American Cancer Society (2018) Cancer facts & figures, pp 1–71
Google Scholar
Arbyn M, Weiderpass E, Bruni L, de Sanjosé S, Saraiya M, Ferlay J, Bray F (2020) Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis. Lancet Global Health 8(2):e191–e203. https://doi.org/10.1016/S2214-109X(19)30482-6
Article
PubMed
Google Scholar
Huy LAP, He H, Huy CP (2008) Free radicals, antioxidants in disease and health. Int J Biomed Sci. 4(2):89–96
Google Scholar
Zablocka-Slowinska K, Porębska I, Gołecki M, Kosacka M, Pawełczyk K, Pawlik-Sobecka L et al (2016) Total antioxidant status in lung cancer is associated with levels of endogenous antioxidants and disease stage rather than lifestyle factors – preliminary study. ContempOncol (Pozn). 20(4):302–307
CAS
Google Scholar
Von Pawel J, Schiller JH, Shepherd FA, Fields SZ, Kleisbauer JP, Chrysson NG et al (1999) Topotecan versus cyclophosphamide, doxorubicin, and vincristine for the treatment of recurrent small-cell lung cancer. J Clin Oncol. 17(2):658–667. https://doi.org/10.1200/JCO.1999.17.2.658
Article
Google Scholar
Deba F, Xuan TD, Yasuda M, Tawata S (2008) Chemical composition and antioxidant, antibacterial and antifungal activities of the essential oils from BidenspilosaLinn. var. Radiata. Food Control. 19(4):346–352. https://doi.org/10.1016/j.foodcont.2007.04.011
Article
CAS
Google Scholar
Chopra RN, Nayar SL, Chopra IC (1956) Glossary of Indian medicinal plants, vol 1. Council of Scientific and Industrial Research, New Delhi, pp 1–197
Google Scholar
PerumalSamy R, Ignacimuthu S, Sen A (1998) Screening of thirty-four Indian medicinal plants for antibacterial properties. J Ethnopharmacol 62(2):173–182. https://doi.org/10.1016/S0378-8741(98)00057-9
Article
CAS
Google Scholar
Palani S, Nirmal Kumar S, Gokulan R, Rajalingam D, Senthil Kumar B (2009) Evaluation of Nephroprotective and antioxidant potential of Tragia involucrate. Drug Invent Today 1(1):55–60
Google Scholar
Joshi C, Gopal M, Byregowda SM (2011) Cytotoxic activity of Tragia involucrate. Linn. Extracts. Am-Eurasian J Toxicol Sci 3(2):67–69
Google Scholar
Farook M, Atlee WC (2011) Antioxidant potential of Tragiainvolucratalinn on streptozotocin induced oxidative stress in rats s. Int J Pharmaceut Sci Res 2(6):1530–1536
Google Scholar
Vinodhini V, Himaja M, Saraswathi VS, Poppy D (2015) In vitro anti diabetic activity of Tragiainvolucrata Linn leaf extracts. Int J Res Ayurveda Pharm 6(1):1–3. https://doi.org/10.7897/2277-4343.0611
Article
Google Scholar
Abdul Rahman S, Anazi A, Anwar MJ, Ahmad MA (2015) Hepatoprotective and antioxidant activity of Tragia involucrata root extracts against CCl4 induced hepatotoxicity in rats. Der Pharmacia Lettre 7(5):146–152
Google Scholar
Yadav SA, Ramalingam S, Raj AJ, Subban R (2015) Antihistamine from Tragiainvolucrata L. leaves. J Complement Integr Med. 12(3):217–226
Google Scholar
Hu YJ, Liu Y, Shen XS, Fang XY, Qu SS (2005) Studies on the interaction between 1-hexylcarbamoyl-5-fluorouracil and bovine serum albumin. J MolStruct 738(1-3):143–147. https://doi.org/10.1016/j.molstruc.2004.11.062
Article
CAS
Google Scholar
Kamat BP, Seetharamappa J (2005a) In vitro study on the interaction of mechanism of tricyclic compounds with bovine serum albumin. J ChemSci 117:649–655
CAS
Google Scholar
Kamat BP (2005b) Spectroscopic investigations on the interaction of bovine serum albumine with amoxicillin and cloxacillin. J Photosci 12:11–15
CAS
Google Scholar
Kamat BP (2005c) Study of the interaction between fluoroquinolones and bovine serum albumin. J Pharm Biomed Anal 39(5):1046–1050. https://doi.org/10.1016/j.jpba.2005.05.013
Article
CAS
PubMed
Google Scholar
Cater DC, Ho JX (1994) Structure and ligand binding properties of human serum albumin. Adv Protein Chem 45:153–203. https://doi.org/10.1016/S0065-3233(08)60640-3
Article
Google Scholar
Olson RE, Christ DD (1996) Plasma protein binding of drugs. Ann Rep Med Chem 31:327–337
CAS
Google Scholar
Wanwimolruk S, Denton JR (1992) Plasma protein binding of quinine: binding to human serum albumin, α1-acid glycoprotein and plasma from patients with malaria. J Pharm Pharmacol 44(10):806–811. https://doi.org/10.1111/j.2042-7158.1992.tb03210.x
Article
CAS
PubMed
Google Scholar
Benet LZ, Kroetz D, Sheiner L, Hardman J, Limbird L (1996) Pharmacokinetics: the dynamics of drug absorption, distribution, metabolism, and elimination. Goodman Gilman's Pharmacol Basis Therapeut 3:27.
He XM, Carter DC (1992) Atomic structure and chemistry of human serum albumin. Nature 358(6383):209–215. https://doi.org/10.1038/358209a0
Article
CAS
PubMed
Google Scholar
Carlo B, Giorggio A, Gloria UB (1995) J Pharm Biomed Anal 13:1087–1093
Article
Google Scholar
Janna O, Dagmar S, Wolfgang L (1996) J Chromatogr B 682:349–357
Article
Google Scholar
Longworth JW (1971) In: Steiner RF, Weinryb I (eds) Excited states of proteins and nucleic acids. Plenum Press, New York, pp 433–434
Google Scholar
Luigi M, Francesca P, Silvia G (2002) Bioorg Med Chem 10:3425–3430
Article
Google Scholar
Sułkowska A (2002) Interaction of drugs with bovine and human serum albumin. J Mol Struct 614(1-3):227–232. https://doi.org/10.1016/S0022-2860(02)00256-9
Article
Google Scholar
Liu JQ, Tian JN, Tian X, Hu ZD (2004) Interaction of isofraxidin with human serum albumin. Bioorg Med Chem 12:469–474
Yun BS, Qian SD, Yuan T, Xin Z (2005) Molecular spectroscopic study on the interaction of tetracyclines with serum albumins. Spectrochim Acta A 61(4):629–636
Mondal SK, Chakraborty G, Gupta M, Mazumder UK (2006) In vitro antioxidant activity of Diospyros malabarica Kostel bark. IJEB 44(01):39–44
Google Scholar
Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cationdecolorization assay. Free RadicBiol Med 26(9-10):1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3
Article
CAS
Google Scholar
Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1-2):55–63
Article
CAS
PubMed
Google Scholar
Nelson SS, Yadav SA, Surendren LK (2019) Evaluation of in vitro anticancer potential in Punica granatum, Psidium guajava, and Vitis vinifera seed extracts. Int J Res Pharmaceut Sci. 10(1):165–169
CAS
Google Scholar
Yadav SA, Yeggoni DP, Devadasu E, Subramanyam R (2018) Molecular binding mechanism of 5-hydroxy-1-methylpiperidin-2-one with human serum albumin. J Biomol Struct Dyn 36(3):810–817
Article
CAS
PubMed
Google Scholar
Huazhen Y, Bin Q, Zhenyu L, Guonan C (2011) Fluorescence spectrometric study on the interaction of tamibarotene with bovine serum albumin. Luminescence 26:336–341
Article
Google Scholar
Taylor WR, Stark GR (2001) Regulation of the G2/M transition by p53. Oncogene 20(15):1803–1815
Article
CAS
PubMed
Google Scholar
Agarwal C, Tyagi A, Agarwal R (2006) Gallic acid causes inactivating phosphorylation of cdc25A/cdc25C-cdc2 via ATM-Chk2 activation, leading to cell cycle arrest, and induces apoptosis in human prostate carcinoma DU145 cells. Mol Cancer Ther 5(12):3294–3302
Article
CAS
PubMed
Google Scholar
Tan S, Guan X, Grün C, Zhou Z, Schepers U, Nick P (2015) Gallic acid induces mitotic catastrophe and inhibits centrosomal clustering in HeLa cells. Toxicol In Vitro 30(1 Pt B):506–513
Article
CAS
PubMed
Google Scholar
Tagne RS, Telefo BP, Nyemb JN, Yemele DM, Njina SN, Goka SM et al (2014) Anticancer and antioxidant activities of methanol extracts and fractions of some Cameroonian medicinal plants. Asian Pac J Trop Med. 7:S442–S447. https://doi.org/10.1016/S1995-7645(14)60272-8
Article
Google Scholar
Li J, Yao P (2009) Self-assembly of ibuprofen and bovine serum albumin− dextran conjugates leading to effective loading of the drug. Langmuir 25(11):6385–6391. https://doi.org/10.1021/la804288u
Article
CAS
PubMed
Google Scholar
Lakowicz JR (1983) Principles of fluorescence spectroscopy. Plenum, New York, London. https://doi.org/10.1007/978-1-4615-7658-7
Book
Google Scholar
Hu YJ, Liu Y, Wang JB (2004) Study of the interaction between monoammoniumglycyrrhizinate and bovine serum albumin. J Pharm Biomed Anal 36(4):915–919. https://doi.org/10.1016/j.jpba.2004.08.021
Article
CAS
PubMed
Google Scholar
Dreher D, Junod AF (1996) Role of oxygen free radicals in cancer development. Eur J Cancer 32A(1):30–38. https://doi.org/10.1016/0959-8049(95)00531-5
Article
CAS
PubMed
Google Scholar
Petkovic VD, Keta OD, Vidosavljevic MZ, Incerti S, RisticFira AM, Petrovic IM (2018) Biological outcomes of γ-radiation Induced DNA damages in breast and lung cancer cells pretreated with free radical scavengers. Int J Radiat Biol. 19:1–34
Google Scholar
Miller NJ, Rice-Evans CA (1996) Spectrophotometric determination of antioxidant activity. Redox Rep 2(3):161–171. https://doi.org/10.1080/13510002.1996.11747044
Article
CAS
PubMed
Google Scholar
Kahl R, Kappus H (1993) Toxicology of the synthetic antioxidants BHA and BHT in comparison with the natural antioxidant vitamin E. Z Lebensm-Unters Forsch. 196(4):329–338. https://doi.org/10.1007/BF01197931
Article
CAS
PubMed
Google Scholar
Fernandes I, Faria A, Azevedo J, Soares S, Calhau CAO, Freitas VD et al (2010) Influence of anthocyanins, derivative pigments and other catechol and pyrogallol-type phenolics on breast cancer cell proliferation. J Agric Food Chem. 58(6):3785–3792
Article
CAS
PubMed
Google Scholar
Mitsuhashi S, Saito A, Nakajima N, Shima H, Ubukata M (2008) Pyrogallol structure in polyphenols is involved in apoptosis induction on HEK293T and K562 Cells. Molecules 13(12):2998–3006. https://doi.org/10.3390/molecules13122998
Article
CAS
PubMed
PubMed Central
Google Scholar
Snchez-Carranza JN, Alvarez L, Bahena SM, Vidal ES, Cuevas V, Jimenez EW et al (2017) Phenolic compounds isolated from Caesalpiniacoriaria induce S and G2/M phase cell cycle arrest differentially and trigger cell death by interfering with microtubule dynamics in cancer cell lines. Molecules 22(4):2–14
Google Scholar
Bourassa P, Kanakis CD, Tarantilis P, Pollissiou MG, Tajmir-Riahi HA (2010) Resveratrol, genistein, and curcumin bind bovine serum albumin. J Phys Chem B 114(9):3348–3354. https://doi.org/10.1021/jp9115996
Article
CAS
PubMed
Google Scholar
Tian J, Liu X, Zhao Y, Zhao S (2007) Studies on the interaction between tetraphenylporphyrin compounds and bovine serum albumin. Luminescence 22(5):446–454. https://doi.org/10.1002/bio.983
Article
CAS
PubMed
Google Scholar
Douadi K, Chafaa S, Douadi T, Al-Noaimi M, Kaabi I (2020) Azoimine quinoline derivatives: Synthesis, classical and electrochemical evaluation of antioxidant, anti-inflammatory, antimicrobial activities and the DNA/BSA binding. J Mol Struct 1217:128305. https://doi.org/10.1016/j.molstruc.2020.128305
Article
CAS
Google Scholar
Naik PN, Chimatadar SA, Nandibewoor ST (2010) Pharmacokinetic study on the mechanism of interaction of sulfacetamide sodium with bovine serum albumin: a spectroscopic method. Biopharmaceut Drug Dispos. 31(2-3):120–128. https://doi.org/10.1002/bdd.696
Article
CAS
Google Scholar
Bhattacharyya M, Chaudhuri U, Poddar RK (1990) Evidence for cooperative binding of CPZ with hemoglobin. Biochem Biophys Res Commun. 167(3):1146–1153. https://doi.org/10.1016/0006-291X(90)90643-2
Article
CAS
PubMed
Google Scholar