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Abstract 

Background:  Telomerase reverse transcriptase (TERT) and human telomeric G-quadruplex DNA are amongst the 
favorable target for researchers to discover novel and more effective anticancer agents. To understand and elucidate 
structure activity relationship and mechanism of inhibition of telomerase reverse transcriptase (TERT) and human 
telomeric G-quadruplex DNA, a QSAR modeling and molecular docking were conducted.

Results:  Two robust QSAR model were obtained which consist of full set QSAR model (R2: 0.8174, CCC​tr: 0.8995, Q2
loo: 

0.7881, Q2
LMO: 0.7814) and divided set QSAR model (R2: 0.8217, CCC​tr: 0.9021, Q2

loo: 0.7886, Q2
LMO: 0.7783, Q2-F1: 0.7078, 

Q2-F2: 0.6865, Q2-F3: 0.7346) for envisaging the inhibitory activity of telomerase reverse transcriptase (TERT) and 
human telomeric G-quadruplex DNA. The analysis reveals that carbon atom exactly at 3 bonds from aromatic carbon 
atom, nitrogen atom exactly at six bonds from planer nitrogen atom, aromatic carbon atom within 2 A0 from the 
center of mass of molecule and occurrence of element hydrogen within 2 A0 from donar atom are the key pharmaco-
phoric features important for dual inhibition of TERT and human telomeric G-quadruplex DNA. To validate this analy-
sis, pharmacophore modeling and the molecular docking is performed. Molecular docking analysis support QSAR 
analysis and revealed that, dual inhibition of TERT and human telomeric DNA is mainly contributed from hydrophobic 
and hydrogen bonding interactions.

Conclusion:  The findings of molecular docking, pharmacophore modelling, and QSAR are all consistent and in 
strong agreement. The validated QSAR analyses can detect structural alerts, pharmacophore modelling can classify 
a molecule’s consensus pharmacophore involving hydrophobic and acceptor regions, whereas docking analysis can 
reveal the mechanism of dual inhibition of telomerase reverse transcriptase (TERT) and human telomeric G-quadru-
plex DNA. The combination of QSAR, pharmacophore modeling and molecular docking may be useful for the future 
drug design of dual inhibitors to combat the devastating issue of resistance.
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Background
Transcriptase has emerged as a possible drug target 
in cancer therapeutics because of following whys and 
wherefores [1]: Every human being has telomerase, which 
is active in the early stages of life to preserve telomere 
duration. This will maintain the chromosomal integrity of 
recurrently dividing cells, which is supposed to be inac-
tive in most somatic cells and is maintained during adult-
hood [1]. The telomerase enzyme is found in 80–90% of 
cancer cells isolated from major human tumors, although 
it is not found in the adjacent cells of healthy human tis-
sue [2, 3]. Given these evidences and particulars, telom-
erase has gotten a lot of attention as a potential target for 
developing new anticancer drugs.

Telomerase is an RNA–protein complex (RNP) that 
comprises 30 ends of linear chromosomes which give 
rise to generation of the small telomere-repeat sequence 
(TTG​GGG​ in ciliates and TTA​GGG​ in humans) by using 
RNA prototype. The RNA prototype is a component of its 
essential telomerase RNA (TER) component and its basic 
telomerase reverse transcriptase (TERT) [4]. Telomerase 

activity is strongly controlled throughout development 
and oncogenesis [5]. The reported evidences for telom-
erase makes it a popular therapeutic target, as well as 
inhibitory agents with potential for cancer treatment [6]. 
Many hTERT inhibitors were reported [2, 7], and some 
of them, comprising BIBR1532 [8–10] showed promising 
anticancer effects [11–13].

In silico development of new molecules by using a 
logical structure-based drug design approach that iden-
tifies prominent hits and confirms activity for carefully 
selected hits. As a result, finding such hits using a hybrid 
ligand- and structure-based drug design approach will 
aid in the balanced development of more effective telom-
erase inhibitors [14, 15].

Furthermore, noncoding repetition orders of the gua-
nine-rich DNA, which are important for preventing the 
cell from recombination and degradation, are found at 
the telomeric ends of the chromosomes. Telomere are the 
extremities of eukaryotic chromosomes, are necessary 
for maintaining genome integrity and appear to play cru-
cial a role in cellular aging and the cancer.
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They consist of tandemly replicated DNA sequences 
with a G-rich strand directed 5′ to 3′ towards the chro-
mosome’s end [13]. The telomerase activation is asso-
ciated with the shortening of telomere, tracked by the 
activation of the DNA destructive responses. This 
involves the cell cycle arrest, senescence and apop-
tosis [16–22]. Telomerase is an imminent anticancer 
drug target which is supported by the evidence that 
its activity is described and reported in 85–90% of all 
human tumors, but not in normal cells [23]. The Cell 
cycle arrest and apoptosis effects have rendered telom-
erase as a striking target in the field of anticancer drug 
discovery and novel therapeutics [24–28].

To date, a diverse array of G-quadruplex-stabilizing 
compounds has been investigated and reported by 
various researchers, including macrocyclic oxazolo 
[29–33], anthraquinones [34, 35], acridines [36–40], 
cationic porphyrins [41–46], bistriazoles [47], per-
ylenes [48–50], ethidium derivatives [51, 52], flu-
orenones [53], pentacyclic acridinium salts [54–56], 
and fluoroquino phenoxazines [57–62].

Quantitative structure–activity relationship (QSAR) 
studies attempt to find new and similar molecules in 
the broad databases of reported molecules with known 
established observed activities or properties [63–65]. 
The discovery of such a statistical correlation opens 
up the possibility of predicting the activities and prop-
erties of new compounds and, as a result, guiding the 
synthesis of new molecules without having to imple-
ment it.

Multidrug resistance (MDR) is one of the major con-
cerns associated during the course of anticancer treat-
ment. On the other hand, the inhibition of a single 
target repeatedly display momentary effectiveness due 
to emergence of the drug resistance [66]. Perceiving 
that cancers are heterogeneous entities, the simultane-
ous inhibition of multiple targets is needed to obtain 
the optimal effect. As a result, finding new and safe 
dual inhibitors is critical to overcoming the resistance 
issue in cancer treatment. The main emphasis in cur-
rent study is to build a QSAR model which find the 
various structural alerts and the features in nitrogen 
heterocycles containing compound and their corre-
lation with telomerase reverse transcriptase (TERT) 
and human telomeric G-quadruplex DNA inhibition. 
Furthermore molecular docking, may perhaps to be 
used to understand the dual inhibitory mechanism 
and interactions between the ligands and receptor for 
predicting their binding affinity. In addition, pharma-
cophore modeling is used to reveal consensus pharma-
cophoric features required for the dual inhibition of 
TERT and human telomeric G-quadruplex DNA.

Method
The QSAR experimental methodology consist of selec-
tion of dataset, calculation of molecular descriptors, 
feature selection algorithm, validation process, and cor-
relation in relation to structural landscapes (i.e. OECD 
guidelines). The main goal of using experimental meth-
odology is to build a QSAR model with a good equi-
librium of external predictive capability (quantitative/
predictive QSAR) and understanding of QSAR model as 
well as molecular descriptors in terms of structural alerts 
responsible for biological activity (qualitative/descriptive 
QSAR) [67–73].

Thus, classic method has been followed to develop 
a stable QSAR model for inhibitory activity of nitrogen 
ring containing heterocycles for TERT and human telo-
meric G quadruplex DNA. More particulars about the 
technique followed in the current work are available in 
the literature [71, 74–78].

Selection of dataset
In this study, a dataset of structurally varied 82 nitro-
gen ring containing heterocycles experimentally tested 
against Human TERT inhibitory potential has been care-
fully chosen for QSAR investigation from renown and 
publicly accessible ChEMBL database (https://​www.​ebi.​
ac.​uk/​chembl/). The dataset includes a wide range of mol-
ecules with different substituents, such as acridine rings, 
triazoles rings, pyrimidine rings, and so on. As a result, 
in order to create a robust QSAR model, we try to cover 
as much chemical space as possible. The experimentally 
reported EC50 values range from 2 to 23,500 nM, which 
were transformed to pEC50 (− log10EC50) prior to QSAR 
model building. The SMILES notations, EC50 and pEC50 
for selected nitrogen heterocycles as an example only 
are presented in Table  1. In Table  1, we have depicted 
five most and least active compounds as representative 
examples only. In addition, the common scaffolds have 
been presented in Fig. 1 (Presentation of Serial number, 
CheMBL id, Smiles and Pec50 value of 82 compounds is 
given in Additional file 1: Table S5).

The 2D-structures of all 82 compounds were sketch by 
ACD ChemSketch Freeware (www.​acdla​bs.​com) tracked 
by conversion to 3D structures using Avogadro ver. 1.02 
(https://​avoga​dro.​cc/) by means of MMFF94 force field 
for geometry optimization and partial charge assign-
ment. The resulting parameters were used for geometry 
optimization: Force Field: MMFF94, Algorithm: Steepest 
Descent, numeral of steps used for optimization: 1000.

Calculation and pruning of molecular descriptors
PyDescriptor were employed for molecular descrip-
tor calculation using 3D-optimized structures of 

https://www.ebi.ac.uk/chembl/
https://www.ebi.ac.uk/chembl/
http://www.acdlabs.com
https://avogadro.cc/


Page 4 of 24Jawarkar et al. Future Journal of Pharmaceutical Sciences           (2021) 7:231 

dataset compounds. PyDescriptor are available as plugin 
in PyMOL molecular viewer which calculated a bunch of 
more than 29,000 molecular descriptors for each mole-
cule used in present QSAR analysis [71]. In the next step, 
we have implemented objective feature selection (OFS) 
to minimize the group of molecular descriptors. The 
OFS method intricate removal of persistent, nearly per-
sistent (95% molecules) and greatly correlated molecular 
descriptors (R > 0.90). OFS lead to condensed bunch of 
494 molecular descriptors, which still encompasses com-
prehensive range of PyDescriptor because of incidence of 
1D- to 3D-molecular descriptors. This reduced descrip-
tor pool was further used for the subjective feature selec-
tion (SFS) [71, 78–80] (Calculated Py-Descriptor values 
used to build QSAR model is depicted in Additional 
file 1: Table S6).

Subjective feature selection (model building)
The method of SFS was executed by using 
QSARINS-2.2.4 with default setting in which a number 
of generations was set to 1000. The genetic algorithm 
(GA) module available in QSARINS-2.2.4 employ Q2 as 
a fitting parameter to circumvent over fitting and inser-
tion of redundant variables during model building. A key 
decision in evolving a successful QSAR model is to stop 
adding molecular descriptors to the model at appropri-
ate point of time. In the current study, breaking point is 
obtained by means of graph was drawn amid the num-
ber of descriptors intricated in the models and Q2 value. 
In the conclusion, the number of molecular descriptors 
conforming to the breaking point was considered opti-
mal for model development. The graph amid numbers of 
variables used in the models against Q2 value is shown in 
Fig. 2. From Fig. 2, it is clear that the breaking point links 
to five variables. Therefore, five descriptor were used to 
derive robust QSAR model while QSAR models with 
more than five descriptors were excluded [79, 81].

To gain deep understanding of structural features 
prominent for Dual inhibition of telomerase reverse 
transcriptase as well as human telomeric G DNA, we are 
expected to develop (Descriptive QSAR) statistically sat-
isfactory GA-MLR originated QSAR model [82, 83].

To do so, we used the strategy of dividing the entire 
dataset into two sets: 80% training set and 20% predic-
tion set. Using this technique, training set give rise to 
the most relevant and appropriate number of molecular 
descriptors for QSAR model, while the prediction set 
(test set) was employed for external validation, i.e., to 
ascertain the external prediction capability (predictive 
QSAR). The plan has been portrayed in Fig. 3.

Validation of QSAR model
Following the development of a QSAR model, it is 
extremely crucial and important to validate the model 
for external predictive potential in order to determine its 
performance and scope for predicting biological activ-
ity in lead/drug optimization during the drug discovery 
phase [56, 57, 73]. As a result, not only were extensive 
internal validations and the Y-scrambling technique used, 
but an external prediction range of 20% molecules was 
also used to verify the model’s statistical robustness. A 
Williams plot was also created to ascertain the applicabil-
ity domain of the developed QSAR model. Additionally, 
the guidelines were used to choose and validate a QSAR 
model. R2

tr 0.6, Q2
loo 0.5, Q2LMO 0.6, R2 > Q2, R2

ex 0.6 
RMSEtr < RMSEcv, DK 0.05, CCC 0.80, Q2-Fn 0.60, r2m 
0.5, (1 − r2/ro

2) < 0.1 0.9  k 1.1 or (1 − r2/r′o2) < 0.1, 0.9  k′ 
1.1, ro

2 r′o2 < 0.3 with RMSE and MAE as low as possible. 
The Q2

LMO value stated here is mean value of 2000 repeti-
tions with 30% of the population (molecules) arbitrarily 
excluded from the training set at each time. The exter-
nal predictive capacity of model was find out by using 
external validation parameters, viz., RMSEex MAEex, R2

ex, 
Q2F1, Q2F2, Q2F3, and CCC​ex. All QSAR models that do 

Table 1  Five most and least active Acridine containing heterocycles against Human TERT enzyme (organized according to EC50 
values)

Molecular Id S n Smiles notation EC50 PEC50

CHEMBL187966 82 Nc1ccc(Nc2c3ccc(NC(=O)CCN4CCCC4)cc3nc3ccc(NC(=O)CCN4CCCC4)cc23)cc1 8.699 8.699

CHEMBL507478 81 NCCC1CCCN1c1c2ccc(NC(=O)CCN3CCCC3)cc2nc2cc(NC(=O)CCN3CCCC3)ccc12 7.745 7.745

CHEMBL140180 80 CN(C)CCNc1c2ccc(NC(=O)CCN3CCCC3)cc2nc2cc(NC(=O)CCN3CCCC3)ccc12 7.745 7.745

CHEMBL345035 79 Nc1ccccc1Nc1c2ccc(NC(=O)CCN3CCCC3)cc2nc2cc(NC(=O)CCN3CCCC3)ccc12 7.699 7.699

CHEMBL4463229 78 Nc1ccccc1Nc1c2ccc(NC(=O)CCN3CCCC3)cc2nc2ccc(NC(=O)CCN3CCCC3)cc12 7.678 7.678

CHEMBL343795 5 CN(C)c1ccc(Nc2c3ccc(NC(=O)CCCCCN4CCCC4)cc3nc3cc(NC(=O)CCCCCN4CCCC4)ccc23)cc1 5.161 5.161

CHEMBL186489 4 O=C(CCN1CCCC1)Nc1ccc2c(O)c3ccc(NC(=O)CCN4CCCC4)cc3nc2c1 5.092 5.092

CHEMBL453704 3 O=C(CCN1CCCC1)Nc1ccc(-n2cc(-c3cccc(-c4cn(-c5ccc(NC(=O)CCN6CCCC6)cc5)nn4)c3)nn2)cc1 4.876 4.876

CHEMBL4526267 2 O=C(CCN1CCCCC1)Nc1ccc(-n2cc(-c3cccc(-c4cn(-c5ccc(NC(=O)CCN6CCCCC6)cc5)nn4)c3)nn2)cc1 4.767 4.767

CHEMBL397768 1 CCN(CC)CCC(=O)Nc1ccc(-n2cc(-c3cccc(-c4cn(-c5ccc(NC(=O)CCN(CC)CC)cc5)nn4)c3)nn2)cc1 4.629 4.629
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Fig. 1  Structural variations in dataset compounds used for QSAR modeling
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not achieve the endorsed lower-limit values for above 
statistical parameters have been directly excluded,

The inter-correlation between descriptors were tested 
by the QUIK rule (Q under Influence of K). QUICK 
rule was fixed to 0.05 to lessen inter-correlation among 
descriptors. The reliability of the developed QSAR 
model was ascertained by Y-randomization set at 2000 
iterations to check the fitting of the randomly reordered 
Y-data. For the randomization of the build QSAR model, 
the dependent variables (PIC50 value) of the training set 
have been shuffled and new coefficients of determination 
were calculated. The significantly low value of the coef-
ficients of determination of the new models specify that 
the reported model in the present QSAR analysis is not 
obtained by chancy correlation. The external validation 
of all the models were verified with the subsequent vali-
dation criteria: r2

ext (external determination coefficient), 
Q2F1, Q2F2, Q2F3, concordance correlation coefficient 
(CCC), CCC​ext, r2 m, and Δr2 m. The parameter R2 m 
(overall) penalizes a model for large differences between 
observed and predicted values of the compounds of the 

whole set (considering both training and test sets). The 
Δr2m estimated the indulgent between the values of the 
predicted and the resultant experimental activity data 
(PIC50 value). It has been reported that, the observed 
value for the Δr2m should be preferentially lower than 0.2 
provided that, value of r2m > 0.5.

Additionally, all the QSAR models were evaluated for 
validation parameters, such as Golbraikh and Tropsha’s 
criteria to justify model reliability and robustness. Gen-
erally, good predictive ability of the developed QSAR 
model depends upon closeness of predicted value against 
observed (experimental biological activity) value. Even, 
presence of single outlier diminish the predictive capa-
bility of the developed QSAR model. Subsequently, we 
have tried to highlight the outlier on the basis of those 
compounds who showed significantly high residual value 
in GA-MLR QSAR models. Moreover, we have identified 
the outlier compounds by comparing the predicted value 
with three standardized residual values. Likewise, struc-
tural variation in database compounds was observed by 
leverage effect in Williams plot. The applicability domain 
of the developed QSAR model is ascertained by merging 
the leverage and the standard residuals [68, 69, 72, 74, 84, 
85].

Pharmacophore modeling
To achieve a consensus pharmacophore model, we have 
generated lowest energy conformer of the most active 
compound 82 that was used to align all of the molecules 
in the dataset. Then, LIQUID 1.0, a free PyMOL plugin, 
was used to produce consensus pharmacophore model 
expending default settings. Whereas, in Fig. 12, the pdb 
files (5cqg) were obtained from publicly accessible data-
bank (www.​rcsb.​org). Afterward, the bound pdb ligands 
were isolated without any alteration or optimization, that 
is, the X-ray crystallographic resolved crystal structure of 
extracted ligand was used as it is to generate the pharma-
cophore model with LIQUID 1.0 [86] (Fig. 4).

Docking of the inhibitors
Molecular docking studies were performed using the 
NRGSuite software package. The NRGSuite package 
equipped with FlexAID that contains four primary pan-
els to specify the input target protein and ligand to be 
docked, configuration of the target and ligand and sim-
ulation. All the crystallized water molecules and coor-
dinated molecules were found in the crystal structure 
of BIBR1532 anchored with the Tribolium castaneum 
catalytic subunit of the RNA prototype the telomerase 
(tcTERT) were preserved (pdb id-5cqg) during a dock-
ing procedure. The binding site residues of tcTERT was 
ascertain by using site finder function in NRGSuite to 
determine active site in crystallized ligand BIBR1532 

0.6
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Fig. 2  Depiction of plot drawn between the number of descriptors 
against coefficient of determination R2 and leave-one-out coefficient 
of determination Q2 to identify the optimum number of descriptors
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models
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with the extraction of ligand structure present in pdb 
for redocking purpose. Site finder option reveals two 
binding site in chain A and B where crystallized ligand 
BIBR1532was found to be bound. As a result, the inhib-
itor compound 82 and the co-crystallized ligand were 
docked using NRGSuite’s site finder function. The 
FlexAID uses genetic algorithm. A number of impor-
tant parameters, notably the number of chromosomes 
and generations can be defined in this panel. Addition-
ally, the number of top results that are visualized during 
the simulation and the frequency (in numbers of gener-
ations) to refresh the visualization can be set. Then, the 
poses obtained during the placement stage were then 
fine-tuned using the Induced Fit method, which allows 
for protein versatility during ligand binding and thus 
improves the interaction prediction accuracy. The top 
five uppermost scoring poses were then achieve with 
the GBVI/WSA dG scoring utility. The final perfor-
mance was analyzed, and docked poses inside the bind-
ing site that were not properly oriented (for catalytic 
site) and whose versatile alignments were compared to 
the top scoring pose of compound 82 were included. 
The docking poses of compound 82 were then superim-
posed on top of the co-crystallized ligand BIBR1532 to 

determine the most favorable docked conformation for 
telomerase inhibition.

Results
Full set model

PEC50 = 4.191 (± 0.596) + 0.407 (± 0.09) * fdonH2A +   
− 0.251 (± 0.095) * ringN_acc_8A + 0.261 (± 0.131) * faro 
CC3B + 0.214 (± 0.099) * fplaNN6B + 0.263 (± 0.065) * com_ 
aroC_2A++
R2: 0.8174, R2

adj: 0.8054, R2–R2
adj: 0.0120, LOF: 

0.1499, Kxx: 0.2604, Delta K: 0.1186, RMSEtr: 0.3400, 
MAEtr: 0.2510, RSStr: 9.4780, CCC​tr: 0.8995, s: 0.3531, F: 
68.0476, Q2

loo: 0.7881, R2–Q2
loo: 0.0293, RMSEcv: 0.3663, 

MAEcv: 0.2702, PRESScv: 11.0009, CCC​cv: 0.8831, Q2
LMO: 

0.7814, R2Yscr: 0.0597, Q2Yscr: − 0.0987, RMSE AV Yscr: 
0.7714. (Depiction of QSAR results along with their 
experimental and predicted EC50 values for full set model 
is given in Additional file 1: Table S4).

Divided set model (80:20)

PEC50 = 5.355 (± 0.563) + 0.367 (± 0.1) * fdonH2A +  − 0.287 
(± 0.098) * ringN_acc_8A +  − 0.162 (± 0.119) * notringC_
aroC_2B + 0.336 (± 0.127) * fplaNN6B + 0.274 (± 0.071) * 
com_aroC_2A++

Fig. 4  Different graphs associated with the developed QSAR model (full set model). a Experimental versus predicted PEC50, b Williams plot to assess 
applicability domain of model
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R2: 0.8217, R2adj: 0.8068, R2–R2
adj: 0.0149, LOF: 

0.1600, Kxx: 0.2783, Delta K: 0.0936, RMSEtr: 0.3394, 
MAEtr: 0.2636, RSStr: 7.6042, CCC​tr: 0.9021, s: 0.3560, 
F: 55.2934, Q2

loo: 0.7886, R2–Q2
loo: 0.0331, RMSEcv: 

0.3696, MAEcv: 0.2882, PRESScv: 9.0164, CCC​cv: 0.8842, 
Q2

LMO: 0.7783, R2Yscr: 0.0777, Q2Yscr: − 0.1253, RMSE 
AV Yscr: 0.7717, MSEext: 0.414, MAEext: 0.3415, PRESSext: 
2.7438, R2

ext: 0.7020, Q2-F1: 0.7078, Q2-F2: 0.6865, Q2-
F3: 0.7346, CCC​ext: 0.8354, r2m aver.: 0.5878, r2m delta: 
0.0810.

In the present QSAR analysis, compound 82 was 
detected as X outlier while compound 8, 13 were depicted 
as high leverage influential (see Fig. 5). Moreover, apart 
from fitness function Q2, we have displayed another fit-
ness function of concordance correlation coefficient 
(CCCext) as one of the external validation parameter. 
(Depiction of QSAR results for divided set model along 
with their experimental and predicted EC50 values for 
divided set model is given in Additional file 1: Table S3).

Discussion
faroCC3B
The descriptor faroCC3B point out frequency of occur-
rence of carbon atom exactly at 3 bonds from aromatic 
carbon atom. Since this descriptor has positive coef-
ficient, this means that, increase in the value of this 
descriptor will increase its pEC50 value for the mole-
cules used in present study. In compound 81, C3 and C6 

propanamide substituent placed at a topological distance 
of 3 bonds from C3 and C6 aromatic carbon atoms of 
acridine ring, amino methyl carbon atom placed at C2 
postion of pyrrolidine ring is separated by the topological 
distance of three bonds from C9 aromatic carbon of acr-
idine ring and C3, C4 carbon atoms of pyrrolidine ring 
is placed at a topological distance of three bonds from 
C9 aromatic carbon of acridine Ring. Same pattern of 
descriptor faroCC3B is observed in compound 7 except 
pyrrolidine ring is replaced by amino cyclopropyl sub-
stituent on C9 position of acridine ring. If we compare 
activity profile of compound 81 and 75, we observed that 
pyrrolidine substituent is more favorable for anticancer 
activity rather than amino cyclopropyl substituent. This 
observation highlight the variation in the activity of com-
pound 81 and 75 in nanomolar range.

To add more, both aliphatic chain and unsaturated 
centers in molecule significantly contributed to the over-
all lipophilicity of the molecule. Therefore, lipophilicity is 
the key feature that govern dual inhibition of TERT and 
human G DNA. Subsequently, attachment of pyrrolidine 
ring to the acridine ring through the single bond impart 
enough flexibility to the compound 81 therefore, steri-
cally lock it into the active conformation within TERT 
and human telomerase G DNA.

Ranganathan et  al. and Khanna et  al. have reported 
that, most of the molecules in the metabolite dataset 
used studies contains a carbon atoms in the range 35–55 

Fig. 5  Different graphs associated with the developed QSAR model (divided set model). a Experimental versus predicted PEC50, b Williams plot to 
assess applicability domain of model
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which is 32% i.e. 5–25 carbon atoms per molecule. The 
carbon atom content in metabolites has a mean of 33 
atoms and maximum up to the 100. On the other hand, 
drugs molecule have an average of 18 carbon atoms per 
molecule, with a maximum of 256 and 76% of drugs con-
sist of carbon atoms in the range of 5–25 [85]. In QSAR 
model descriptor faroCC3B highlight the importance of 
occurrence of carbon atom exactly at 3 bonds from aro-
matic carbon atom in dataset molecules (see Fig. 6).

Further, in compound 66, descriptor faroCC3B is 
observe at C3and C6 aromatic carbon of acridine ring 
which reveals that, decrease in the cloud of carbon atoms 
placed at topological distance of three bonds from the 
aromatic carbon atom, further diminishes the anticancer 
activity of compound 66. For increasing anticancer pro-
file of compound 66, substitution of pyrrolidine ring with 
an amino methyl substitution at C9 position of aromatic 
carbon of acridine ring is recommended. This observa-
tion supported the fact that, compound 81and 75 have 
five such carbon atoms placed at a topological distance 
of three bonds from aromatic carbon atoms while com-
pound 66, 45 and 8 shows two centers except compound 
13 in which carbon with topological distance of three 
bond from aromatic carbon atom is missing, therefore 
it is clear that variation in pEC50 value is due to absence 
of carbon atoms at a topological distance of three bonds 
from aromatic carbon atoms. Here greater the number 
of carbon atom at a topological distance of three bonds 
from aromatic carbon atom, higher will be the anticancer 
activity of stated compounds under study. Enhance cloud 
of carbon atom augments lipophilicity which in turn indi-
cate maximum hydrophobic interaction with receptor.

fplaNN6B
The descriptor fplaNN6B stand for the frequency of 
occurrence of nitrogen exactly at six bonds from planer 
nitrogen atom. The positive coefficient designates that an 
increase in the number of such Nitrogen atoms may plau-
sibly enhances the anticancer activity (pEC50 value). Ran-
ganathan et  al. and Khanna et  al. have recognized that 
drugs molecules clearly possess the maximum number 
of the nitrogen atoms, followed by toxin molecules and 
lastly, metabolites [85].

Pennington et al. established the importance of nitro-
gen in heterocyclic compounds. Pennington et  al. 
reported that the replacement of a CH group with N 
atom in aromatic and hetero aromatic ring structures can 
have many beneficial effects on molecular and physico-
chemical properties and intra and intermolecular inter-
actions that may give rise to improved pharmacological 
profiles in drug discovery. Moreover, Pennington et  al. 
also investigated that, a N atom in aromatic and heter-
oaromatic ring systems can influence the number of 

intra- and intermolecular orbital, steric, electrostatic, 
and hydrophobic interactions such as lone pair, dipole–
dipole, hydrogen bonding, metal coordination, van der 
Waals, σ-hole, σ*S − X, and π-system interactions, which 
in turn can translate to modified pharmacological pro-
files [87].

This observation is reinforced by a simple comparison 
of the subsequent pair of molecules: comp-81 (PEC50-
7.74  nm) with comp-40 (PEC50-6.59  nm), comp-80 
(PEC50-7.74  nm) with comp-45 (PEC50- 6.67  nm) (see 
Fig.  2). In case of compound 2, this feature is missing. 
Therefore, we can say that presence of planer nitrogen is 
most important for augmenting biological activity per-
formance of molecule (see Fig.  7). In our dataset, com-
pound 62 to 82 contains two planer nitrogens, compound 
40, 45, 46, 52, 67, 78, 82 consist of one planer nitrogen 
while planer nitrogen in absent compounds 1 to 4 and 6 
to 32. Here, nitrogen becomes planar when its lone pair 
becomes involved in pi-bonding. The five-membered 
rings have significant delocalization of electrons to pro-
duce a cloud system similar to that in benzene. As a 
result, planer nitrogen increases the electron cloud in the 
molecule, which strengthens electrostatic interactions 
with the receptor surface by exhibiting pi bonding.

ringN_acc_8A
This descriptor depicts occurrence of ring nitrogen 
within 8 A0 from the acceptor atom. In QSAR model, 
this descriptor has negative correlation with PEC50 value. 
Therefore, number of ring nitrogen within 8 A0 from 
acceptor atom must be retained, as low as possible to 
enhance the anticancer activity (PEC50 value). Increase 
in the value of descriptor ringN_acc_8A will further 
decreases the anticancer activity profile of the com-
pounds in dataset. This is observed when PEC50 of com-
pound 23 compared with compound 41. This could be 
the possible reason for the difference in the PEC50 value 
of compound 23 and 41 (see Fig. 8).

In general, it is established that, close combination of 
ring nitrogen and acceptor is avoided to prevent intra-
molecular hydrogen bonding in the molecule. Specially, 
when oxygen and nitrogen are connected by single bond 
to the neighbor atoms. Thus, the descriptor ringN_
acc_8A provides a hint to avoid close proximity of ring 
nitrogen with acceptor atom to avoid the prospect of 
intramolecular bonding.

com_aroC_2A
The descriptor com_aroC_2A specifies occurrence of 
aromatic carbon atom within 2 A0 from center of mass 
of molecule. This descriptor is positively correlated with 
PEC50. Hence, this value must be kept as high as possi-
ble. In case of compound 82 (PEC50 = 8.69 nm), there are 
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Fig. 7  2D pictorial depiction of fplaNN6B descriptor for compound 81, 80, 40, 45 and 2 
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around six carbons present within the radius of 2 A0 from 
the center of mass of the molecule while in compound 19, 
only three carbons are present within 2 A0 from center 
of mass of molecule. Therefore, it is reasonable to settle 
that, difference in the activity of stated compound is due 
to the number of carbons present within 2 A0 from the 
center of mass (see Fig. 9).

The same is true for compound 13, which has five car-
bons within 2 A0 of the center of mass. It is reasonable to 
conclude that the activity of compounds 82 and 13 differs 
solely due to the number of carbons within 2 A0 of the 
center of mass, and that this may be the cause of the dif-
ferences in the activity profiles of both molecules.

This could be the possible reason for the differences 
in the activity profile of both molecules. In general, the 
presence of aromatic carbon atom affect overall lipophi-
licity of the molecule, therefore, it is rational to predict 
that, carbon atoms present in the vicinity of center of 
mass plays crucial role in hydrophobic interactions with 
the receptor.

notringC_aroC_2B
The descriptor notringC_aroC_2B describes the occur-
rence of non-ring carbon atom exactly at or within 2 
bonds from aromatic carbon atoms, providing different 
level and type of useful information. Since this descrip-
tor has a negative coefficient in the model, raising its 
value can result in a lower activity profile. In this case, 
a compound with a higher number of non-ring carbon 
atoms exactly at or within two bonds from aromatic 
carbon atoms might have lower activity than one with 
fewer of these aromatic carbons. This is observed when 
comparing compound 37 to 61 and compound 33 to 78 

(see Fig. 10). This finding supports the fact of the varia-
tion in activity of the stated compounds.

In compound 78, non ring carbon atom containing 
amide group is present at terminal position, there-
fore, it is may establish that, these substituents occupy 
lipophilic pocket of the TERT as well human telom-
eric G DNA. To add more, these substituent varying 
steric bulk in the receptor pocket, thereby blocking the 
enzyme. Besides, the presence of aliphatic chain along 
with unsaturated pyrrolidine imparts good lipophilicity 
as well as flexibility to the molecule.

fdonH2A
The descriptor fdonH2A indicatesfrequency of occur-
ance of element hydrogen within 2A from donar atom. 
It has positive coefficient in the developed models, 
therefore the number of Hydrogen atoms in the neigh-
borhood of ring Nitrogen atoms is favorable blend to be 
used for lead/drug optimization. Since Hydrogen is the 
smallest element, it suggests that there should be mini-
mum bulk in the vicinity of donar atoms. Therefore, 
in future structural modifications, steric bulk nearer 
to donar atoms should be circumvented to have better 
anticancer activity (see Fig. 11).

As the descriptor fdonH2A specifies necessity of 
higher number of donar feature with presence of 
hydrogen atom within 2 A0. In case of compound 68, 
five donar features are present with five hydrogen 
atoms within 2 A0 while four donar are reported in 
compound 38. As a result, it is reasonable to conclude 
that a greater number of donars containing hydrogen 
atoms is needed for greater telomerase inhibition. This 
may be a plausible explanation for the differences in 
PEC50 values among the compounds mentioned. When 
we compared the PEC50 values of compound 68 with 
38 and compound 26 with 4, we came to the same con-
clusion.. In case of compound 68, steric bulk increase 
from amide oxygen due to butyl and hexyl aliphatic 
side chain. These substituents in turn augment the lipo-
philicity of the compound along with the selectivity 
towards receptor.

To add further, in compound 68, donar is capable of 
getting more surface area for hydrogen bonding within 
receptor pocket due to aliphatic side chain as compared 
to bulky aromatic substituent. To add more, the interac-
tion between compound 68 and the receptor is possible 
due to the flexibility of aliphatic butyl side chain.

In our QSAR analysis, diverse Py molecular descrip-
tors demonstrating dissimilar structural landscapes have 
provided expressive visions into the whys and where-
fores for differences in the anticancer activity of dataset 
compounds.

Fig. 8  Depiction of descriptor ringN_acc_8A occurrence of ring 
nitrogen within 8 A from acceptor atom (acceptor atom indicated in 
red bold words and ring nitrogen indicated in blue bold words)
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Pharmacophore modeling
It is a deep-rooted and successful branch of Computer 
assisted drug design which is executed to recognize key 
structural alerts (properties) accountable for binding 
affinity and overall pharmacological activity of ligand. 
The consensus pharmacophore model displays two 
larger hydrophobic regions separated at a distance of 
7.2 A0 and 4.2 A0 from hydrogen bond donar and two 
hydrogen bond acceptors placed at a distance of 2.8 
A0 and 2.3 A0 from hydrogen bond donar. The phar-
macophore modeling emphasized the significance of 
the hydrophobic nature of central acridine ring and 
its nearby substituents atoms. The similar observation 
is also reinforced by the occurrence of the descriptor 

faroCC3B, notringC_aroC_2B and com_aroC_2A in 
the QSAR model as well as recent crystal structures for 
BIBR1532 with TERT (see Fig. 12).

Based on a comparison of Pharmacophore model 
with co-crysallized ligand (pdb-5cqg) with pharmaco-
phore model for Most active compound 82, the con-
sensus pharmacophore model and the pharmacophore 
model obtained using the X-ray resolved crystal struc-
ture of extracted ligands are very close especially with 
respect to the presence of two large hydrophobic region 
(green colored) at the both end and one H-bond accep-
tors in the vicinity of acridine nitrogen (red colored). 
Thus, QSAR and pharmacophore modeling led to 
recognition of consensus and matching structural 

Fig. 9  Depiction of descriptor com_aroC_2A (occurrence of aromatic carbon atom within 2 A from center of mass of molecule, carbon atoms 
highlighted in bold pink color are present within 2 2 A0 from the center of mass)
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topographies and justified by recent crystal structure 
of TERT with BIBR1532. Moreover, compound 82 dis-
play hydrogen bonding and hydrophobic interaction 
with human G DNA, therefore, presence of hydro-
phobic as well as acceptor feature is crucial for bind-
ing as well as inhibition of human G DNA. The similar 
remark is highlighted by the occurrence of the descrip-
tor faroCC3B, notringC_aroC_2B and com_aroC_2A in 
the QSAR model.

Molecular docking of compound 82 with TERT
Telomerase enzyme is a ribonucleoprotein (RNP) reverse 
transcriptase responsible for replicating the ends of chro-
mosomes and sustaining genome authenticity. The TERT 
structure comprises four separate areas (TRBD, fingers, 
palm, and thumb) well-arranged into a ring thus, pro-
ducing large interior binding pocket for RNA prototype 
and telomeric DNA during the whole process of telomere 
elongation. At the present, BIBR1532 molecule is in clini-
cal trial and chemically, it is a (2-[(E)-3-naphtalen-2-yl-
but-2-enoylamino]-benzoic acid). It is a non-nucleosidic, 
non-competitive, small-molecule inhibitor of telomerase 
that is regularly and constantly introduced in studies of 
telomerase function. (Docking results for Compound 
82, BABR1532 and Epirubicin into the TERT is given in 
Additional file 1: Table S1).

Experimental and simulated annealing study reveals 
the presence of superficial but well-defined hydrophobic 
pocket located on the external surface of the thumb area 
of telomerase and following the TRBD-thumb border. 

Fig. 10  Depiction of descriptor notringC_aroC_2B (occurrence of 
nonring carbon atom exactly within 2 bonds from aromatic carbon 
atom, distance between aromatic and non aromatic carbons are 
shown by bold red bonds)

Fig. 11  Depiction of descriptor fdonH2A for compound 68, 38, 26 
and 4. (Bold blue colored nitrogen indicates donar while bold red 
hydrogen atom present within the vicinity of 2 A0 from donar)
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This pocket is formed as a minor gap, around 10 A0 wide-
ranging and 8 A0 deep, prepared by the collection of the 
tips and connecting loops of the helices 20, 21, and 22, 
23. This cavity form as pocket and, referred as the FVYL 
motif/pocket, present on the well-preserved hydrophobic 
residues: F478, V491, Y551, and L554. The FVYL amino 
acid residues exert extensive hydrophobic interactions to 
stabilize the placement of the rings and helices near the 
pocket. Many well-maintained and typically hydrophobic 
amino acid residues occupying the interior of this pocket, 
which comprise M482, M483, F494, I497, W498, I550, 
Y551, and L554.

Examination of the BIBR1532 telomerase amalgamated 
crystal structure data revealed hydrogen bonding inter-
actions amid Asn 421, Arg 433, Lys 437 of telomerase and 
the carbonyl and carboxylic acid groups of BIBR1532. 
From the docking analysis of pose 1 of compound 82dis-
play docking score of − 9.125  kcal/mol and occupied 
FVYL motif/pocket through pi-alkyl hydrophobic inter-
action with residue L554 via phenyl ring of 4-amino-
phenyl substituent. Acridine nitrogen form key hydrogen 
bonding interaction with water molecule HOH: B735 
(2.17 A0) while pyrrolidine ring carbon exhibit two car-
bon hydrogen bonding with residue GLY: B283 (2.56 A0, 
2.81 A0) (see Fig. 13).

Meanwhile, B:MET 482 residue form pi–sulphur inter-
actions with acridine ring, PHE: 494 execute amide–
pi interaction with phenyl ring, ARG486 and ILE550 
anchored alkyl hydrophobic interactions with pyrroli-
dine ring. In addition to this ILE497, Leu554 and ILE550 

which form shape of the interior of FVYL motif/pocket 
and exhibit pi-alkyl hydrophobic contact with amino 
phenyl substituent. Compound 82 acquired same bind-
ing conformations as that of crystallized ligand BIBR1532 
(see Fig.  13). As previously mentioned, we chose two 
binding sites 23 and 47 in the site finder choice in MOE 
to investigate the binding mode of compound 82 due 
to crystallized ligand BIBR1532 binding at two sepa-
rate sites during the docking process. Docking analysis 
divulges that compound 82 acquired two best docked 
conformation with the docking score of − 9.125  kcal/
mol and − 9.004 kcal/mol at first site while third docking 
conformation was acquired in another binding site and 
exhibit two hydrogen bonding interaction in which water 
molecule HOH: 784 (3.40 A0) bind with acridine ring and 
HOH: 799 (2.58 A0) attached with pyrrolidine nitrogen 
(see Fig. 14).

Likewise, middle acridine form electrostatic contact 
with ARG 486 residue through pi–cation interactions 
and PHE494 involved in three pi–pi stacked hydrophobic 
interactions with all the three acridine rings. Therefore, 
it is reasonable to say that acridine ring plays crucial role 
in enhancing binding affinity against TERT and actively 
involved in drug receptor interactions. In addition to this, 
MET482, ILE497, LEU554, ILE550, MET483, ARG486 
residue from the interior lining of the FVYL motif/pocket 
are involved in pi-alkyl hydrophobic interactions with 
amino phenyl substituent and acridine ring.

Again it is not hard to see that compound 82 acquired 
different conformations within FVYL motif/pocket and 

Fig. 12  a Pharmacophore model with co-crysallized ligand (pdb-5cqg), b different regions with distances only, c pharmacophore model for Most 
active compound 82, d pharmcophore model with align pdb(5cqg) crystallized ligand and most active compound 82 with distances



Page 16 of 24Jawarkar et al. Future Journal of Pharmaceutical Sciences           (2021) 7:231 

Fig. 13  Depiction of 2D interaction of pose 1 conformation of compound 82with TERT and 3D view of superimposed alignment of compound 82 
(green) with crystallized ligand BIBR1532 (yellow)
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key interaction involves hydrogen bonding and hydro-
phobic interactions with the involvement of water 
molecule and hydrophobic residues MET482, ILE497, 
LEU554, ILE550, MET483, and ARG486. When the 
docking findings were compared to those of the crys-
tallized ligand BIBR1532, the interaction between com-
pound 82 and amino acid residues was found to be 
close to that of BIBR1532 (see Fig. 15).

The descriptor com_aroC_2A andfaroCC3B pint out 
towards importance of lipophilicity in telomerase inhi-
bition. Here Ligand lipophilicity influences target affin-
ity momentarily as most discovered binding sites shows 
presence of at least one hydrophobic pocket in a nearby 
aqueous environs. The hydrophobicity give rise to the 
interaction between the ligands and the protein bind-
ing sites through altering the interactions between the 
protein and solvating waters, therefore exhibiting more 
promising hydrophobic interactions for both ligand and 
protein. Therefore, these descriptors give key informa-
tion about lipophilicity is the most important factor 
required for telomerase inhibition and plays crucial 
role in monitoring the balance of hydrophobic features 
of molecule.  Thus, it is sensible to say that docking 
outcomes are in complete agreement with descrip-
tor com_aroC_2A and faroCC3B. The Descriptor 
ringN_acc_8A and fplaNN6B highlight the importance 
of ring nitrogen and planer nitrogens in QSAR model. 
Docking results depicted that acridine ring nitrogen 
(ringN_acc_8A) form pi-alkyl hydrophobic interactions 
with TERT receptor therefore, it is rationale to say 
that docking results are entirely correlated with QSAR 
findings. Moreover pyrrolidine ring nitrogen exhibit 

hydrogen bonding with water molecule which again 
put forth that, nitrogen atom is essential for TERT 
inhibition.

Molecular docking study on human telomeric 
G‑quadruplex DNA
The human and mammalian telomeric DNAs comprises 
5′-TTA​GGG​-3′ repeating sequences that contain numer-
ous base pairs. Binding of small ligand to human telom-
eric DNA is documented to be stabilize G4 DNA, impede 
in functioning of gene expression/regulation is one of the 
strategy to develop new anticancer agents.

The established X-ray crystal structure of a human 
quadruplex G DNA made from four uninterrupted 
human telomeric DNA which repeats and developed at a 
K1 concentration that come close to its intracellular con-
centration. K1 ions were reported in the crystal structure. 
The folding and occurrence of the DNA in reported (pdb 
id-1kf1) intramolecular quadruplex, is primarily different 
from the Reported Na1-containing quadruplex arrange-
ment [88, 89]. All four DNA strands are present in analo-
gous fashion and, shows three linking trinucleotide coils 
placed on the outer core of the quadruplex and look like 
as propeller-like arrangement.

Docking studies of compound 82 in complex with 
human telomeric G-quadruplex DNA shows (dock 
score =  − 7.2503  kcal/mol) that planer acridine ring 
loaded on the G terminal and align in between DG: 8 and 
DG: 9 where it exhibit pi–pi stacked interaction with DG: 
8 (see Fig. 16). Here central cationic acridine ring nitro-
gen atom covering the central polarized carbonyl channel 
of negative electrostatic potential that runs through the 
stack of G quartets and exhibited a contact with potas-
sium ion (K, A: 46) at topological distance of 3.34 A0. At 
this point, one propanamide substituent at 6 position of 
acridine ring orient in between DG: 8 and DG: 9 where 
it exhibit one hydrogen bonding interactions with water 
molecule HOH: 1050 (2.75 A0), one carbon hydrogen 
bond with DG: 8 (2.85 A0) while another propanamide 
substituent at 2 position stacked on DG: 20 where it form 
a contact of hydrogen bond with DG: 14 (2.76 A0) and 
carbon hydrogen bonding with DG: 20 (2.57 A0).

The central acridine ring is stabilized by pi–pi stacked 
interactions with DG: 8 (5.99 A0) and DG: 14 (5.61 A0). 
Moreover acridine ring exhibit one more pi–pi stacked 
contact with DG: 14 (5.13 A0) to concrete stabilization 
of acridine ring and human telomeric G-quadruplex 
complex (see Fig. 16). The binding site itself is extremely 
disturbed as it is appears exterior to the load of three G 
quartets which is connected to the channels generated 
from the phosphodiester backbones. (Docking results for 
Epirubicin and compound 82 in the human telomeric G 
DNA is given in Additional file 1: Table S2).

Fig. 14  Depiction of 3D interaction of compound 82 pose 2 (pink) 
with TERT and flexible alignment with pose 1 of compound 82 
(green) and crystallized ligand BIBR1532 (yellow)
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Fig. 15  Depiction of 2D interaction of pose 3 of compound 82 and 3D presentation of superimposed alignment of pose 3 of compound 82 with 
BIBR1532
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Further amide carbonyl oxygen of propanamide sub-
stituent exhibit metal acceptor contact with potassium 
ion (K, A: 46) at interatomic distance of 3.21 A0 which 
disclose close contact of 2-propanamide substituent than 
acridine nitrogen. Third sub-stunt 4-aminophenyl at 9th 
position of acridine ring align in between DG: 14 and 
DG: 10 where phenyl ring form pi-alkyl contact with DG: 
14 (5.39 A0) while amino substituent exhibit hydrogen 
bonding again with DG: 14 (2.09 A0). Here it is impor-
tant to note that amino substituent align very closely near 
DG: 12 DNA base (see Fig. 17).

Furthermore, we docked Epirubicin against human 
telomeric G-quadruplex and analyzed its binding orien-
tation and modes of interaction to compare the docking 
findings of compound 82. The docking analysis reveals 
binding of Epirubicin with human telomeric G-quad-
ruplex DNA which yielded negative docking score 
of − 6.1933  kcal/mol. Binding at DA: 13, DG: 14, 55, 

Potassium (K: 26) and 11 site is stabilized by polar and 
hydrophobic contacts with Epirubicin. Methoxy group 
substituted on 1 position align in between DG: 15 and 
DG: 14 where ring A, B and C form pi–pi hydrophobic 
contact with DG: 14 successively placed at interatomic 
distance of 3.70, 3.78 and 6.05 A0 (see Fig. 18). In addi-
tion to this, ring A exhibit carbon hydrogen bond with 
11, 5-dione moiety form metal-acceptor contact with 
potassium (K, A: 26) at 3.47 A0 and 6-hydroxy substitu-
ent exert hydrogen bonding interaction with DG: 14 (2.77 
A0). Moreover, ethereal linkage oxygen at 10th position 
exhibit covalent bond with 55, 5-hydroxy substituent 
form hydrogen bonding contact with 55 (2.77 A0) while 
4-amino group display hydrogen bonding contact with 
DA: 13 at 2.20 A0.

There is distinct difference in binding of compound 82 
and Epirubicin. The compound 82 was directed on the G 
terminal and orient in between DG: 8 and DG: 9 where 
it exhibit pi–pi stacked interaction with DG: 8 whereas 
another pyrrolidine end orient on the DG: 20 and slightly 
inclined near DG: 21.

Moreover, central cationic acridine ring nitrogen 
exhibited a metal-acceptor contact with potassium ion. 
In comparison to this, methoxy terminal of Epirubicin 
align in between DG: 15 and DG: 14 where ring A, B and 
C form pi–pi hydrophobic contact with DG: 14 with suc-
cessive placement at interatomic distance of 3.70, 3.78 
and 6.05 A0 while orientation of pyran ring of Epirubicin 
spread over DG: 4, DG: 8 and DG: 9 (see Fig. 19).

Conclusions
In our study, telomerase reverse transcriptase (TERT) 
and human telomeric G4 DNA were used as therapeu-
tic targets to build a QSAR model. We used an 82-com-
pound dataset that includes a variety of structures such 
as the acridine ring, triazoles ring, and pyrimidine ring. 
QSARINS 2.2 software is used to create a QSAR model 
using PyDescriptor and the GA-MLR method. The 
derived QSAR model showed high external and internal 
predictive ability. Compound 82 attained diverse con-
formations inside FVYL motif/pocket of TERT and key 
interaction involves hydrogen bonding and hydrophobic 
interactions with the involvement of water molecule and 
hydrophobic residues MET482, ILE497, LEU554, ILE550, 
MET483, and ARG486. With the bottomless analysis of 
docking outcomes compared with crystallized ligand 
BIBR1532, the interaction amid compound 82 and amino 
acid residues were similar to those of BIBR1532.

Moreover, molecular docking revealed that compound 
82 and Epirubicin bind to G4 DNA’s external grooves and 
loop, forming pi–pi stacking hydrophobic and hydro-
gen bonding associations with G DNA bases. In binding 
interaction of both ligands, DG: 14 and potassium ion are 

Fig. 16  A 3D depiction of human telomeric G-quadruplex 
binding with compound 82(green) in stick model. B 3DSpace fill 
model presentation of telomeric G-quadruplex DNA binding with 
compound 82 (green)
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the common DNA base and ion, with which both ligand 
exhibit pi–pi stacking hydrophobic and metal acceptor 
interactions. In terms of orientation, both ligands ter-
minals align by their own way on different grooves and 
loops which may leads to specificity of interactions with 
G4 DNA that may in turn responsible for their different 
binding individualities. The analysis divulges that both 
compound 82 and Epirubicin act as potential inhibitors 

of human telomeric DNA where both ligands stabilizes 
G4 DNA in presence of K+ ion which was plausibly affect 
association of telomerase with telomeric DNA therefore 
exhibiting cell induced apoptosis as an alternate mecha-
nism to damage on binding to quadruplexG4 DNA.

Furthermore, we obtained promising results in this study 
because compound 82 binds to the FVYL motif/pocket of 
TERT and adopts the same conformation as the clinical 
trial agent, BIBR1532. Beside this, acridine ring was estab-
lished and investigated to be bind with human telomeric G 
DNA. In light of this rationale, docked analysis of the most 
active compound 82 in human telomeric G DNA revealed 
that compound 82 binds to Human telomeric G DNA 
through hydrogen bonding and hydrophobic interactions. 
While compound 82 has a different binding conforma-
tion than Epirubicin, both exhibit hydrogen bonding and 
hydrophobic interactions. Based on the docking findings, 
it is clear that the most active compound 82 binds to both 
TERT and human telomeric G DNA through similar inter-
actions. As a result, it is reasonable to conclude that com-
pound 82 has potent anticancer activity via dual inhibition 
of TERT and human telomeric G DNA. The outcome of 
QSAR and molecular docking study may possibly support 
many researchers to put forward novel and dual inhibitors 
of TERT and Human telomeric G DNA with higher anti-
cancer activities. Therefore, they may possibly decrease 
time, cost and even the accessibility of the laboratories 
equipped to bring out the synthesis and tests.

Fig. 17  Display of 2D and 3D interaction of compound 82 with human telomeric G-quadruplex DNA

Fig. 18  3D depiction of superimposed structures of compound 82 
(green) with Epirubicin (yellow)
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Fig. 19  Depiction of Epirubicin and human telomeric G-quadruplex DNA Interactions
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