicating 
that the model is not the result of pure chance [12].

In this study, no Y outlier was detected and one X out-
lier was detected (molecule 51) accounting for 1% of the 
entire dataset (see Fig. 2). The majority of the compounds 
fall within the application domain, indicating that the 
chemical molecules adhere to a well-defined applicability 
region. In summary, the optimization techniques have a 
great deal of potential and are extremely successful. As a 
consequence, it can be utilized to enhance the bioactivity 
of any of the chemicals being studied.

Figure 3 shows the estimated vs. actual bioactivity lev-
els across the entire dataset, indicating a close relation-
ship between actual and predicted bioactivity levels in 
the models which are further confirmed by low residual 
values presented in Table 3. Because the models have the 
internal and external statistical capacity and are structur-
ally error-free, they can be used to infer whether or not a 
known molecule is active if it falls inside the models’ AD. 
As indicated in Additional file  1: Table  S4, N15 has the 
highest predicted bioactivity of all the molecules, much 

exceeding dasabuvir. It shows the template structure, 
newly improved molecules, and licensed molecule (dasa-
buvir), as well as their expected responses, leverages, and 
MolDock score (binding affinity). Except for molecule 51, 
the majority of the molecules’ leveraging findings were 
logical and below the leveraging cutoff point (h* = 0.43), 
showing that the improved molecules, as well as dasabu-
vir, met the requirements and were within the model’s 
applicability restrictions.

GGI10 is a topological descriptor that measures atom-
to-atom charge transfer. It has the largest positive coef-
ficient in the calculated linear equation in the chosen 
model. This means that increasing the charge transfer 
between the pair of atoms will increase the pEC50 values, 
and the more active the molecule will be. Conversely, 
decreasing the charge transfer between the pair of atoms 
will result in a decrease in the pEC50 values, and the less 
active the molecule will be [18]. GATS2p and VR2Dzi are 
the other positive correlation descriptors in the chosen 
model, in order of positive contribution as measured 
by their coefficients. On the other hand, the ATSC5e is 
the most negative descriptor contributor in the chosen 
model, and it is defined as a based Broto–Moreau auto-
correlation of lag 5 measured by electronegativities that 
explains how electronegativities effects are spread along 
with the topological structures of the molecule [19], and 
its presence in the model linked the electronegativities 
of pairs atoms that are bonded together. The built model 
revealed that increasing ATSC5e reduces the activity 
of the compounds and that other descriptors such as 
GATS6p, nX, and MDEC-24 have a significant negative 
impact on reported anti-HCV bioactivity in decreasing 
order.

The molecular docking method determines the most 
thermodynamically favorable ligand conformation using 
an energy-based scoring function. Lower energy scores, 
in comparison with higher energy values, are thought 
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Fig. 4  (E)-3-[6-[[2-[(3-cyclopentyl-1-methyl-2-pyridin-2-ylindole-6-carbonyl)amino]-2-methylpropanoyl]amino]-2-ethoxypyridin-3-yl]prop-2-enoic 
acid (Template Molecule)
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Fig. 5  A 3D diagram for the interaction of molecule 15 (N15) in complex with the target receptor (hepatitis C virus NS5B RNA polymerase, PDB ID: 
4MKA), B 2D diagram for the interaction of molecule 15 (N15) in complex with the target receptor (hepatitis C virus NS5B RNA polymerase),
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Fig. 6  A 3D diagram for the interaction of reference molecule R (dasabuvir) in complex with the target receptor (hepatitis C virus NS5B RNA 
polymerase, PDB ID: 4MKA), B 2D diagram for the interaction of reference molecule R (dasabuvir) in complex with the target receptor (hepatitis C 
virus NS5B RNA polymerase)
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Fig. 7  A 3D diagram for the interaction of template molecule T in complex with the target receptor (hepatitis C virus NS5B RNA polymerase, PDB 
ID: 4MKA), B 2D diagram for the interaction of template molecule T in complex with the target receptor (hepatitis C virus NS5B RNA polymerase)
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to imply better protein–ligand bindings (binding affin-
ity). As a result, molecular docking can be thought of 
as an optimization problem in which the goal is to dis-
cover the lowest-energy ligand-binding configuration. 
The results presented in Additional file 1: Table S4 show 
that N15 has the highest predicted pEC50 value of 12.05 
and Molegro Virtual Docker version 6.0 was used to fur-
ther confirm the result by performing molecular dock-
ing analysis which revealed that molecule N15 had the 
lowest-energy ligand-binding configuration (see Addi-
tional file  1: Table  S4). The predicted chemical N15, 
according to the data, outperforms both the reference 
and template molecules. It had the most favorable Mol-
Dock score (binding affinity) of -195.6  kcal/mol, and 
total interaction energy of − 13.0 kcal/mol resulting from 
six H-bonds and one ionic bond as reported in Table 4, 
wherewith NH of the piperidine, the OH of the carboxyl 
group of the acetic acid moiety attached to benzene ring 
formed H—bond donor with GLU493, HIS293, MET485 
and SER297 of the target residue, respectively, while the 
oxygen atom (O) of the carboxyl group of the acetic acid 
moiety attached to pyrrolidine and piperidine formed 
H—bond acceptor with ARG481 and TRP501, respec-
tively, and finally the NH of piperidine moiety formed 
ionic interaction with GLU493 of the target receptor resi-
due. All these interactions stabilize the N15 in the bind-
ing pocket of the receptor, making N15 the most potent 
novel inhibitor of the target receptor as observed in 
Table  4 and Fig.  5, and these could be attributed to the 
presence of pyrrolidine and piperidine groups. The dasa-
buvir (reference molecule) had a lower MolDock score 

(binding affinity) of − 171.0  kcal/mol, and total interac-
tion energy of -8.0 kcal/mol resulting from four H-bonds. 
The methylsulfonyl group attached to dimethylamine 
connected to the naphthalene ring formed two H—bond 
acceptors with ARG467 residue, while –NH attached 
to pyridine ring and –OCH3 attached to benzene ring 
formed H—bond donor each with ASP454 and THR416 
target residue, respectively, as reported in Table 4.

Discovery Studio and Molecular Operating Environ-
ment (MOE) software were used for virtual evaluation 
which shed more light on the interaction of molecules 
N15, R, and T with the target receptor (hepatitis C virus 
NS5B RNA polymerase, PDB ID: 4MKA). When com-
pared to the reference molecule, molecule N15 has a 
higher degree of interaction with the target receptor.

The Lipinski idea of five, which argues that if a mol-
ecule violates more than two of the qualities given in 
Table 5, it would be poorly absorbed [15], is one of the 
most popular and useful directions in the early clinical 
phase of drug development. The selected compounds, 
except for N6, N7, and N11, are regarded to meet 
Lipinski’s criterion because the majority of them did 
not breach more than two, and so maybe categorized 
as drug-like molecules. Furthermore, an evaluation was 
carried out using ABS standards, with the template 
and all generated molecules, including the standard 
molecule, having a value in the range of 0.11 to 0.56. 
These criteria were established based on the probability 
value of a molecule with an optimal permeability and 
bioavailability outline, where this range represents total 
compliance of the Lipinski concept of five, which is a 

Table 4  In-depth report of the ligand–receptor interaction of new molecule 15 (N15), reference molecule (R) and template molecule 
(T)

Compound Ligand Receptor Interaction Distance Energy 
(kcal/mol)

N15 C 10 OE2 GLU 493 H—donor 3.37 − 1.2

C 23 ND1 HIS 293 H—donor 3.61 − 0.9

O 33 O MET 485 H—donor 2.90 − 1.7

N 53 OG SER 297 H—donor 2.92 − 1.4

O 32 NH1 ARG​ 467 H—acceptor 3.03 − 5.7

O 45 NE1 TRP 501 H—acceptor 3.05 − 1.4

N 53 OE2 GLU 493 Ionic 3.92 − 0.7

R C 24 OG1 THR 416 H—donor 3.31 − 0.7

N 31 OD1 ASP 454 H—donor 3.31 − 3.0

O 21 NH2 ARG​ 467 H—acceptor 3.16 − 2.5

O 22 NH2 ARG​ 467 H—acceptor 3.02 − 1.8

T O 11 NH2 ARG​ 467 H—acceptor 3.30 − 1.1

5—ring CB THR 206 Pi—H 3.88 − 0.8

6—ring OG1 THR 206 Pi—H 3.78 − 1.3

6—ring NE2 HIS 333 Pi—H 3.68 − 1.2
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characteristic value of more than 10% [20]. On a scale 
of 1 to 10, the synthetic accessibility of the chemicals in 
question was also graded (extremely easy to synthesize 
to complicated to synthesize) [20]. Except for N5, N6, 
N7, N11, and N13, which have synthetic accessibility of 
5.01–5.26, making them easy to synthesize, the major-
ity of the compounds studied have synthetic accessibil-
ity of ≤ 5 (see Table 5).

The ADMET profiles of identified compounds and the 
reference molecule were assessed and are displayed in 
Table 6 using web-based pkCSM tools. BBB penetrations 
values help determine whether or not a chemical will 
pass across the blood–brain barrier (BBB). A Log BB > 0.3 
indicates that a molecule can easily pass the blood–brain 
barrier, whereas a Log BB < − 1 indicates that the mol-
ecule is poorly distributed [21]. Except for N7 all of the 
compounds studied easily crossed the blood–brain bar-
rier in this investigation (see Table 6).

A molecule with a Papp > 8 × 10−6  cm/s is considered 
to have a high Caco-2 permeability as a credible in vitro 
model for estimating oral drug permeability [21]. The 
findings of this study revealed that all of the compounds 
studied have only modest cell uptake in Caco-2 cells.

The HIA forecasts the percentage of a substance 
that will be absorbed through the human gut. Poorly 
absorbed molecules are those that have absorption of 
less than 30% [15]. The study findings revealed that all 
of the compounds studied have excellent HIA scores.

The maximum tolerated dose (MRDT) is a meas-
urement of a chemical’s hazardous dosage threshold 
in humans. An MRTD of less than or equal to 0.477 
log(mg/kg/day) is considered low for a specific chemi-
cal, while significantly greater than 0.477 log(mg/kg/
day) is considered high [15, 20]. Except for N14, all of 
the compounds in this investigation had a low toxicity.

Table 5  Computed drug-likeness based on Lipinski’s rule, bioavailability (BA), and synthetic accessibility (SA)

MWt, molecular weight, HBA, hydrogen bond acceptor; HBD, hydrogen bond donor; TPSA, topological polar surface area; BA, bioavailability; SA, synthetic accessibility; 
T, Template molecule; N, new designed molecules, R, reference molecule (dasabuvir)

Molecule MWt HBA HBD Log p TPSA (Å2) Violation BA SA
Lipinski’s rule
→

˂500 ≤ 10 ≤ 5 ≤ 5 < 40

N1 593.72 6 2 4.24 115.21 1 0.55 4.79

N2 609.71 7 2 4.67 124.44 1 0.55 4.79

N3 637.72 8 3 3.67 152.51 2 0.11 4.93

N4 594.70 6 3 3.67 141.23 2 0.55 4.71

N5 686.20 6 2 5.18 115.21 2 0.55 5.04

N6 664.79 8 2 5.08 144.64 3 0.17 5.22

N7 663.81 8 3 5.44 151.42 3 0.17 5.26

N8 622.71 8 2 4.10 144.64 2 0.17 4.87

N9 638.78 7 2 0.00 159.66 2 0.55 4.89

N10 621.73 8 2 5.09 139.93 2 0.17 4.92

N11 637.73 9 2 5.15 149.16 3 0.17 5.01

N12 619.75 6 2 5.00 115.21 2 0.55 4.97

N13 683.82 8 2 4.17 157.73 2 0.17 5.17

N14 567.63 7 3 3.36 135.44 1 0.56 4.39

N15 640.69 10 5 3.43 184.77 2 0.11 4.45

N16 585.61 9 4 3.06 172.74 2 0.11 4.36

N17 542.59 7 4 2.70 161.46 2 0.11 4.14

N18 541.60 7 3 3.04 135.44 1 0.56 4.19

N19 570.60 9 3 3.69 164.87 2 0.11 4.29

N20 586.66 8 3 0.00 179.89 2 0.11 4.29

N21 569.61 9 3 3.20 160.16 2 0.11 4.48

N22 585.61 10 3 3.95 169.39 2 0.11 4.56

N23 631.70 9 3 3.22 177.96 2 0.11 4.74

N24 570.60 8 4 2.23 178.53 2 0.11 4.26

N25 571.58 9 4 2.27 172.74 2 0.11 4.19

T 595.69 7 3 3.78 135.44 1 0.56 4.65

R 493.57 5 2 2.89 118.64 0 0.55 3.46
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Conclusions
The statistically tested QSAR models produced justified 
describing the antiviral properties of the compounds 
investigated. The models are statistically valid, with 
R2 values of 0.7051 and 0.6992 for internal and exter-
nal validation, respectively, and match the criteria for 
a good QSAR model, as advocated by many organiza-
tions. According to the molecular docking simulation, 
most of the modified compounds had a higher bind-
ing affinity for the target receptor (hepatitis C virus 
NS5B RNA polymerase) than dasabuvir, the reference 
medication. The enhanced therapeutic features of some 
novel derivatives were revealed by ADMET prediction, 
with lowered MRTD (maximum tolerable dosage). This 
inquiry can be useful to comprehend the physicochemi-
cal and biological bioactivities of hepatitis C virus 

NS5B RNA polymerase inhibitors and their modified 
derivatives using a QSAR model, molecular docking, 
drug-likeness, and ADMET analysis to find new and 
improved HCV antiviral medicines.
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