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Abstract 

Background:  Cognitive impairment is a commonly reported symptom with increasing life spans. Numerous studies 
have focused on identifying precise targets to relieve or reduce cognitive impairment; however, its underlying mecha-
nism remains elusive. Most patients or animals exposed to addictive drugs exhibit cognitive impairment. Accordingly, 
the present review discusses the molecular changes induced by addictive drugs to clarify potential mechanisms that 
mediate cognitive impairments.

Main body:  We investigated changes in cognitive function using four drugs: cannabinoids, ketamine, metham-
phetamine, and cocaine. Chronic administration of most addictive drugs reduces overall cognitive functions, such as 
working, spatial, and long-term recognition memories. Levels of several transcription factors involved in neuronal dif-
ferentiation, as well as functional components of neurotransmitter receptors in neuronal cells, are reportedly altered. 
In addition, inflammatory factors showed a generally increasing trend. These impairments could be mediated by 
neuroinflammation, synaptic activity, and neuronal plasticity.

Conclusion:  This review outlines the effects of acute or chronic drug use and potential molecular alterations in the 
central nervous system. In the central nervous system, addictive drug-induced changes in molecular pathways associ-
ated with cognitive function might play a pivotal role in elucidating the pathogenesis of cognitive impairment.
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Background
With increasing average life expectancy, the number of 
individuals living with cognitive impairment is growing, 
due to various conditions such as degenerative disorders 
[1]. Moreover, as lifespan increases, cognitive functions 
greatly affect the quality of life. Unfortunately, the under-
lying cause of most cognitive impairment-related disor-
ders remains unclear [2, 3]. Drugs such as rivastigmine, 

donepezil, and memantine have been developed and are 
indicated to treat cognitive impairment. However, cur-
rently available therapeutic agents only afford minimal 
symptomatic relief and fail to address the underlying 
disease. In addition, these agents can induce various side 
effects [4]. Therefore, there is an urgent need to develop 
more effective and accessible therapeutics to combat cog-
nitive impairment.

In recent years, the population of drug abusers has been 
steadily growing. According to the United Nations Office 
for Drug Crime 2018, 265 million people worldwide use 
drugs, and 35 million suffer from drug use disorders [5]. 
Furthermore, drug users often experience side effects 
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such as headaches, hallucinations, and cognitive impair-
ment. For example, amphetamine or heroin abusers can 
exhibit damaged spatial working memory, and metham-
phetamine abusers show impairments in most cogni-
tive domains, including working memory, attention, and 
learning [6, 7]. These findings indicate that drug abuse 
may influence pathways associated with cognitive func-
tion. Thus, the purpose of this study is to find novel can-
didate targets that can be therapeutic agents for cognitive 
impairments through understanding the mechanisms of 
cognitive impairments by addictive drugs. To do this, the 
present review discussed the relationship between drug 
abuse and cognitive function, clarified the mechanisms of 
drug-induced cognitive impairment, and tried to identify 
new targets for effective treatment. Herein, we reviewed 
changes in cellular effects and cognitive functions fol-
lowing the administration of several addictive drugs, 
focusing on four select drugs based on the mechanistic 
classification of drugs of abuse: cannabinoids in class I 
(drugs that activate G-protein-coupled receptors), keta-
mine in class II (drugs that bind to ionotropic receptors 
and ion channels), and cocaine and methamphetamine 
in class III (drugs that bind to transporters of biogenic 
amines) [8].

Main text
Cannabinoids
Cannabinoids are psychoactive drugs found in cannabis 
and mediate their actions via a G-protein coupled can-
nabinoid receptor (CB1 and CB2) to activate cell signal-
ing pathways [9]. Cannabinoids have been prescribed 
to patients with neurological disorders [10]. Moreover, 
cannabinoid administration in animals with cognitive 
impairment improved working memory and cognition 
[11]. However, psychotic symptoms and impaired cogni-
tion were observed in the healthy control group [12].

In the healthy control group, cannabinoid-induced 
cognitive defects appeared to be related to synaptic 
plasticity. Administration of Δ9-tetrahydrocannabinol 
(Δ9-THC) increased levels of serum brain-derived neu-
rotrophic factor (BDNF) and impaired spatial working 
memory [13]. Additionally, cannabinoids can decrease 
recognition memory by increasing the mechanistic target 
of rapamycin (mTOR) signaling [14]. Δ9-THC-treated 
adolescent rats exhibited impaired social interaction and 
object recognition memory, mediated via upregulation 
of hippocampal Ras-related protein (Rab-1A) and down-
regulation of phosphoglycerate mutase 1 (PGAM1) [15]. 
Altered Rab-1A levels have been associated with synaptic 
dysfunction, and alterations in Ras proteins reportedly 
influence long-term memory [16]. PGAM1 was shown 
to play a role in neuronal proliferation and differentia-
tion, and its reduced levels were detected in neurological 

disorders [17, 18]. Rats exhibiting cognitive impairment 
after THC administration also presented increased lev-
els of inflammatory factors such as ionized calcium-
binding adapter molecule 1 (Iba1), tumor necrosis factor 
(TNF)-α, cyclooxygenase-2 (COX-2), and inducible nitric 
oxide synthase (iNOS) [19], thereby indicating that can-
nabinoid-induced cognitive impairment might be influ-
enced by neuroinflammation and oxidative stress.

It has been reported that cannabinoid administration 
can improve symptoms in animal models of cognitive 
disorders. Transgenic amyloid precursor protein mice, a 
representative animal model of Alzheimer’s disease (AD), 
demonstrated improved cognitive functions after chronic 
cannabinoid administration by increasing brain glu-
cose uptake, decreasing Aβ levels, and reducing protein 
expression of COX-2, known to induce inflammation [20, 
21]. In aged male mice, impaired working memory was 
ameliorated following treatment with a CB2 agonist via 
downregulation of specific proinflammatory cytokines, 
including interleukin (IL)-23, IL-27, and interferon 
(IFN)-β [22]. These results indicate that CB2 agonists may 
afford anti-inflammatory effects and improve memory 
in animals with cognitive deficits. Aso and Ferrer (2016) 
reviewed the roles of CB2 as a potential target in patients 
with AD and an animal model of AD, identifying a corre-
lation between CB2 and Aβ levels. CB2 agonists improved 
cognitive functions in AD models via Aβ clearance, thus 
attenuating Aβ peptide-induced inflammation, tau pro-
tein hyperphosphorylation, and oxidative stress-induced 
damage [23]. In a Parkinson’s disease animal model, CB2 
activation afforded neuroprotection by eliciting anti-
inflammatory and antioxidant activities [24].

Ketamine
Ketamine is a hallucinogenic drug that mainly targets 
N-methyl-D-aspartate (NMDA) receptors [8]. Ketamine 
is a general anesthetic that was originally synthesized for 
medical use. However, ketamine has gained notoriety 
for non-medical purposes. In the early 2000s, repeated 
ketamine administration was found to be neurotoxic and 
cause short-term memory loss. In most cognitive tests, 
patients with ketamine-dependency showed significantly 
poorer performance in terms of verbal memory, motor 
speed, verbal fluency, and attention than normal controls 
[25].

It is well-established that ketamine is a non-com-
petitive NMDA receptor antagonist. Administration 
of high-dose ketamine was found to impair learning 
and memory performance and increase NMDA recep-
tor hypofunction [26]. In a study using NMDA receptor 
subunit (GluN2D) knockout mice, (S)-ketamine, but not 
(R)-ketamine, induced cognitive impairment in the novel 
object recognition test (NORT), whereas both (R)- and 
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(S)-ketamine impaired cognitive ability in wild-type 
mice [27]. These findings implied that NMDA receptors, 
especially GluN2D, could mediate (R)-ketamine-induced 
cognitive deficits. Furthermore, chronic ketamine expo-
sure significantly downregulated hippocampal expression 
of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 
acid (AMPA) receptor subunits (GluA1 and GluA2) and 
NMDA receptor subunits (GluN2A and GluN2B), as well 
as reduced the phosphorylation and mRNA expression 
levels of GluA1, GluA2, GluN2A, and GluN2B. Addi-
tionally, chronic ketamine administration impaired spa-
tial learning and memory in the Morris water maze [28]. 
Reportedly, although protein expression and phospho-
rylation levels of GluA1 were elevated immediately after 
ketamine exposure, these were reduced approximately 
six months after ketamine administration. The decline 
in GluA1 protein expression and phosphorylation over-
lapped with decreased spatial working memory [29].

In addition, ketamine can affect neurodevelopment. 
The serum BDNF concentration was significantly lower 
in ketamine-treated rats than in the normal group, with 
the former group animals exhibiting memory deficits in 
the Morris water maze [30]. In human research, long-
term ketamine users showed poor activation in the hip-
pocampal complex, as well as impaired spatial memory 
[31]. Rats treated with high doses of ketamine showed an 
increased number of apoptotic cells in the hippocampal 
CA1 region and dentate gyrus; this group also exhib-
ited impaired spatial learning and memory in the Mor-
ris water maze [32]. In mice treated with high doses of 
ketamine, neuronal cells were reduced in the hippocam-
pal CA1 and CA3 regions, accompanied by a decrease in 
hippocampal dendritic spine density [33].

In contrast, ketamine impaired cognitive function by 
activating the cAMP response element-binding protein 
(CREB) signaling pathway. Ketamine-treated pregnant 
rats presented significantly decreased protein levels 
of ERK, p-ERK, protein kinase A (PKA), p-PKA, and 
p-CREB in the hippocampi, accompanied by impaired 
spatial learning and memory [33]. Chronic ketamine-
exposed mice showed decreased expression and phos-
phorylation of Ca2+/calmodulin-dependent protein 
kinase II (CaMKIIβ), ERK 1/2, CREB, and nuclear factor 
kappa-B (NF-κB) and exhibited impaired spatial learn-
ing and memory. In addition, the observed cognitive 
impairment was alleviated by CaMKIIβ overexpression, 
indicating that CaMKIIβ signaling is possibly associated 
with ketamine-induced cognitive impairment [28]. Ket-
amine-treated postnatal day 7 rats showed significantly 
decreased hippocampal expression of p-protein kinase 
C-gamma (PKCγ) and p-ERK 1/2, which impaired spa-
tial learning and memory [32]. Activated NMDA recep-
tors can activate CaMKIIβ and ERK 1/2, and PKA is 

phosphorylated via this signaling pathway. In addition, 
activated ERK and PKA activate CREB, transcribing 
various neuronal genes associated with neurogenesis and 
cognitive function [28, 33]. Ketamine reportedly inter-
feres with this series of downstream processes, result-
ing in cognitive impairment, particularly spatial 
impairments, through the CREB signaling pathway.

Methamphetamine
Methamphetamine (METH) is a highly addictive cen-
tral nervous system stimulant, initially synthesized from 
amphetamine, a widely prescribed medication for various 
diseases [34]. Notably, METH causes neurotoxicity and 
cognitive impairment.

Numerous studies have suggested that long-term 
METH abuse can result in various cognitive impair-
ments. For example, METH use can impair attention, 
executive functions, language/verbal fluency, verbal 
learning and memory, visual memory, and working mem-
ory; in particular, reward- or impulse-related functions 
and social cognition are markedly affected [7]. However, 
sustained abstinence could recover global neurocognitive 
functions [35].

Dopamine is one of the most common causes under-
lying cognitive impairment. METH abusers reportedly 
exhibit impaired motor tasks and memory task function, 
with significantly reduced dopamine transporter (DAT) 
expression even after detoxification for 11  months [36]. 
In addition, METH users experience deficits in short-
term memory, executive function, and manual dexterity, 
along with a decrease in striatal DAT binding potential 
[37]. González et al. (2018) reported that chronic METH 
administration increased mRNA expression of dopa-
mine receptor 1 (Drd1) in the medial prefrontal cortex 
(mPFC) of mice, induced no change in dopamine recep-
tor 2 (Drd2) mRNA expression, and impaired object rec-
ognition memory. Accordingly, increased Drd1 mRNA 
expression might lead to overaction of Drd1, with det-
rimental effects on cognition [38]. The Drd1 antagonist 
SCH 23,390 successfully suppressed METH-induced 
cognitive impairment in the NORT; however, the Drd2 
antagonist raclopride failed to demonstrate similar ben-
efits. These findings suggest that METH-induced cog-
nitive impairment can be attributed to Drd1 activation 
[39]. In contrast, hypothalamic Drd1 protein expres-
sion decreased following METH exposure, while METH 
impaired spatial working memory in the radial 8-arm 
maze task [40]. In addition, Drd1 is associated with the 
extracellular signal-regulated kinase 1/2 (ERK1/2) path-
way. ERK1/2, a member of the mitogen-activated protein 
kinase (MAPK) family, plays a crucial role in synaptic 
activity and neuronal plasticity [41]. Repeated METH 
administration induced cognitive impairment in the 
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NORT and suppressed ERK1/2 phosphorylation in the 
PFC. Moreover, the Drd1 antagonist SCH 23,390 could 
overcome the suppressed ERK1/2 phosphorylation and 
improve METH-induced cognitive impairment [39].

Notably, glutamate receptors may also influence 
METH-induced cognitive impairment. METH admin-
istration increased the mRNA expression of Gria1, 
AMPA subunit, and Grin1, NMDA receptor subunit, in 
the mPFC, accompanied by impaired object recognition 
memory [38]. Repeated METH administration signifi-
cantly decreased the intensity of NMDA receptor bind-
ing in the PFC and hippocampus. Furthermore, METH 
administration significantly reduced working memory 
in the Y-maze task and diminished learning and mem-
ory abilities in the passive avoidance test [42]. METH 
self-administration induced deficits in short-term and 
long-term memory recognition. Moreover, mGluR5 and 
metabotropic glutamate receptor subunit expression was 
significantly reduced in the perirhinal cortex [43].

METH induces neuroinflammation, leading to cogni-
tive impairment. Increased hippocampal protein lev-
els of IL-1β were detected in METH-exposed mice, 
along with impaired spatial learning in the Morris water 
maze. Similar to METH exposure, IL-1β exposure can 
induce cognitive deficits and suppress the differentia-
tion of neural progenitor cells [44]. Chronic METH sig-
nificantly increased the levels of hippocampal IL-1β and 
IL-6, TNF-α, Toll-like receptor 4 (TLR4), MyD88, and 
NF-κB phosphorylation. METH impaired spatial learn-
ing, memory, and memory recognition. TLR4 expres-
sion reportedly promotes NF-κB phosphorylation via 
the MyD88-dependent pathway, leading to increased 
nuclear transcription of inflammatory cytokines such as 
IL-1β, IL-6, and TNF-α [45]. Chronic METH administra-
tion increased inflammatory biomarkers, such as IL-1β 
and TNF-α, and induced learning and spatial memory 
impairments [46].

Cocaine
Cocaine is a psychoactive drug that reportedly inhibits 
the solute carrier family (SLC) 6A3, a known dopamine 
transporter, and suppresses dopamine reuptake in the 
synaptic cleft. Cocaine administration influences neu-
rodevelopment, including cognitive functions. Cocaine 
addiction can impair most cognition-related brain areas, 
especially those associated with reaction inhibition, 
memory, reward decisions, and psychomotor perfor-
mance [47].

The dopamine pathway is a representative molecu-
lar pathway altered by cocaine. Individuals with cocaine 
use disorder showed poor performance in the Stroop 
test, enhanced availability of Drd3-rich substantia nigra, 
and reduced Drd2-rich dorsal putamen [48]. In rats, 

prolonged cocaine exposure impaired sustained atten-
tion tasks and decreased mRNA expression of Drd2 in 
the mPFC and orbitofrontal cortex [49]. In contrast, 
chronic cocaine administration induced hyperactivity 
and increased Drd2 mRNA levels in the nucleus accum-
bens of rats [50].

Cocaine administration affects neurodevelopment and 
causes cognitive impairment. In cocaine-treated rats, the 
expression levels of BDNF and the high-affinity BDNF 
receptor decreased in the PFC or salivary glands, thus 
impairing cognitive functions such as working memory 
and fear acquisition [51, 52]. Insulin-like growth factor 
II (IGF-II) plays a pivotal role in cell growth, develop-
ment, and regeneration and exhibits high hippocampal 
concentrations. IGF-II reportedly promotes long-term 
strengthening of hippocampal-related memories [53]. In 
prenatal cocaine-exposed animals, hippocampal expres-
sion of IGF-II mRNA and protein decreased, whereas 
methylation of cytosine-phospho-guanine dinucleo-
tides in the differentially methylated region 2 of IGF-II 
increased, thus eliciting impaired spatial learning and 
memory [54]. Furthermore, self-administered cocaine in 
rats exhibited reduced hippocampal neurogenesis and 
lower performance in learning and memory tests [55]. 
Thus, reduced BDNF levels and neuronal development 
may play a role in cognitive impairment.

Cocaine-induced cognitive impairment is also associ-
ated with neuroinflammation and oxidative stress. Neu-
roinflammation causes cognitive aging and increases the 
generation of reactive oxygen species (ROS), thus induc-
ing oxidative stress [56, 57]. Notably, oxidative stress 
is considered an underlying causative factor of neuro-
degenerative diseases [58]. NF-κB, c-Fos, and FosB are 
required for the transcription of inflammatory cytokines, 
such as ILs, and induce an inflammatory response [59, 
60]. During inflammatory reactions, NF-κB and FosB 
are positively correlated, whereas superoxide dismutase 
(SOD) and glutathione peroxidase (GPx) elicit oppo-
site outcomes [57]. Cocaine-dependent female subjects 
showed reduced executive functions and elevated plasma 
IL-6 levels [61]. In rats with self-administered cocaine, 
the expression of ΔFosB increased in the mPFC and 
orbitofrontal regions, while their performance in atten-
tion and decision-making tasks decreased [62]. During 
cocaine withdrawal following chronic cocaine admin-
istration, mice showed memory deficits, especially in 
hippocampal-dependent memory, and increased basal 
c-Fos expression [63]. Glutamate is a major factor pro-
moting oxidative stress in the brain, and excessive glu-
tamate receptor activation can induce ROS generation 
through cell death [58, 64]. In contrast, GABA and glu-
tathione (GSH) inhibit nerve excitability and improve 
antioxidant capability [65]. In mice administered cocaine, 
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although good performance was observed in new spatial 
learning and memory acquisition, memory recovery was 
impaired. In these animals, decreased NF-κB expres-
sion in the PFC may potentially regulate the expres-
sion of genes involved in synaptic plasticity and altered 
cognitive function. Furthermore, both hippocampal 
GSH concentration and Gpx activity were reduced. The 
decrease in GSH levels may be related to oxidative stress 
by reducing neuronal inhibitory function [66]. Cortisol, 
a stress hormone, is induced by FosB and mediates IL8 
production [67]. High cortisol levels have been detected 
in individuals with severe cognitive impairment [68]. The 

cocaine-dependent group showed low cognitive perfor-
mance in verbal learning, memory, and executive abil-
ity tasks, along with a high level of salivary cortisol [69]. 
Thiobarbituric acid elicits oxidative stress and represents 
peroxidized lipids in vivo [70]. Repeated cocaine inhala-
tion was found to impair spatial working memory and 
elevated striatal SOD activity, while levels of hippocam-
pal thiobarbituric acid-reactive species were reduced 
[71]. These findings suggest that repeated cocaine inha-
lation might induce oxidative stress in the hippocampus 
and striatum, damaging long-term memory.

Fig. 1  Summary of the various effects of addictive drugs on cellular messenger molecules affecting cognitive impairment. METH induces 
inflammatory cytokines through TLR, Myd88, and NF-κB pathways. Cannabinoids induces the production of inflammatory cytokines via CB2. In 
contrast, cocaine inhibits NF-κB activation. In addition, cocaine induces ROS by increasing glutamate levels. Ketamine interferes with CaMKIIβ and 
PKA activity as it decreases NMDAR and ultimately blocks CREB activation, thereby reducing neuronal gene transcription. Likewise, METH inhibits 
CREB activation by upregulating the expression of Drd1 and decreasing ERK 1/2 phosphorylation. METH methamphetamine, TLR Toll-like receptor, 
NF-κB nuclear factor kappa-B, NMDAR N-methyl-D-aspartate receptor, CaMKIIβ Ca2+/calmodulin-dependent protein kinase II, ROS reactive oxygen 
species, PKA, protein kinase A, CREB cAMP response element-binding protein, ERK1/2, extracellular signal-regulated kinase 1/2, Drd1 dopamine 
receptor 1
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Conclusions
Determining how addictive drugs cause cognitive impair-
ment could potentially bridge the gap between our cur-
rent understanding and treatment strategies for cognitive 
disorders. Drug use and addiction can affect brain func-
tion and cause cognitive impairment.

Addictive drugs reportedly cause cognitive impairment 
by inducing neuroinflammation. These drugs increase 
TLR4 and MyD88 levels, thereby stimulating the pro-
duction of inflammatory factors. As a result, NF-κB 
undergoes phosphorylation, resulting in the nuclear tran-
scription of inflammatory cytokines. Addictive drugs can 
induce the overproduction of inflammatory cytokines in 
the brain, thereby reducing cognitive ability. We postu-
late that the NF-κB-induced inverted-U-shaped effects 
on cognitive function depend on activation. Both mark-
edly high and low levels of NF-κB activity may reduce 
cognitive ability. However, further studies are required to 
establish conclusive results. An in-depth investigation to 
elucidate the mechanism of inflammatory cytokine over-
expression induced by addiction drugs could provide a 
novel therapeutic direction for cognitive disorders.

The CREB pathway is another important mechanism 
underlying addictive drug-induced cognitive impair-
ment. METH treatment increased the expression of 
Drd1, and elevated Drd1 expression prevented ERK 1/2 
phosphorylation. Ketamine decreased NMDA recep-
tor expression and is also related to reduced phospho-
rylation of CaMKIIβ, ERK 1/2, PKA, and CREB. In the 
absence of ERK and PKA phosphorylation, CREB does 
not undergo phosphorylation, and genes involved in 
neurogenesis are not transcribed. Dysregulation of this 
pathway eventually leads to cognitive impairment.

Drug abuse can seriously affect brain function 
through diverse pathways (Fig. 1), resulting in cognitive 
impairment. By understanding the effect of these dis-
tinct pathways on the brain, we can identify novel strat-
egies for combating cognitive disorders.
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