Maestrelli F, Cirri M, Mennini N, Zerrouk N, Mura P (2011) Improvement of oxaprozin solubility and permeability by the combined use of cyclodextrin, chitosan, and bile components. Eur J Pharm Biopharm 78:385–393
Article
CAS
PubMed
Google Scholar
Almansa C, Mercè R, Tesson N, Farran J, Tomàs J, Plata-Salamán CR (2017) Cocrystal of tramadol hydrochloride–celecoxib (ctc): a novel API–API Co-crystal for the treatment of pain. Cryst Growth Des 17:1884–1892
Article
CAS
Google Scholar
Braga D, Grepioni F (2000) Intermolecular interactions in nonorganic crystal engineering. Acc Chem Res 33:601–608
Article
CAS
PubMed
Google Scholar
Etter MC (1991) Hydrogen bonds as design elements in organic chemistry. J Phys Chem 95:4601–4610
Article
CAS
Google Scholar
Dai XL, Chen JM, Lu TB (2018) Pharmaceutical cocrystallization: an effective approach to modulate the physicochemical properties of solid-state drugs. Cryst Eng Comm 20:e5292–e5316
Article
Google Scholar
Oaki Y (2017) Morphology design of crystalline and polymer materials from nanoscopic to macroscopic scales. Bull Chem Soc Jpn 90:776–788
Article
CAS
Google Scholar
Lusi M (2018) Engineering crystal properties through solid solutions. Cryst Growth Des 18:3704–3712
Article
CAS
Google Scholar
Thakuria R, Sarma B (2018) Drug-drug and drug-nutraceutical cocrystal/salt as alternative medicine for combination therapy: a crystal engineering approach. Crystals 8:101
Article
CAS
Google Scholar
Ueda A (2017) Development of novel functional organic crystals by utilizing proton- and π-electron-donating/accepting abilities. Bull Chem Soc Jpn 90:1181–1188
Article
CAS
Google Scholar
Aakery CB, Salmon DJ (2005) Building co-crystals with molecular sense and supramolecular sensibility. Cryst Eng Comm 72:439–448
Article
CAS
Google Scholar
Cannon AS, Warner JC (2002) Noncovalent derivatization: green chemistry applications of crystal engineering. Cryst Growth Des 2:255–257
Article
CAS
Google Scholar
Aher S, Dhumal R, Mahadik K, Paradkar A, York P (2010) Ultrasound assisted cocrystallization from solution (USSC) containing a non-congruently soluble cocrystal component pair: Caffeine/maleic acid. Eur J Pharm Sci: Official J Eur Federation Pharm Sci 41:597–602
Article
CAS
Google Scholar
Hickey MB, Peterson ML, Scoppettuolo LA, Morrisette SL, Vetter A, Guzmán H, Remenar JF, Zhang Z, Tawa MD, Haley S, Zaworotko MJ, Almarsson Ö (2007) Performance comparison of a co-crystal of carbamazepine with marketed product. Eur J Pharm Biopharm 67:112–119
Article
CAS
PubMed
Google Scholar
Weyna DR, Shattock T, Vishweshwar P, Zaworotko MJ (2009) Synthesis and structural characterization of cocrystals and pharmaceutical cocrystals: mechanochemistry vs slow evaporation from solution. Cryst Growth Des 9:1106–1123
Article
CAS
Google Scholar
Moradiya H, Islam MT, Woollam GR, Slipper IJ, Halsey S, Snowden MJ, Douroumis D (2014) Continuous cocrystallization for dissolution rate optimization of a poorly water-soluble drug. Cryst Growth Des 14:189–198
Article
CAS
Google Scholar
Berry DJ, Seaton CC, Clegg W, Harrington RW, Coles SJ, Horton PN, Hursthouse MB, Storey R, Jones W, Friscic T, Blagden N (2008) Applying hot-stage microscopy to co-crystal screening: a study of nicotinamide with seven active pharmaceutical ingredients. Cryst Growth Des 8:1697–1712
Article
CAS
Google Scholar
James SL, Adams CJ, Bolm C, Braga D, Collier P, Friščić T, Grepioni F, Harris HKDM, Jones W, Krebs A, Mack J, Maini L, Orpen AG, Parkin IP, Shearouse WC, Steed JW, Waddell DC (2012) Mechanochemistry: opportunities for new and cleaner synthesis. Chem Soc Rev 41:413–447
Article
CAS
PubMed
Google Scholar
Childs SL, Rodríguez-Hornedo N, Reddy LS, Jayasankar A, Maheshwari C, McCausland L, Shipplett R, Stahly BC (2008) Screening strategies based on solubility and solution composition generate pharmaceutically acceptable cocrystals of carbamazepine. Cryst Eng Comm 10:856–864
Article
CAS
Google Scholar
Potur RG, Moisuc LS, Saraficeanu N, Boita T, Macovei L, Telisça AD (2014) Stable pharmaceutical composition comprising amorphous rosuvastatin calcium. EP 2805714 A1.
Google Scholar
Lusis AJ (2000) Atherosclerosis. Nature 407:233–241
Article
CAS
PubMed
PubMed Central
Google Scholar
Ballantyne MC, Miller E, Chitra R (2004) Efficacy and safety of rosuvastatin alone and in combination with cholestyramine in patients with severe hypercholesterolemia: A randomized, open-label, plulticenter trial. Clin Therapeut 26:1855–1864
Article
CAS
Google Scholar
Kostapanos SM, Derdemezis SC, Filippatos DT, Milionis JH, Kiortsis ND, Tselepis DA (2008) Effect of rosuvastatintreatment onplasma visfatinlevels in patients with primary hyperlipidemia. Eur J Pharmacol 578:249–252
Article
CAS
PubMed
Google Scholar
Alshora DH, Haq N, Alanazi FK, Ibrahim MA, Shakeel F (2016) Solubility of rosuvastatin calcium in different neat solvents at different temperatures. J Chem Thermodyn 94:230–233
Article
CAS
Google Scholar
Sarfraz RM, Ahmad M, Mahmood A, Akram MR, Abrar A (2017) Development of b- cyclodextrin-based hydrogel microparticles for solubility enhancement of rosuvastatin: An in vitro and in vivo evaluation. Drug Des Dev Ther 11:3083–3096
Article
CAS
Google Scholar
Lennernas H, Fager G (1997) Pharmacodynamics and pharmacokinetics of the HMG-21 CoA reductase inhibitors, similarities and differences. Clin Pharmacokinet 32:403–425
Article
CAS
PubMed
Google Scholar
Balakumar K, Raghavan CV, Selvan NT, Prasad RH, Abdu S (2013) Self nanoemulsifying drug delivery system (SNEDDS) of rosuvastatin calcium: Design, formulation, bioavailability and pharmacokinetic evaluation. Colloids Surf. B: Biointerfaces 112:337–343
CAS
PubMed
Google Scholar
Andreas Hafner, Fritz Blatter, Martin Szelagiewicz, Bernd Siebenhaar (2016) Multicomponent system of rosuvastatin calcumi salt and sorbitol. Unites States patent US9.249.108 B2.
Google Scholar
Andreas Hafner, Fritz Blatter, Martin Szelagiewicz, Bernd Siebenhaar (2014) Multicomponent crystalline (52) u.s. cl. system of rosuvastatin calcum salt and vanillin. Unites States patent US 8.841.316 B2.
Google Scholar
Andreas Hafner, Fritz Blatter, Martin Szelagiewicz, Bernd Siebenhaar (2014) Multicomponent crystalline system of rosuvastatin calcum salt and vanillin. Unites States patent US 8.716.305 b2.
Google Scholar
Clark Ferrari, Andrea Castellin, Marco Galvagni, Nicolas Tesson, Jordi De Mier (2014) Lloreng Rafecas. co-crystal intermediates of rosuvastatin and methods of using same. Unites States patent US 8.815862 b2.
Google Scholar
Song Y, Wang LY, Liu F, Li YT, Wu ZY, Yan CW (2019) Simultaneously enhancing the in vitro/in vivo performances of acetazolamide using proline as a zwitterionic coformer for cocrystallization. Cryst Eng Comm 21:3064–3073
Article
CAS
Google Scholar
Nugrahani I, Utami D, Ibrahim S, Nugraha YP, Uekusa H (2018) Zwitterionic cocrystal of diclofenac and L-proline: Structure determination, solubility, kinetics of cocrystallization, and stability study. Eur J Pharm Sci 117:168–176
Article
CAS
PubMed
Google Scholar
Tilborg A, Norberg B, Wouters J (2014) Pharmaceutical salts and cocrystals involving amino acids: A brief structural overview of the state-of-art. Eur J Med Chem 74:411–426
Article
CAS
PubMed
Google Scholar
Tumanova N, Tumanov N, Robeyns K, Filinchuk Y, Wouters J, Leyssens T (2014) Structural insight into cocrystallization with zwitterionic co-formers: cocrystals of S-naproxen. Cryst Eng Comm 16:8185–8196
Article
CAS
Google Scholar
Yadav A, Shete A, Dabke A, Kulkarni P, Sakhare S (2009) Co-crystals: a novel approach to modify physicochemical properties of active pharmaceutical ingredients. Indian JPharm Sci 71:359
Article
CAS
Google Scholar
Shan N, Zaworotko MJ (2008) The role of cocrystals in pharmaceutical science. Drug Discov Today 13:440–446
Article
CAS
PubMed
Google Scholar
Zhou Z, Tong HHY, Li L, Shek FLY, Lv Y, Zheng Y (2014) Synthesis, crystal structures and phase transformation of the new solid-state forms of tetrandrine. RSC Adv 4:62586–62593
Article
CAS
Google Scholar
Owoyemi BCD, Da Silva CCP, Souza MS, Diniz LF, Ellena J, Carneiro RL (2019) Fluconazole: synthesis and structural characterization of four new pharmaceutical cocrystal forms. Cryst Grow & Design 19:648–657
Article
CAS
Google Scholar
Kumar M, Hirpara R, Manikkath J, Sivakumar K, Managuli RS, Gourishetti K, Krishnadas N, Shenoy RR, Jayaprakash B, Rao CM, Mutalik S (2017) Long circulating PEGylated-chitosan nanoparticles of rosuvastatin calcium: development and in vitro and in vivo evaluations. Int J Biol Macromol 107:2190–2200
Google Scholar
Elanthiraiyan M, Kandasamy M, Kanagan G, Govindarajan G, Pari S, Sambasivam R (2019) Growth and some characterization of l-asparagine monohydrate potassium iodide (LAMPI) crystals. Compliance Eng J 10:286–297
Google Scholar
Pawlukojć A, Hołderna-Natkaniec K, Bator G, Natkaniec I (2014) L-glutamine: dynamical properties investigation by means of INS, IR, RAMAN, 1H NMR and DFT techniques. Chem Phys 443:17–25
Article
CAS
Google Scholar
Kapure VJ, Pande VV, Deshmukh PK (2013) Dissolution enhancement of rosuvastatin calcium by liquisolid compact technique. J Pharm 2013:1–9, Article ID 315902. https://doi.org/10.1155/2013/315902
Article
CAS
Google Scholar
Mäder K, Mehnert W (2001) Solid lipid nanoparticles, production, characterization and applications. Adv Drug Deliv Rev 47:165–196
Article
PubMed
Google Scholar
Beg S, Raza K, Kumar R, Chadha R, Katare OP, Singh B (2016) Improved intestinal lymphatic drug targeting via phospholipid complex-loaded nanolipospheres of rosuvastatin calcium. RSC Adv 6:8173–8187
Article
CAS
Google Scholar
Shete G, Puri V, Kumar L, Bansal AK (2010) Solid state characterization of commercial crystalline and amorphous atorvastatin calcium samples. AAPS PharmSciTech 11:598–609
Article
CAS
PubMed
PubMed Central
Google Scholar
Li HB, Niu R, Yang JL, Nie J, Yang DZ (2011) Photocrosslinkable tissue adhesive based on dextran. Carbohydr Polym 86:1578–1585
Article
CAS
Google Scholar
Desiraju GR (2013) Crystal engineering: from molecule to crystal. J Am Chem Soc 135:9952–9967
Article
CAS
PubMed
Google Scholar
Sarfraz RM, Ahmad M, Mahmood A, Akram MR, Abrar A (2017) Development of β-cyclodextrin-based hydrogel microparticles for solubility enhancement of rosuvastatin: an in vitro and in vivo evaluation. Drug Des Devel Ther 11:3083–3096
Article
CAS
PubMed
PubMed Central
Google Scholar
Duggirala NK, Perry ML, Almarsson Ö, Zaworotko MJ (2016) Pharmaceutical cocrystals: along the path to improved medicines. Chem Commun 52:640–655
Article
CAS
Google Scholar
Sun CC, Hou H (2008) Improving mechanical properties of caffeine and methyl gallate crystals by cocrystallization. Cryst Growth Des 8:1575–1579
Article
CAS
Google Scholar
Tanabe Y, Maeno Y, Ohashi K, Hisada H, Roy A, Carriere J, Heyler R, Fukami T (2019) Screening a trace amount of pharmaceutical cocrystals by using an enhanced nano-spot method. Eur J Pharm Biopharm 136:131–137
Article
CAS
PubMed
Google Scholar
Shete A, Murthy S, Korpale S, Yadav A, Sajane S, Sakhare S, Doijad R (2015) Cocrystals of itraconazole with amino acids: screening, synthesis, solid state characterization, in vitro drug release and antifungal activity. J Drug Deliv Sci Tec 28:46–55
Article
CAS
Google Scholar
Luo Y, Chen S, Zhou J, Chen J, Tian L, Gao LX, Zhang Y, Ma A, Li L, Zhou Z (2019) Luteolin cocrystals: characterization, evaluation of solubility, oral bioavailability and theoretical calculation. J Drug Deliv Sci Tec 50:248–254
Article
CAS
Google Scholar
Inouye S, Iitaka Y (1964) Crystallographic data on the molecular complexes of tetracycline salts. Acta Crystallogr 17:207e208
Article
Google Scholar
Rajagopal K, Krishnakumar RV, Nandhini MS, Natarajan S (2003) L-Histidinium hemihydrochloride tartrate tartaric acid dehydrate. Acta Crystallogr Sect E Struct Rep Online 59:o955eo958
Article
Google Scholar
Perlovich GL (2015) Thermodynamic characteristic of cocrystal formation and melting points for rational design of pharmaceutical two-component systems. Cryst Eng Comm 17:7019–7028
Article
CAS
Google Scholar
Rustichelli C, Gamberini G, Ferioli V, Gamberini MC, Ficarra R, Tommasini S (2000) Solid-state study of polymorphic drugs: carbamazepine. J Pharm Sci 23:41–45
CAS
Google Scholar
Unsalan O, Erdogdu Y, Gulluoglu MT (2009) FT-Raman and FT-IR spectral and quantum chemical studies on some flavonoid derivatives: baicalein and naringenin. J Raman Spectrosc 40:562–570
Article
CAS
Google Scholar
Chadha R, Bhalla Y, Nandan A, Chadha K, Karan M (2017) Chrysincocrystals: characterization and evaluation. J Pharm Biomed Anal 134:361–371
Article
CAS
PubMed
Google Scholar
Alatas F, Ratih H, Soewandhi SN (2015) Enhancement of solubility and dissolution rate of telmisartan by telmisartan-oxalic acid cocrystal formation. Int J Pharma Sci 7:5–8
Google Scholar
Cheney ML, Weyna DR, Shan N, Hanna M, Wojtas L, Zaworotko MJ (2011) Coformer selection in pharmaceutical cocrystal development: a case study of a meloxicam aspirin cocrystal that exhibits enhanced solubility and pharmacokinetics. J Pharmaceut Sci 100:2172–2181
Article
CAS
Google Scholar
Zhang GGZ, Law D, Schmitt EA, Qiu Y (2004) Phase transformation considerations during process development and manufacture of solid oral dosage forms. Adv Drug Deliv Rev 56(3):371–390
Article
CAS
PubMed
Google Scholar
Vemuri VD, Lankalapalli S (2019) Insight into concept and progress on pharmaceutical co-crystals: an overview. Indian J Pharmaceut Educ Res 53(4s):s522–s538
Article
CAS
Google Scholar
Dnyaneshwar P, KaleSandeep S, ZodeArvind K, Bansal (2017) Challenges in Translational Development of Pharmaceutical Cocrystals. J Pharm Sci 106:457–470
Article
CAS
Google Scholar