Dervisis N, Klahn S (2016) Therapeutic innovations: tyrosine kinase inhibitors in cancer. Vet Sci 3:4–8
Article
Google Scholar
Mitchison TJ (2012) The proliferation rate paradox in antimitotic chemotherapy. Mol Biol Cell 23:1e6. doi:https://doi.org/10.1091/mbc.E10-04-0335.
Zhang J, Yang PL, Gray NS (2009) Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer 9:28e39. doi:https://doi.org/10.1038/nrc2559.
Jeanne PA, Gray N, Settleman J (2009). Factors underlying sensitivity of cancers to small-molecule kinase inhibitors. Nat Rev Drug Discov 8:709e23.
Oh DY, Bang YJ (2020) HER2-targeted therapies - a role beyond breast cancer. Nat Rev Clin Oncol 17(1):33–48. https://doi.org/10.1038/s41571-019-0268-3
Article
CAS
PubMed
Google Scholar
Valiathan RR, M. Marco B, Leitinger CG, Kleer R, Fridman, Discoidin (2012) Domain receptor tyrosine kinases: new players in cancer progression. Cancer Metastasis Rev. 31:295e321.
Shanmugam MK, Rane G, Kanchi MM, Arfuso FA et al (2015) The multifaceted role of curcumin in cancer prevention and treatment. Molecules 20:2728e69.
Vella V, Giuliano M, Nicolosi ML et al (2021) DDR1 affects metabolic reprogramming in breast cancer cells by cross-talking to the insulin/IGF system. Biomolecules 11(7):926
Article
Google Scholar
Kim HG, Hwang SY, Aaronson SA, Mandinova A, Lee SW (2011) DDR1 receptor tyrosine kinase promotes prosurvival pathway through Notch1 activation. J Biol Chem 286:17672e81.
Kumar R, Pereira RS, Zanetti C et al (2020) Specific, targetable interactions with the microenvironment influence imatinib-resistant chronic myeloid leukemia. Leukemia 34(8):2087–2101. https://doi.org/10.1038/s41375-020-0866-1
Article
CAS
PubMed
PubMed Central
Google Scholar
Hemalswarya S, Doble M (2006) Potential synergism of natural products in the treatment of cancer, Phyther Res 20:239e49.
Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141(7):1117–1134. https://doi.org/10.1016/j.cell.2010.06.011
Article
CAS
PubMed
PubMed Central
Google Scholar
Priyadarsini KI (2014) The chemistry of curcumin: from extraction to therapeutic agent. Molecules 19:20091e112.
Jin N, Bi A, Lan X et al (2019) Identification of metabolic vulnerabilities of receptor tyrosine kinases-driven cancer. Nat Commun 10(1):2701
Article
Google Scholar
Choura M, Rebaï A (2011) Receptor tyrosine kinases : from biology to pathology. J Recept Signal Transduct Res 31(6):387–394. https://doi.org/10.3109/10799893.2011.625425
Article
CAS
PubMed
Google Scholar
Clayton AHA et al (2005) Ligand-induced dimer-tetramer transition during the activation of the cell surface epidermal growth factor receptor: a multidimensional microscopy analysis. J Biol Chem 280(34):30392–30399. https://doi.org/10.1074/jbc.M504770200
Article
CAS
PubMed
Google Scholar
Lemmon MA, Joseph S (2010) Cell signaling by receptor tyrosine kinases. Cell 141(7):1117–1134
Article
CAS
Google Scholar
Ren S et al (2008) The conservation pattern of short linear motifs is highly correlated with the function of interacting protein domains. BMC Genomics 9:1–13
Article
Google Scholar
Metibemu D,Samuel, et al (2019) Exploring receptor tyrosine kinases-inhibitors in cancer treatments. Egypt J Med Hum Genet 20(1):1–16
Article
Google Scholar
Koch S, Xiujuan L, Laura G, and Lena C (2011) Signal transduction by vascular endothelial growth factor receptors. Biochem J 437(2):169–83. doi: https://doi.org/10.1042/BJ20110301
Holmes K, Owain LR, Thomas AM, Michael JC (2012) Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cell Signal 19(10):2003–2012. https://doi.org/10.1016/j.cellsig.2007.05.013
Article
CAS
Google Scholar
Wiszniak S, Schwarz Q (2021) Exploring the intracrine functions of VEGF-A. Biomolecules 11(1):128
Article
CAS
Google Scholar
Karaman S, and Veli-matti L (2018) Vascular endothelial growth factor signaling in development and disease. Development. 145(14):dev151019. doi: https://doi.org/10.1242/dev.151019.
Claesson-Welsh L (2008) VEGF-B taken to our hearts: specific effect of VEGF-B in myocardial ischemia. Arterioscler Thromb Vasc Biol 28(9):1575–1576
Article
CAS
Google Scholar
Li W et al. (2020) Clinical use of vascular endothelial growth factor receptor inhibitors for the treatment of renal cell carcinoma. Eur J Med Chem 15(200):112482. doi: https://doi.org/10.1016/j.ejmech.2020.112482.
Stacker SA, Achen MG (2018) Emerging roles for VEGF-D in human disease. Biomolecules 8(1):1. https://doi.org/10.3390/biom8010001
Article
CAS
PubMed Central
Google Scholar
Mendelsohn J, Jose B (2006) Epidermal growth factor receptor targeting in cancer. Semin Oncol 33(4):369–385. https://doi.org/10.1053/j.seminoncol.2006.04.003
Article
CAS
PubMed
Google Scholar
Liu X, Ping W, Caiyan Z, Zhongliang M (2017) Epidermal growth factor receptor (EGFR ): a rising star in the era of precision medicine of lung cancer. Oncotarget 8(30):50209–50220
Article
Google Scholar
Kovacs E, Julie AZ, Yongjian H, and Tiago B (2015) A Structural Perspective on the Regulation of the Epidermal Growth Factor Receptor. Annu Rev Biochem. 84:13.1–13.26 doi:https://doi.org/10.1146/annurev-biochem-060614-034402.
Liang W et al (2014) Network meta-analysis of erlotinib, gefitinib, afatinib and icotinib in patients with advanced non-small-cell lung cancer harboring EGFR mutations. PLoS ONE 9(2):e85245. https://doi.org/10.1371/journal.pone.0085245
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Yang N, Zhang Y et al (2020) Effective treatment of lung adenocarcinoma harboring EGFR-activating mutation, T790M, and cis-C797S triple mutations by brigatinib and cetuximab combination therapy. J Thorac Oncol 15(8):1369–1375
Article
CAS
Google Scholar
Jorissen, Robert N et al (2018) Epidermal growth factor receptor: mechanisms of activation and signalling 284(1):31–53. doi:https://doi.org/10.1016/s0014-4827(02)00098-8.
Du Z, Christine ML (2018) Mechanisms of receptor tyrosine kinase activation in cancer. Mol Cancer 17(1):58. https://doi.org/10.1186/s12943-018-0782-4
Article
CAS
PubMed
PubMed Central
Google Scholar
Kazlauskas A (2017) PDGFs and their receptors. Gene 614:1–7. https://doi.org/10.1016/j.gene.2017.03.003
Article
CAS
PubMed
PubMed Central
Google Scholar
Kramer F, Dernedde J, Mezheyeuski A, Tauber R, Micke P, Kappert K (2020) Platelet-derived growth factor receptor β activation and regulation in murine myelofibrosis. Haematologica 105(8):2083–2094
Article
CAS
Google Scholar
Shen S, Wang F, Fernandez A, Hu W (2020) Role of platelet-derived growth factor in type II diabetes mellitus and its complications. Diab Vasc Dis Res 17(7):1479164120942119
PubMed
PubMed Central
Google Scholar
Andrae J, Radiosa G, Christer B (2008) Role of platelet-derived growth factors in physiology and medicine. Genes Dev 22(10):1276–1312
Article
CAS
Google Scholar
Haeusler RA, McGraw TE, Accili D (2018) Biochemical and cellular properties of insulin receptor signalling. Nat Rev Mol Cell Biol 19(1):31–44
Article
CAS
Google Scholar
De Meyts P (2004) Insulin and Its receptor: structure. Funct Evol Bioessays 7:1351–1362
Article
Google Scholar
Scapin G, Dandey VP, Zhang Z et al (2018) Structure of the insulin receptor-insulin complex by single-particle cryo-EM analysis. Nature 556(7699):122–125. https://doi.org/10.1038/nature26153
Article
CAS
PubMed
PubMed Central
Google Scholar
Belfiore A et al (2014) Insulin receptor isoforms and insulin receptor / insulin-like growth factor receptor hybrids in physiology and disease. Endocr Rev 30:586–623
Article
Google Scholar
A Kasuga M (2019). Structure and function of the insulin receptor-a personal perspective. Proc Jpn Acad Ser B Phys Biol Sci 95(10):581–589. https://doi.org/10.2183/pjab.95.039
Machairiotis N, Sofia V, Paraskevi K (2019) Structure and function of the insulin receptor-a personal perspective. Proc Jpn Acad Ser B Phys Biol Sci 95(10):581–589. https://doi.org/10.1016/j.ejogrb.2019.11.019
Article
CAS
Google Scholar
Lichota A, Krzysztof G (2018) Anticancer activity of natural compounds from plant and marine environment. Int J Mol Sci 19:3533. https://doi.org/10.3390/ijms19113533
Article
CAS
PubMed Central
Google Scholar
Fidyt K, Fiedorowicz A, Strządała L, Szumny A (2016) β-caryophyllene and β-caryophyllene oxide-natural compounds of anticancer and analgesic properties. Cancer Med 5(10):3007–3017. https://doi.org/10.1002/cam4.816
Article
CAS
PubMed
PubMed Central
Google Scholar
Ong CP, Wai LL, Yin QT, Wei HY (2020) Honokiol: a review of its anticancer potential and mechanisms. Cancers 1:1–51
Google Scholar
Baier A (2020) Compounds from natural sources as protein kinase inhibitors. Biomolecules 10:1546. https://doi.org/10.3390/biom10111546
Article
CAS
PubMed Central
Google Scholar
Teillet F, Ahcene B, Jean B, Xavier R (2007) Flavonoids as RTK inhibitors and potential anticancer agents. Med Res Rev 28(5):715–745. https://doi.org/10.1002/med.20122
Article
CAS
Google Scholar
Rauf A, Imran M, Khan IA, Ur-Rehman M, Gilani SA, Mehmood Z, Mubarak MS (2018) Anticancer potential of quercetin: a comprehensive review. Phytother Res 32(11):2109–2130. https://doi.org/10.1002/ptr.6155
Article
CAS
PubMed
Google Scholar
Zheng S-Y et al (2012) Anticancer effect and apoptosis induction by quercetin in the human lung cancer cell line A-549. Mol Med Rep 5(3):822–826. https://doi.org/10.3892/mmr.2011.726
Article
CAS
PubMed
Google Scholar
Choi EJ, Su MB, Woong SA (2008) Antiproliferative effects of quercetin through cell cycle arrest and apoptosis in human breast cancer MDA-MB-453 cells. Arch Pharm Res 31(10):1281–1285
Article
CAS
Google Scholar
Zhao D et al (2014) Inhibitory effects of quercetin on angiogenesis in Larval Zebra Fish and human umbilical vein endothelial cells. Eur J Pharmacol 723:360–367. https://doi.org/10.1016/j.ejphar.2013.10.069
Article
CAS
PubMed
Google Scholar
Haghi A, Azimi H, Rahimi R (2017) A comprehensive review on pharmacotherapeutics of three phytochemicals, curcumin, quercetin, and allicin, in the treatment of gastric cancer. J Gastrointest Cancer 48(4):314–320
Article
CAS
Google Scholar
Pu Y et al (2018) Luteolin exerts an anticancer effect on gastric cancer cells through multiple signaling pathways and regulating MiRNAs. J Cancer 9(20):3669–3675. https://doi.org/10.7150/jca.27183
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun S, Fanger G, Ping L, Qilong M (2018) Metformin combined with quercetin synergistically repressed prostate cancer cells via inhibition of VEGF/PI3K/Akt signaling pathway. Gene 20(664):50–57. https://doi.org/10.1016/j.gene.2018.04.045
Article
CAS
Google Scholar
Donnini S et al (2006) Divergent effects of quercetin conjugates on angiogenesis. Br J Nutr 95(5):1016–1023. https://doi.org/10.1079/bjn20061753
Article
CAS
PubMed
Google Scholar
Arunakaran J (2014) Function chemopreventive agent against prostate cancer in an in vivo model by inhibiting the EGFR signaling pathway. Food Funct 5:2632–2645. https://doi.org/10.1039/C4FO00255E
Article
CAS
PubMed
Google Scholar
Lee J, Song H, Jeong Y, Jae HK (2015) Quercetin 3-O-glucoside suppresses epidermal growth factor: induced migration by inhibiting EGFR signaling in pancreatic cancer cells. Tumour Biol 36(12):9385–9393. https://doi.org/10.1007/s13277-015-3682-x
Article
CAS
PubMed
Google Scholar
Bhattacharyya N, Pechhold K, Shahjee H, Zappala G, Elbi C, Raaka B, Wiench M, Hong J, Rechler MM (2006) Nonsecreted insulin-like growth factor binding protein-3 (IGFBP-3) can induce apoptosis in human prostate cancer cells by IGF-independent mechanisms without being concentrated in the nucleus. J Biol Chem 281(34):24588–24601. https://doi.org/10.1074/jbc.M509463200
Article
CAS
PubMed
Google Scholar
Ishizawa K et al (2009) Quercetin Glucuronide Inhibits Cell Migration and Proliferation by Platelet-Derived Growth factor in vascular smooth muscle cells. J Pharmacol Sci 264:257–64.
Huang C-Y et al (2013) Quercetin induces growth arrest through activation of FOXO1 transcription factor in EGFR-overexpressing oral cancer cells. J Nutr Biochem 24(9):1596–1603. https://doi.org/10.1016/j.jnutbio.2013.01.010
Article
CAS
PubMed
Google Scholar
Fan JJ, Hsu WH, Lee KH et al (2019) Dietary flavonoids luteolin and Quercetin inhibit migration and invasion of squamous carcinoma through reduction of Src/Stat3/S100A7 signaling. Antioxidants (Basel) 8(11):557
Article
CAS
Google Scholar
Shao L et al (2013) Opposite effects of quercetin, luteolin, and epigallocatechin gallate on insulin sensitivity under normal and inflammatory conditions in mice. Inflammation 36(1):1–14. https://doi.org/10.1007/s10753-012-9514
Article
CAS
PubMed
Google Scholar
Yu-tang T et al (2011) Curcumin reduces pulmonary tumorigenesis in vascular endothelial growth factor ( VEGF )-overexpressing transgenic mice. Mol Nutr Food Res 55(7):1036–1043. https://doi.org/10.1002/mnfr.201000654
Article
CAS
Google Scholar
Russo M et al (2016) Understanding genistein in cancer : the ‘‘ good ” and the ‘‘ bad ” effects : a review. Food Chem 196:589–600
Article
CAS
Google Scholar
Normanno N et al (2006) Epidermal growth factor receptor (EGFR) signaling in cancer. Cancers 366:2–16
CAS
Google Scholar
Lee J, Jae HK (2016) Kaempferol Inhibits pancreatic cancer cell growth and migration through the blockade of EGFR-related pathway in vitro. PLoS ONE 11(5):e0155264. https://doi.org/10.1371/journal.pone.0155264
Article
CAS
PubMed
PubMed Central
Google Scholar
Mariam A, Alena L, Peter K, Dietrich B (2020) Therapeutic potential of plant phenolic acids in the treatment of cancer. Biomolecules 10:221. https://doi.org/10.3390/biom10020221
Article
CAS
Google Scholar
Anantharaju PG, Gowda PC, Vimalambike MG, Madhunapantula SV (2016) An overview on the role of dietary phenolics for the treatment of cancers. Nutr J 15:99
Article
Google Scholar
Ls R, Nja S (2016) Anticancer properties of phenolic acids in colon cancer: a review. J Nutr Food Sci 6:10–4172. https://doi.org/10.4172/2155-9600.1000468
Article
CAS
Google Scholar
Rahman MJ, Costa DCA, Shahidi F (2018) Phenolic profiles and antioxidant activity of defatted camelina and sophia seeds. Food Chem 240:917–925. https://doi.org/10.1016/j.foodchem.2017.07.098
Article
CAS
PubMed
Google Scholar
Srinivasulu C, Ramgopal M, Ramanjaneyulu G, Anuradha CM, Suresh KC (2018) Syringic acid (SA) a review of its occurrence, biosynthesis, pharmacological and industrial importance. Biomed Pharmacother 108:547–557. https://doi.org/10.1515/ncrs-2020-0632
Article
CAS
PubMed
Google Scholar
Hyungmin J, Ai NH, Jong WC (2017) Anti-cancer effects of polyphenolic compounds in epidermal growth factor receptor tyrosine kinase inhibitor-resistant non-small cell lung cancer. Pharmacogn Mag 13:52. https://doi.org/10.4103/pm.pm_535_16
Article
CAS
Google Scholar
Preethi GA, Prathima CG, Manjunatha GV, SubbaRao VM (2016) An overview on the role of dietary phenolics for the treatment of cancers. Nutr J 15:99. https://doi.org/10.1186/s12937-016-0217-2
Article
CAS
Google Scholar
Ning X, Ren X, Xie X, Yan P, Wang D, Huang X (2020) A caffeic acid phenethyl ester analog inhibits the proliferation of nasopharyngeal carcinoma cells via targeting epidermal growth factor receptor. J Biochem Mol Toxicol 34(7):e22491
Chien HT, Cheng SD, Liao CT, Wang HM, Huang SF (2019) Amplification of the EGFR and CCND1 are coordinated and play important roles in the progression of oral squamous cell carcinomas. Cancers (Basel) 11(6):760
Article
CAS
Google Scholar
Huang GZ, Wu QQ, Zheng ZN, Shao TR, Lv XZ (2019) Identification of candidate biomarkers and analysis of prognostic values in oral squamous cell carcinoma. Front Oncol 9:1054
Article
Google Scholar
Kuo YY, Jim WT, Su LC et al (2015) Caffeic acid phenethyl ester is a potential therapeutic agent for oral cancer. Int J Mol Sci 16(5):10748–10766
Article
CAS
Google Scholar
Sung HP, Won-Kyo J, Won SP, Dae SL, Gi YK, Yung HC, Su KS, Won HJ, Jung SC, Young ML, Saegwang P, Whan C (2015) Caffeic acid phenethyl ester reduces the secretion of vascular endothelial growth factor through the inhibition of the ROS, PI3K and HIF-1α signaling pathways in human retinal pigment epithelial cells under hypoxic conditions. Int J Mol Med 35:1419–1426. https://doi.org/10.3892/ijmm.2015.2116
Article
CAS
Google Scholar
Hung CH, Ho CC, Chin TT, Chan YK (2012) Caffeic acid phenethyl ester inhibits proliferation and migration, and induces apoptosis in platelet-derived growth factor-BB-stimulated human coronary smooth muscle cells. J Vasc Res 49(1):24–32. https://doi.org/10.1159/000329819
Article
CAS
Google Scholar
Ann HR, Claire MP, Li Z, Andrea M, Maria S, Carsten R, Christian I, Jeff MP, Holly HJ (2015) Caffeine and caffeic acid inhibit growth and modify estrogen receptor and insulin-like growth factor i receptor levels in human breast cancer. Clinical cancer Resources 21(8):1877–1887. https://doi.org/10.1158/1078-0432.CCR-14-1748
Article
CAS
Google Scholar
Chong CR, Janne PA (2013) The quest to overcome resistance to EGFR-targeted therapies in cancer. Nat Med 19:1389–1400. https://doi.org/10.1038/nm.3388
Article
CAS
PubMed
PubMed Central
Google Scholar
Ai NH, Tuyen NM, Hua MK, Vu TA, Jong WC, Hyun WK, Jin KR, Ki WK, Yangsik J (2016) Gallic acid inhibition of Src-Stat3 signaling overcomes acquired resistance to EGF receptor tyrosine kinase inhibitors in advanced non-small cell lung cancer. Oncotarget 7(34):54702–54713. https://doi.org/10.18632/oncotarget.10581
Article
Google Scholar
Zhiping H, Allen YC, Yon R, Gary OR, Yi CC (2016) Gallic acid, a phenolic compound, exerts anti-angiogenic effects via the PTEN/AKT/HIF-1α/VEGF signaling pathway in ovarian cancer cells. Oncol Rep 35:291–297. https://doi.org/10.3892/or.2015.4354
Article
CAS
Google Scholar
Chen Y, Zhou G, Ma B, Tong J, Wang Y (2019) Active constituent in the ethyl acetate extract fraction of Terminalia bellirica fruit exhibits antioxidation, antifibrosis, and proapoptosis capabilities in vitro. Oxid Med Cell Longev 2019:5176090. https://doi.org/10.1155/2019/5176090
Article
CAS
PubMed
PubMed Central
Google Scholar
Mileo AM, Miccadei S (2016) Polyphenols as modulator of oxidative stress in cancer disease: new therapeutic strategies. Oxid Med Cell Longev 17:6475624. https://doi.org/10.1155/2016/6475624
Article
CAS
Google Scholar
Russell LH, Mazzio E, Badisa RB (2012) Autoxidation of gallic acid induces ROS dependent death in human prostate cancer LNCaP cells. Anticancer Res 32(5):1595–1602
CAS
PubMed
PubMed Central
Google Scholar
Maruszewska A, Tarasiuk J (2019) Antitumour effects of selected plant polyphenols, gallic acid and ellagic acid, on sensitive and multidrug-resistant leukaemia HL60 cells. Phytother Res 33(4):1208–1221. https://doi.org/10.1002/ptr.6317
Article
CAS
PubMed
Google Scholar
Ghafouri S, Burkenroad A, Pantuck M et al (2021) VEGF inhibition in urothelial cancer: the past, present and future. World J Urol 39(3):741–749. https://doi.org/10.1007/s00345-020-03213-z
Article
CAS
PubMed
Google Scholar
El Baba N, Farran M, Khalil EA, Jaafar L, Fakhoury I, El-Sibai M (2020) The role of rho GTPases in VEGF signaling in cancer cells. Anal Cell Pathol (Amst) 2020:2097214. https://doi.org/10.1155/2020/2097214
Article
CAS
Google Scholar
Shaoling L, Jiamiao H, Xuelin Z, Peter CK (2017) Inhibition of vascular endothelial growth factor-induced angiogenesis by chlorogenic acid via targeting the vascular endothelial growth factor receptor 2-mediated signaling pathway. J Funct Foods 32:285–295
Article
Google Scholar
Haitao S, Ameng S, Lei D, Xiaolan L, Yan W, Juhui Z, Fei D, Xiaoyan G (2016) Chlorogenic acid protects against liver fibrosis in vivo and in vitro through inhibition of oxidative stress. Clin Nutr 35(6):1366–1373. https://doi.org/10.1016/j.clnu.2016.03.002
Article
CAS
Google Scholar
Yan Y, Zhou X, Guo K, Zhou F, Yang H (2020) Use of chlorogenic acid against diabetes mellitus and its complications. J Immunol Res 2020:9680508. https://doi.org/10.1155/2020/9680508
Article
CAS
PubMed
PubMed Central
Google Scholar
Sudhagar S, Sathya S, Anuradha R, Gokulapriya G, Geetharani Y, Lakshmi BS (2018) Inhibition of epidermal growth factor receptor by ferulic acid and 4-vinylguaiacol in human breast cancer cells. Biotechnology Lett 40(2):257–262. https://doi.org/10.1007/s10529-017-2475-2
Article
CAS
Google Scholar
Senawong T, Khaopha S, Misuna S, Komaikul J, Senawong G, Wongphakham P (2014) Phenolic acid composition and anticancer activity against human cancer cell lines of the commercially available fermentation products of Houttuynia cordata. Science Asia 40(6):420. https://doi.org/10.2306/scienceasia1513-1874.2014.40.420
Article
Google Scholar
Chiu ML, Jen HC, Hsing W, Bao WW, Chun MP, Yen HS (2010) Ferulic acid augments angiogenesis via VEGF, PDFG and HIF-1α. Nutr Biochem 21(7):627–633. https://doi.org/10.1016/j.jnutbio.2009.04.001
Article
CAS
Google Scholar
Jayaraman J, Ganesh S, Ettayapuram RA (2014) Inhibition of insulin amyloid fibril formation by ferulic acid, a natural compound found in many vegetables and fruits. R Soc Chem 4:62326. https://doi.org/10.1039/C4RA11291A
Article
Google Scholar
Andrade RG, Jr, Dalvi LT, Silva JM, Lopes GK, Alonso A, Hermes LM (2005) The antioxidant effect of tannic acid on the in vitro copper-mediated formation of free radicals. Arch Biochem Biophys 437(1):1-9. doi:https://doi.org/10.1016/j.abb.2005.02.016
Darvin P, Joung YH, Kang DY et al (2017) Tannic acid inhibits EGFR/STAT1/3 and enhances p38/STAT1 signalling axis in breast cancer cells. J Cell Mol Med 21(4):720–734. https://doi.org/10.1111/jcmm.13015
Article
CAS
PubMed
Google Scholar
Stacker SA, Achen MG (2013) The VEGF signaling pathway in cancer: the road ahead. Chin J Cancer 32:297–302. https://doi.org/10.5732/cjc.012.10319
Article
CAS
PubMed
PubMed Central
Google Scholar
Kevin M, Devin T, Byron M, Kin O (2005) Tannic acid derivatives display anti-angiogenic properties in human breast cancer cells by interfering with CXCR/SDF-1 interactions. Can Res 46:5190
Google Scholar
Szaefer H, Kaczmarek J, Rybczynska M, Baer-Dubowska W (2007) The effect of plant phenols on the expression and activity of phorbol ester-induced PKC in mouse epidermis. Toxicology 230:1–10. https://doi.org/10.1016/j.tox.2006.10.001
Article
CAS
PubMed
Google Scholar
Andrea B, Ryszard S (2020) Compounds from natural sources as protein kinase inhibitors. Biomolecules 10:1546. https://doi.org/10.3390/biom10111546
Article
CAS
Google Scholar
Xueqing L, Jae-kyung K, Yunsheng L, Li J, Fang L, Xiaozhuo C (2005) Tannic acid stimulates glucose transport and inhibits adipocyte differentiation in 3T3-L1 cells. J Nutr 135:165–171. https://doi.org/10.1093/jn/135.2.165
Article
Google Scholar
Esmaie EM, Abo-Youssef AM, Tohamy MA (2019) Antidiabetic and antioxidant effects of tannic acid and melatonin on streptozotocin induced diabetes in rats. Pak J Pharm Sci 32(4):1453–1459
CAS
PubMed
Google Scholar
Chaves SK, Feitosa CM, da S Araújo L (2016) Alkaloids pharmacological activities - prospects for the development of phytopharmaceuticals for neurodegenerative diseases. Curr Pharm Biotechnol. 17(7):629-35. doi: https://doi.org/10.2174/138920101707160503201541.
Arpita R (2017) A review on the alkaloids an important therapeutic compound from plants. Int J Plant Biotechnol 3(2):1–9
Google Scholar
Kiyatkin EA (2019) Respiratory depression and brain hypoxia induced by opioid drugs: morphine, oxycodone, heroin, and fentanyl. Neuropharmacology 151:219–226. https://doi.org/10.1016/j.neuropharm
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu H et al (2020) Morphine promotes tumorigenesis and cetuximab resistance via EGFR signaling activation in human colorectal cancer. J Cell Physiol 236(6):4445–4454. https://doi.org/10.1002/jcp.30161
Article
CAS
PubMed
Google Scholar
Zhao H, Gencheng W, Xiaoding C (2013) EGFR dependent subcellular communication was responsible for morphine mediated AC superactivation. Cell Signal 25(2):417–428. https://doi.org/10.1016/j.cellsig.2012.10.016
Article
CAS
PubMed
Google Scholar
Amaram-Davila J, Davis M, Reddy A (2020) Opioids and cancer mortality. Curr Treat Options Oncol 21(3):22. https://doi.org/10.1007/s11864-020-0713-7
Article
PubMed
Google Scholar
Nishiwada T, Yoshitaka K, Keiko U, Masahiko K (2019) Morphine inhibits cell viability and growth via suppression of vascular endothelial growth factor in human oral cancer HSC-3 cells. J Anesth 33(3):408–415. https://doi.org/10.1007/s00540-019-02645-1
Article
PubMed
Google Scholar
Kanda Y, Yasuhiro W (2007) Nicotine-induced vascular endothelial growth factor release via the EGFR-ERK pathway in rat vascular smooth muscle cells. Life Sci 80:1409–1414. https://doi.org/10.1016/j.lfs.2006.12.033
Article
CAS
PubMed
Google Scholar
Khalil AA, Mark JJ, Theodore DC (2013) Nicotine enhances proliferation, migration, and radioresistance of human malignant glioma cells through EGFR activation. Brain Tumor Pathol 30(2):73–83. https://doi.org/10.1007/s10014-012-0101-5
Article
CAS
PubMed
Google Scholar
Chong J, Anne P, Philippe H (2009) Plant science metabolism and roles of stilbenes in plants. Plant Sci 177:143–155
Article
CAS
Google Scholar
Toni E et al (2018) A review of dietary stilbenes: sources and bioavailability. Phytochem Rev 9:1007–1029
Google Scholar
Shen T, Xiao-ning W, Hong-xiang L (2009) Natural stilbenes: an overview. Nat Prod Rep 26:916–935. https://doi.org/10.1039/b905960a
Article
CAS
PubMed
Google Scholar
Hu WH, Dai DK, Zheng BZ et al (2020) Piceatannol, a natural analog of resveratrol, exerts anti-angiogenic efficiencies by blockage of vascular endothelial growth factor binding to its receptor. Molecules 25(17):3769. https://doi.org/10.3390/molecules25173769
Article
CAS
PubMed Central
Google Scholar
Szkudelski T (2008) The insulin-suppressive effect of resveratrol - an in vitro and in vivo phenomenon. Life Sci 82(7–8):430–435. https://doi.org/10.1016/j.lfs.2007.12.008
Article
CAS
PubMed
Google Scholar
Cichocki M, Hanna S, Wanda B (2014) The effect of resveratrol and its methylthio-derivatives on EGFR and Stat3 activation in human HaCaT and A431 cells. Mol Cell Biochem 396(1–2):221–228. https://doi.org/10.1007/s11010-014-2157-5
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Lu et al (2014) Biosensors and bioelectronics in-situ detection of resveratrol inhibition effect on epidermal growth factor receptor of living MCF-7 cells by atomic force microscopy. Biosens Bioelectron 56:271–277. https://doi.org/10.1016/j.bios.2014.01.024
Article
CAS
PubMed
Google Scholar
Bhaskara VK, Mittal B, Mysorekar VV, Amaresh N, Simal-Gandara J (2020) Resveratrol, cancer and cancer stem cells: a review on past to future. Curr Res Food Sci 3:284–295. https://doi.org/10.1016/j.crfs.2020.10.004
Article
PubMed
PubMed Central
Google Scholar
Marcotullio MC (2018) An ethnopharmacological, phytochemical and pharmacological review on lignans from Mexican Bursera Spp. Molecules 23:1976. https://doi.org/10.3390/molecules23081976
Article
CAS
PubMed Central
Google Scholar
Saleem M, Ja K, Shaiq A, Yong S (2005) An update on bioactive plant lignans. Nat Prod Rep 22(6):696–716. https://doi.org/10.1039/b514045p
Article
CAS
PubMed
Google Scholar
Sharma DK (2006) Pharmacological properties of flavonoids including flavonolignans – integration of petrocrops with drug development from plants. J Sci Ind Res 65:477–484
CAS
Google Scholar
Arora, S et al (2012) Honokiol: a novel natural agent for cancer prevention and therapy. Curr Mol Med 562: 1244–52
Wen J et al (2009) Liposomal Honokiol Inhibits VEGF-D-Induced Lymphangiogenesis and Metastasis in Xenograft Tumor Model. Int J Cancer 2718:2709–2718
Article
Google Scholar
Leeman N, Rebecca J et al (2010) Honokiol inhibits epidermal growth factor receptor signaling and enhances the antitumor effects of epidermal growth factor receptor inhibitors honokiol inhibits epidermal growth factor receptor signaling and enhances the antitumor effects of epidermal growth factor receptor inhibitors. Clin Cancer Res 16:2571–2579. https://doi.org/10.1158/1078-0432.CCR-10-0333
Article
Google Scholar
Singh T (2015) Honokiol inhibits the growth of head and neck squamous cell carcinoma by targeting epidermal growth factor. Receptor 6(25):21268–21282
Google Scholar
Park E et al (2009) Down-regulation of c-Src/EGFR-mediated signaling activation is involved in the honokiol-induced cell cycle arrest and apoptosis in MDA-MB-231 human breast cancer cells. Cancer Lett 277(2):133–140. https://doi.org/10.1016/j.canlet.2008.11.029
Article
CAS
PubMed
Google Scholar