Sungnak W, Huang N, Bécavin C, Berg M, Queen R, Litvinukova M, Talavera-López C, Maatz H, Reichart D, Sampaziotis F, Worlock KB, Yoshida M, Barnes JL (2020) SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med 26:681–687. https://doi.org/10.1038/s41591-020-0868-6
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramalingam S, Graham C, Dove J, Morrice L, Sheikh A (2020) Hypertonic saline nasal irrigation and gargling should be considered as a treatment option for COVID-19. J Glob Health 10(1):010332. https://doi.org/10.7189/jogh.10.010332
Article
PubMed
PubMed Central
Google Scholar
Kirk-Bayley J, Challacombe S, Stephen Sunkaraneni VS, Combes J (2020) The use of povidone iodine nasal spray and mouthwash during the current COVID-19 pandemic may reduce cross infection and protect healthcare workers. https://doi.org/10.2139/ssrn.3563092 Available at SSRN: https://ssrn.com/abstract=3563092
Book
Google Scholar
Shastri S (ed) (2005) Yogaratnakara. Chaukhambha Sanskrit Sansthan, Varanasi, p 209
Google Scholar
Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z, Yu J, Kang M, Song Y, Xia J, Guo Q, Song T, He J, Yen HL, Peiris M, Wu J (2020) SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N Engl J Med 382:1177–1179. https://doi.org/10.1056/NEJMc2001737
Article
PubMed
PubMed Central
Google Scholar
Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579:270–273
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramalingam S, Cai B, Wong J, Twomey M, Chen R, Fu RM, Boote T, McCaughan H, Griffiths SJ, Haas JG (2018) Antiviral innate immune response in non-myeloid cells is augmented by chloride ions via an increase in intracellular hypochlorous acid levels. Sci Rep 8:13630. https://doi.org/10.1038/s41598-018-31936-y
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu X, Chen P, Wang J, Feng J, Zhou H, Li X, Zhong W, Hao P (2020) Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci 63(3):457–460
Article
CAS
PubMed
PubMed Central
Google Scholar
Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, McLellan JS (2020) Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367:1260–1263
Article
CAS
PubMed
PubMed Central
Google Scholar
Zou X, Chen K, Zou J, Han P, Hao J, Han Z (2020) Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. https://doi.org/10.1007/s11684-020-0754-0
Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, Huan Y, Yang P, Zhang Y, Deng W, Bao L, Zhang B, Liu G, Wang Z, Chappell M, Liu Y, Zheng D, Leibbrandt A, Wada T, Slutsky A, Liu D, Qin C, Jiang C, Penninger JM (2020) A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med 11(8):875–879
Article
Google Scholar
Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B, Yang P, Sarao R, Wada T, Leong-Poi H, Crackower MA, Fukamizu A, Hui CC, Hein L, Uhlig S, Slutsky AS, Jiang C, Penninger JM (2005) Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 436(7047):112–116
Article
CAS
PubMed
PubMed Central
Google Scholar
Li S, Tang Z-j, Li Z, Liu X (2020) Searching therapeutic strategy of new coronavirus pneumonia from angiotensin-converting enzyme 2: the target of COVID-19 and SARS-CoV. Eur J Clin Microbiol Infect Dis. https://doi.org/10.1007/s10096-020-03883-y
Harisadasiva S (ed) (2011) Astangahridayam. Chaukhambha Sanskrit Sansthan, Varanasi, p 287
Google Scholar
Chhikara N, Kour R, Jaglan S, Gupta P, Gat Y, Panghal A (2018) Citrus medica: nutritional, phytochemical composition and health benefits-a review. Food Funct. https://doi.org/10.1039/C7FO02035J
Mukkavilli R, Yang C, Singh Tanwar R, Ghareeb A, Luthra L, Aneja R (2017) Absorption, metabolic stability, and pharmacokinetics of ginger phytochemicals. Molecules 22(4):553. https://doi.org/10.3390/molecules22040553
Article
CAS
PubMed Central
Google Scholar
Lomniczi BJ (1977) Biological properties of avian coronavirus RNA. J Gen Virol 36:531–533
Article
CAS
PubMed
Google Scholar
Lee HJ, Shieh CK, Gorbalenya AE, Koonin EV, LaMonica N, Tuler J, Bagdzhadzhyan A, Lai MM (1991) The complete sequence (22 kilobases) of murine coronavirus gene 1 encoding the putative proteases and RNA polymerase. Virology 180:567–582
Article
CAS
PubMed
Google Scholar
Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, Zhang Q, Shi X, Wang Q, Zhang L, Wang X (2020) Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581:215–220. https://doi.org/10.1038/s41586-020-2180-5
Article
CAS
PubMed
Google Scholar
Acarya YT (ed) (2008) Susrutasamhita of Susruta. Chaukhambha Surbharati Prakashan, Varanasi, p 557
Google Scholar
Shastry VD (ed) (1994) Bhavaprakasha Nighantu. Motilal Banarsidass, New Delhi, p 318
Google Scholar
Dash B (ed) (2001) Madanapala Nighantu. B Jain Publishers Pvt Ltd, New Delhi, p 276
Google Scholar
Singh A (ed) (2008) Dhanvantari Nighantu. Chaukhambha Orientalia, Delhi
Google Scholar
Sharma PV, Guruprasad (eds) (1979) Kaiyadeva Nighantu, 1st edn. Chaukambha Orientatia, Varanasi, p 178
Google Scholar
Chang J, Wang K, Yeh C, EnShieh D, Chiang L (2013) Fresh ginger (Zingiber officinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. J Ethnopharmacol 145(1):146–151
Article
CAS
PubMed
Google Scholar
Greño V, Cambra M, Navarro L, Durán-Vila N (1990) Effect of antiviral chemicals on the development and virus content of citrus buds cultured in vitro. Sci Hortic 45(1-2):75–87
Article
Google Scholar