International Diabetes Federation (IDF) (2013) Diabetes Atlas, 5th edn. International Diabetes Federation, Brussels, Belgium http://www.idf.org/diabetesatlas/downloaded in 30/11/2013
Google Scholar
King MW (2014) Diabetes mellitus. The medical biochemistry page http://themedicalbiochemistrypage.org/diabetes.php
Google Scholar
Mannine V, Tenkanene L, Koskin P (1992) Joint effect of serum triglyceride and LDL cholesterol and HDL cholesterol concentration on chronary heart disease-risk in the Hwlsinki heart study: implication for treatment. Circulation 85:34–45
Google Scholar
Parikh NH, Parikh PK, Kothari C (2014) Indigenous plant medicines for healthcare: treatment of diabetes mellitus and hyperlipidemia. Chin J Nat Med 12(5):335–344. https://doi.org/10.1016/S1875-5364(14)60041-8
Article
CAS
PubMed
Google Scholar
Goldberg IR (2001) Diabetic dyslipidemia: causes and consequences. J Clin Endoctinol Metab 86(3):965–971
Article
CAS
Google Scholar
Verges B (2009) Lipid modification in type 2 diabetes: the role of LDL and HDL. Fundam Clin Pharmacol 23(6):681–685. https://doi.org/10.1111/j.1472-8206.2009.00739.x
Article
CAS
PubMed
Google Scholar
Nikiema JB, Vanhaelen-Fastre R, Vanhaelen M, Fontaine J, Grace CDE, Heenen M (2001) Effects of anti-inflammatory triterpenes isolated from Leptadenia hastata latex on keratinocyte proliferation. Phytother Res 15(2):131–134. https://doi.org/10.1002/ptr.700
Article
CAS
PubMed
Google Scholar
Blonde L, Rosenstrock J, Mooradian AD, Piper BA, Henry D (2002) Glyburide/metformin combination product is safe and efficacious in patients with type 2 diabetes failing sulphonylurea therapy. Diabetes Obes Metab 4(6):368–375. https://doi.org/10.1046/j.1463-1326.2002.00229.x
Article
CAS
PubMed
Google Scholar
Aliero BL, Umar MA, Suberu HA, Abubakar A (2001) A hand book of common plants in Northern Western Nigeria, p 78
Google Scholar
Aliero AA, Wara SH (2009) Validating the medicinal potential of Leptadenia hastata. Afr J Pharm Pharmacol 3(6):335–338
Google Scholar
Togola A, Austarcheim I, Theis A, Diallo D, Paulsen BS (2008) Ethanopharmacolgical uses of Ethria senegalensis: A comparison of three areas in Mali, and a link between traditional knowledge and modern biological science. J Ethanobiol Ethanomed 4(1):6. https://doi.org/10.1186/1746-4269-4-6
Article
Google Scholar
Burkil HM (1985) Entry for Leptadenia hastata (Family Asclepiadaceae). In: The useful plants of West Africa. Vol 1. Royal Botanic Gardens Kero UK, pp 597–599
Google Scholar
Thomas SD (2012) Lepatadenia hastata: a review of its traditional uses and its pharmacological activity. Med Chem 2:148–150. https://doi.org/10.4172/2161-9444.1000132
Article
Google Scholar
Karumi Y, Onyeyili P, Ogugbuaja OV (2003) Antinflammatory and antiinociptive (Analgesic) properties of Momordica balsamina Lin (balsam apple) leaves in rats. Pak J Biol Sci 6(17):1515–1518. https://doi.org/10.3923/pjbs.2003.1515.1518
Article
Google Scholar
Hassan LG, Umar KJ (2006) Nutritional value of balsam apple (Momordica balsamina) leaves. Pak J Nutr 5(6):522–529. https://doi.org/10.3923/pjn.2006.522.529
Article
Google Scholar
Thakur GS, Bag M, Sanodiya BS, Bhadouriya P, Debnath M, Prasad GB, Bisen PS (2009) Mormodica balsamina: A medicinal and neutraceutical plant for healthcare management. Curr Pharma Biotech 10(7):667–682. https://doi.org/10.2174/138920109789542066
Article
CAS
Google Scholar
Aquino R, Peluso G, Tommassi N, Simone F, Pizza C (1996) New polyoxypregnane ester derivates from Leptadenia hastata. J Nat Prod 59(6):555–564. https://doi.org/10.1021/np960251e
Article
CAS
PubMed
Google Scholar
Kaur I, Yadav SK, Hariprasad G, Gupta RC, Srinivasan A, Btara JK, Puri M (2011) Balsamin: A novel ribosome-inactivating protein from the seed of balsam apple (Momordica balsamina). J Amino Acids 43(2):973–981
Article
Google Scholar
Bello A, Aliero AA, Saidu Y, Muhammad S (2011) Hypoglycaemic and hypolipidemic effects of Leptadenia hastata (pers) decne in alloxan-induced diabetic rats. Nig J Basic Appl Sci 19:187–192
Google Scholar
Gwarzo MY, Ameen ZS (2015) Assessment of hypolipidemic effect of Leptadenia hastata leaves in albino rats. Adv J Food Sci Technol 7(1):1–5. https://doi.org/10.19026/ajfst.7.1253
Article
Google Scholar
Ramalhete C, Mansoor TA, Mulhoro S et al (2009) Cucurbitane-type triterpenoids from the African plant Momordica balsamina. J Nat Prod 72(11):2009–2013. https://doi.org/10.1021/np900457u
Article
CAS
PubMed
Google Scholar
Kabir N, Umar AI, James DB, Inuwa HM, Atiku MK (2019) Antidiabetic potentials of aqueous leaf extracts of Momordica balsamina Linn and Leptadenia hastata (pers) decne alone and in combination in streptozotocin-induced diabetic rats. Trop J Nat Prod Res 3(1):10–16. https://doi.org/10.26538/tjnpr/v3il.3
Article
CAS
Google Scholar
Sankar N, Pari N (2011) Influence of thymoquinone on glycoprotein changes in experimental hyperglycemic rats. Neurol Dis Ther 1:51–55
Google Scholar
Clark JD, Gebhart GF, Gonder JC, Keeling ME, Kohn DF (1997) The 1996 guide for the care and use of laboratory animals. ILAR 38(1):41–48 http://academic.oup.com/ilarjournal/article-abstract/38/1/41/664018. retrieved online on 2 November, 2019
Article
Google Scholar
Brustein M, Scholnick HR, Morfin R (1970) Rapid method for isolation of lipoproteins from human serum by precipitation with polyanions. J Lipid Res 11(6):583–595. https://doi.org/10.1016/S0022-2275(20)42943-8
Article
Google Scholar
Lopes-Virella MF, Stone P, Ellis S, Colwell JA (1977) Cholesterol determination in high density methods. Clin Chem 23(5):882–884. https://doi.org/10.1093/clinchem/23.5.882
Article
CAS
PubMed
Google Scholar
Fridewald WT, Levey RT, Fredrickson DS (1972) Estimation of the concentration of low density cholesterol in plasma without use of preparative ultracentrifuge. Clin Chem 18(6):499–502. https://doi.org/10.1093/clinchem/18.6.499
Article
Google Scholar
Grant RW, Cagliero E, Murphy-Sheehy P, Singer DE, Nathan DM, Meigs JB (2002) Comparison of hyperglycemia, hypertension and hypercholesterolemia management in patients with type 2 diabetes. Am J med 112:603–609
Article
CAS
Google Scholar
Weis M (1982) Streptozotocin: a review of its pharmacology, efficacy and toxicity. Cancer Treat Rev 66:427
Google Scholar
Mazumder AR, Hongsprabhas P (2016) Genistein as antioxidant and antibrowning agents in in vivo and in vitro: A review. Biomed Pharmacother 82:379–392. https://doi.org/10.1016/j.biopha.2016.05.023
Article
CAS
Google Scholar
Forbes JM, Cooper ME (2013) Mechanisms of diabetic complications. Physiol Rev 93(1):137–188. https://doi.org/10.1152/physrev.00045.2011
Article
CAS
PubMed
Google Scholar
Chahil TJ, Ginsberg HN (2006) Diabetic dyslipidemia. Endocrinol Metab Clin 35(3):491–510
Article
CAS
Google Scholar
Wang-Fischer Y, Garyantes T (2018) Improving the reliability and utility of streptozotocin-induced rat diabetic model. J Diabetes Res 8054073:14. https://doi.org/10.1155/2018/8054073
Article
CAS
Google Scholar
Wu J, Yan L (2015) Streptozotocin-induced type 1 diabetes in rodents as a model for studying mitochondrial mechanisms of diabetic β cell glucotoxicity. Diabet Metab Synd Ob 8:181–188. https://doi.org/10.2147/DMSO.S82272
Article
Google Scholar
Wei M, Smith MT et al (2003) The streptozotocin-diabetic rat as a model of the chronic complications of human diabetes. Heart Lung Circ 12(1):44–50. https://doi.org/10.1046/j.1444-2892.2003.00160.x
Article
PubMed
Google Scholar
Karumi Y, Bobboi A (1999) Hypoglycemic effects of balsam apple (Momordica balsamina) in Alloxan Diabetic Male Rabbits. Biochem 9:795–808
Google Scholar
Ayoub SM, Rao S, Byregowada SM, Satyanarayana L, Bhat N, Shridhar NB, Shridhar BR (2013) Evaluation of hypoglycemic effect of Momordica charantia extract in distilled water in streptozotocin-diabetic rats. Bra J Vet Pathol 6(2):56–64
Google Scholar
Shirwaikar A, Rajendran K, Kumar CD, Bodla R (2004) Antidiabetic activity of aqueous leaf extract of Annona squamosa in streptozotocin-nicotinamide type 2 diabetic rats. J ethanopharmacol 91(1):171–175. https://doi.org/10.1016/j.jep.2003.12.017
Article
Google Scholar
Ferretti G, Rabini RA, Bacchetti T, Vignini A, Salvolini E, Ravaglia E, Curatola G, Mazzanti L (2002) Glycated low density lipoproteins modify platelet properties: a compositional and functional study. Clin Endocrinol Metab 87:2180–2184
Article
CAS
Google Scholar
Andallu B, Vinay Kumar AV, Varadacharyulu NC (2009) Lipid abnormalities in Streptozotocin-diabetes: Amelioration by Morus indica L. Suguna leaves. Int J Diabetes Dev Ctries 29(3):123–128. https://doi.org/10.4103/0973-3930.54289
Article
CAS
PubMed
PubMed Central
Google Scholar
Ighodaro OM, Akinloye OA, Ugbaja RN, Omotainse SO (2017) Sapium ellipticum (Hochst.) Paxethanol leaf extract maintains lipid homeostasis in streptozotocin-induced diabetic rats. Int Scholarly Res Not 6463139:5. https://doi.org/10.1155/2017/6463139
Article
Google Scholar
Akindahunsi AA, Salawu SO (2005) Phytochemical screening and nutrient-antinutrient composition of selected tropical green leafy vegetables. Afr J Biotechnol 4:563–568
Google Scholar
Tayyab SS (2013) Antidiabetic, hypolipidemic and antioxidant activity of Momordica charantia on type-II diabetic patient in Allahabad, India. Int J Pharm Bio Sci 4:932–940
Google Scholar
Bayala B, Telefo PB, Bassole IHN, Tamboura HH, Belemfough RG et al (2011) Anti-spermatogenic activity of Leptadenia hastata (Pers) decne leaf stems aqueous extracts in male wistar rats. J Pharmacol Toxicol 6:1–9
Article
Google Scholar
Nazaruk J, Kluczyk MB (2015) The role of triterpenes in the management of diabetes mellitus and its complications. Phytochem Rev 14(4):675–690. https://doi.org/10.1007/s11101-014-9369-x
Article
CAS
PubMed
Google Scholar
Wu C, Wang F, Liu J, Zou Y, Chen X (2015) A comparison of volatile fractions obtained from Lonicera macranthoides via different extraction processes: ultrasound, microwave, soxhlet extraction, hydrodistillation and cold maceration. Integr Med Res 4:171–177
Article
Google Scholar