Von Bartheld CS, Bahney J, Herculano-Houzel S (2016) The search for true numbers of neurons and glial cells in the human brain: a review of 150 years of cell counting. J Comp Neurol 524(18):3865–3895. https://doi.org/10.1002/cne.24040
Article
Google Scholar
Fields RD, Stevens-Graham B (2002) New insights into neuron-glia communication. Science 298(5593):556–562. https://doi.org/10.1126/science.298.5593.556
Article
CAS
Google Scholar
Brawek B, Garaschuk O (2019) Single-cell electroporation for measuring in vivo calcium dynamics in microglia. Methods Mol Biol 2034:231–241. https://doi.org/10.1007/978-1-4939-9658-2_17
Article
CAS
Google Scholar
Itagaki S, McGeer PL, Akiyama H, Zhu S, Selkoe D (1989) Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease. J Neuroimmunol 24(3):173–182. https://doi.org/10.1016/0165-5728(89)90115-X
Article
CAS
Google Scholar
Hashemiaghdam A, Mroczek M (2020) Microglia heterogeneity and neurodegeneration: the emerging paradigm of the role of immunity in Alzheimer’s disease. J Neuroimmunol 341:577185. https://doi.org/10.1016/j.jneuroim.2020.577185
Article
CAS
Google Scholar
Pabon MM, Bachstetter AD, Hudson CE, Gemma C, Bickford PC (2011) CX3CL1 reduces neurotoxicity and microglial activation in a rat model of Parkinson’s disease. J Neuroinflammation 8:9. https://doi.org/10.1186/1742-2094-8-9
Article
CAS
Google Scholar
Liu Y, Wu XM, Luo QQ, Huang S, Yang QW, Wang FX, Ke Y, Qian ZM (2015) CX3CL1/CX3CR1-mediated microglia activation plays a detrimental role in ischemic mice brain via p38MAPK/PKC pathway. J Cereb Blood Flow Metab 35(10):1623–1631. https://doi.org/10.1038/jcbfm.2015.97
Article
CAS
Google Scholar
Sunnemark D, Eltayeb S, Nilsson M, Wallström E, Lassmann H, Olsson T, Berg AL, Ericsson-Dahlstrand A (2005) CX3CL1 (fractalkine) and CX3CR1 expression in myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis: kinetics and cellular origin. J Neuroinflammation 2:17. https://doi.org/10.1186/1742-2094-2-17
Article
CAS
Google Scholar
Gyoneva S, Hosur R, Gosselin D, Zhang B, Ouyang Z, Cotleur AC, Peterson M et al (2019) Cx3cr1-deficient microglia exhibit a premature aging transcriptome. Life Sci Alliance 2(6):e201900453. https://doi.org/10.26508/lsa.201900453
Article
Google Scholar
O’Sullivan SA, Gasparini F, Mir AK, Dev KK (2016) Fractalkine shedding is mediated by p38 and the ADAM10 protease under pro-inflammatory conditions in human astrocytes. J Neuroinflammation 13(1):189. https://doi.org/10.1186/s12974-016-0659-7
Article
CAS
Google Scholar
Hulshof S, van Haastert ES, Kuipers HF, van den Elsen PJ, De Groot CJ, van der Valk P, Ravid R, Biber K (2003) CX3CL1 and CX3CR1 expression in human brain tissue: noninflammatory control versus multiple sclerosis. J Neuropathol Exp Neurol 62(9):899–907. https://doi.org/10.1093/jnen/62.9.899
Article
CAS
Google Scholar
Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, Giustetto M et al (2011) Synaptic pruning by microglia is necessary for normal brain development. Science 333(6048):1456–1458. https://doi.org/10.1126/science.1202529
Article
CAS
Google Scholar
Tuan LH, Lee LJ (2019) Microglia-mediated synaptic pruning is impaired in sleep-deprived adolescent mice. Neurobiol Dis 130:104517. https://doi.org/10.1016/j.nbd.2019.104517
Article
CAS
Google Scholar
Kim HJ, Cho MH, Shim WH, Kim JK, Jeon EY, Kim DH, Yoon SY (2017) Deficient autophagy in microglia impairs synaptic pruning and causes social behavioral defects. Mol Psychiatry 22(11):1576–1584. https://doi.org/10.1038/mp.2016.103
Article
CAS
Google Scholar
Nicolini C, Ahn Y, Michalski B, Rho JM, Fahnestock M (2015) Decreased mTOR signaling pathway in human idiopathic autism and in rats exposed to valproic acid. Acta Neuropathol Commun 3(1):1–13. https://doi.org/10.1186/s40478-015-0184-4
Article
CAS
Google Scholar
Sharma A, Mehan S (2021) Targeting PI3K-AKT/mTOR signaling in the prevention of autism. Neurochem Int 147:105067. https://doi.org/10.1016/j.neuint.2021.105067
Article
CAS
Google Scholar
Liu JF, Tsao YT, Hou CH (2017) Fractalkine/CX3CL1 induced intercellular adhesion molecule-1-dependent tumor metastasis through the CX3CR1/PI3K/Akt/NF-κB pathway in human osteosarcoma. Oncotarget 8(33):54136–54148. https://doi.org/10.18632/oncotarget.11250
Article
Google Scholar
Rutti S, Arous C, Schvartz D, Timper K, Sanchez JC, Dermitzakis E, Donath MY et al (2014) Fractalkine (CX3CL1), a new factor protecting β-cells against TNFα. Mol Metab 3(7):731–741. https://doi.org/10.1016/j.molmet.2014.07.007
Article
CAS
Google Scholar
Weinhard L, Di Bartolomei G, Bolasco G, Machado P, Schieber NL, Neniskyte U, Exiga M et al (2018) Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction. Nat Commun 9(1):1–14. https://doi.org/10.1038/s41467-018-03566-5
Article
CAS
Google Scholar
Sokolowski JD, Chabanon-Hicks CN, Han CZ, Heffron DS, Mandell JW (2014) Fractalkine is a “find-me” signal released by neurons undergoing ethanol-induced apoptosis. Front Cell Neurosci 8:360. https://doi.org/10.3389/fncel.2014.00360
Article
Google Scholar
Andoh M, Ikegaya Y, Koyama R (2019) Synaptic pruning by microglia in epilepsy. J Clin Med 8(12):2170. https://doi.org/10.3390/jcm8122170
Article
CAS
Google Scholar
Winter AN, Subbarayan MS, Grimmig B, Weesner JA, Moss L, Peters M, Weeber E et al (2020) Two forms of CX3CL1 display differential activity and rescue cognitive deficits in CX3CL1 knockout mice. J Neuroinflammation 17:1–14. https://doi.org/10.1186/s12974-020-01828-y
Article
CAS
Google Scholar
Machado-Pereira M, Santos T, Ferreira L, Bernardino L, Ferreira R (2017) Anti-inflammatory strategy for M2 microglial polarization using retinoic acid-loaded nanoparticles. Mediators Inflamm. https://doi.org/10.1155/2017/6742427
Article
Google Scholar
Kobashi S, Terashima T, Katagi M, Nakae Y, Okano J, Suzuki Y, Urushitani M, Kojima H (2020) Transplantation of M2-deviated microglia promotes recovery of motor function after spinal cord injury in mice. Mol Ther 28(1):254–265. https://doi.org/10.1016/j.ymthe.2019.09.004
Article
CAS
Google Scholar
Chhor V, Le Charpentier T, Lebon S, Oré MV, Celador IL, Josserand J, Degos V et al (2013) Characterization of phenotype markers and neuronotoxic potential of polarised primary microglia in vitro. Brain Behav Immun 32:70–85. https://doi.org/10.1016/j.bbi.2013.02.005
Article
CAS
Google Scholar
Wang J, Pan H, Lin Z, Xiong C, Wei C, Li H, Tong F, Dong X (2021) Neuroprotective effect of fractalkine on radiation-induced brain injury through promoting the M2 polarization of microglia. Mol Neurobiol 58(3):1074–1087. https://doi.org/10.1007/s12035-020-02138-3
Article
CAS
Google Scholar
Zhang F, Zhong R, Li S, Fu Z, Cheng C, Cai H, Le W (2017) Acute hypoxia induced an imbalanced M1/M2 activation of microglia through NF-κB signaling in Alzheimer’s disease mice and wild-type littermates. Front Aging Neurosci 9:282. https://doi.org/10.3389/fnagi.2017.00282
Article
CAS
Google Scholar
Xie Z, Zhao J, Wang H, Jiang Y, Yang Q, Fu Y, Zeng H et al (2020) Magnolol alleviates Alzheimer’s disease-like pathology in transgenic C. elegans by promoting microglia phagocytosis and the degradation of beta-amyloid through activation of PPAR-γ. Biomed Pharmacother 124:109886. https://doi.org/10.1016/j.biopha.2020.109886
Article
CAS
Google Scholar
Zhang J, Liu Y, Liu X, Li S, Cheng C, Chen S, Le W (2018) Dynamic changes of CX3CL1/CX3CR1 axis during microglial activation and motor neuron loss in the spinal cord of ALS mouse model. Transl Neurodegener 7(1):1–14. https://doi.org/10.1186/s40035-018-0138-4
Article
CAS
Google Scholar
Geloso MC, Corvino V, Marchese E, Serrano A, Michetti F, D’Ambrosi N (2017) The dual role of microglia in ALS: mechanisms and therapeutic approaches. Front Aging Neurosci 9:242. https://doi.org/10.3389/fnagi.2017.00242
Article
CAS
Google Scholar
Cipriani R, Villa P, Chece G, Lauro C, Paladini A, Micotti E, Perego C et al (2011) CX3CL1 is neuroprotective in permanent focal cerebral ischemia in rodents. J Neurosci 31(45):16327–16335. https://doi.org/10.1523/JNEUROSCI.3611-11.2011
Article
CAS
Google Scholar
Su JH, Zhao M, Anderson AJ, Srinivasan A, Cotman CW (2001) Activated caspase-3 expression in Alzheimer’s and aged control brain: correlation with Alzheimer pathology. Brain Res 898(2):350–357. https://doi.org/10.1016/s0006-8993(01)02018-2
Article
CAS
Google Scholar
Płóciennik A, Prendecki M, Zuba E, Siudzinski M, Dorszewska J (2015) Activated caspase-3 and neurodegeneration and synaptic plasticity in Alzheimer’s disease. Adv Alzheimer’s Dis 4(03):63–77. https://doi.org/10.4236/aad.2015.43007
Article
CAS
Google Scholar
Harrison JK, Jiang Y, Chen S, Xia Y, Maciejewski D, McNamara RK, Streit WJ et al (1998) Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc Natl Acad Sci USA 95(18):10896–10901. https://doi.org/10.1073/pnas.95.18.10896
Article
CAS
Google Scholar
Bolós M, Llorens-Martín M, Perea JR, Jurado-Arjona J, Rábano A, Hernández F, Avila J (2017) Absence of CX3CR1 impairs the internalization of Tau by microglia. Mol Neurodegener 12(1):1–14. https://doi.org/10.1186/s13024-017-0200-1
Article
CAS
Google Scholar
Barati S, Ragerdi Kashani I, Moradi F, Tahmasebi F, Mehrabi S, Barati M, Joghataei MT (2019) Mesenchymal stem cell mediated effects on microglial phenotype in cuprizone-induced demyelination model. J Cell Biochem 120(8):13952–13964. https://doi.org/10.1002/jcb.28670
Article
CAS
Google Scholar
Lastres-Becker I, Innamorato NG, Jaworski T, Rabano A, Kügler S, Van Leuven F, Cuadrado A (2014) Fractalkine activates NRF2/NFE2L2 and heme oxygenase 1 to restrain tauopathy-induced microgliosis. Brain 137(1):78–91. https://doi.org/10.1093/brain/awt323
Article
Google Scholar
Bachstetter AD, Morganti JM, Jernberg J, Schlunk A, Mitchell SH, Brewster KW, Hudson CE (2011) Fractalkine and CX3CR1 regulate hippocampal neurogenesis in adult and aged rats. Neurobiol Aging 32(11):2030–2044. https://doi.org/10.1016/j.neurobiolaging.2009.11.022
Article
CAS
Google Scholar
Kitazawa M, Cheng D, Tsukamoto MR, Koike MA, Wes PD, Vasilevko V, Cribbs DH, LaFerla FM (2011) Blocking IL-1 signaling rescues cognition, attenuates tau pathology, and restores neuronal β-catenin pathway function in an Alzheimer’s disease model. J Immunol 187(12):6539–6549. https://doi.org/10.4049/jimmunol.1100620
Article
CAS
Google Scholar
Quintanilla RA, Orellana DI, González-Billault C, Maccioni RB (2004) Interleukin-6 induces Alzheimer-type phosphorylation of tau protein by deregulating the cdk5/p35 pathway. Exp Cell Res 295(1):245–257. https://doi.org/10.1016/j.yexcr.2004.01.002
Article
CAS
Google Scholar
Shi JQ, Shen W, Chen J, Wang BR, Zhong LL, Zhu YW, Zhu HQ et al (2011) Anti-TNF-α reduces amyloid plaques and tau phosphorylation and induces CD11c-positive dendritic-like cell in the APP/PS1 transgenic mouse brains. Brain Res 1368:239–247. https://doi.org/10.1016/j.brainres.2010.10.053
Article
CAS
Google Scholar
Carlson NG, Wieggel WA, Chen J, Bacchi A, Rogers SW, Gahring LC (1999) Inflammatory cytokines IL-1α, IL-1β, IL-6, and TNF-α impart neuroprotection to an excitotoxin through distinct pathways. J Immunol 163(7):3963–3968
CAS
Google Scholar
Aoyama T, Inokuchi S, Brenner DA, Seki E (2010) CX3CL1-CX3CR1 interaction prevents carbon tetrachloride-induced liver inflammation and fibrosis in mice. Hepatology 52(4):1390–1400. https://doi.org/10.1002/hep.23795
Article
CAS
Google Scholar
Ishida Y, Kimura A, Nosaka M, Kuninaka Y, Hemmi H, Sasaki I, Kaisho T et al (2017) Essential involvement of the CX3CL1-CX3CR1 axis in bleomycin-induced pulmonary fibrosis via regulation of fibrocyte and M2 macrophage migration. Sci Rep 7(1):1–12. https://doi.org/10.1038/s41598-017-17007-8
Article
CAS
Google Scholar
Barakat W, Fahmy A, Askar M, El-Kannishy S (2018) Effectiveness of arginase inhibitors against experimentally induced stroke. Naunyn-Schmiedeb Arch Pharmacol 391(6):603–612. https://doi.org/10.1007/s00210-018-1489-1
Article
CAS
Google Scholar
Rosito M, Lauro C, Chece G, Porzia A, Monaco L, Mainiero F, Catalano M et al (2014) Trasmembrane chemokines CX3CL1 and CXCL16 drive interplay between neurons, microglia and astrocytes to counteract pMCAO and excitotoxic neuronal death. Front Cell Neurosci 8:193. https://doi.org/10.3389/fncel.2014.00193
Article
CAS
Google Scholar
Kvichansky AA, Volobueva MN, Spivak YS, Tret’yakova LV, Gulyaeva NV, Bolshakov AP (2019) Expression of mRNAs for IL-1β, IL-6, IL-10, TNFα, CX3CL1, and TGFβ1 cytokines in the brain tissues: assessment of contribution of blood cells with and without perfusion. Biochem (Mosc) 84(8):905–910. https://doi.org/10.1134/S0006297919080066
Article
CAS
Google Scholar
Lauro C, Chece G, Monaco L, Antonangeli F, Peruzzi G, Rinaldo S, Paone A et al (2019) Fractalkine modulates microglia metabolism in brain ischemia. Front Cell Neurosci 13:414. https://doi.org/10.3389/fncel.2019.00414
Article
CAS
Google Scholar
Yang J, Zhang L, Yu C, Yang XF, Wang H (2014) Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark Res 2(1):1–9. https://doi.org/10.1186/2050-7771-2-1
Article
Google Scholar
Yoshikawa M, Nakajima T, Matsumoto K, Okada N, Tsukidate T, Iida M, Otori N et al (2004) TNF-α and IL-4 regulate expression of fractalkine (CX3CL1) as a membrane-anchored proadhesive protein and soluble chemotactic peptide on human fibroblasts. FEBS Lett 561(1–3):105–110. https://doi.org/10.1016/S0014-5793(04)00132-2
Article
CAS
Google Scholar
Jurga AM, Paleczna M, Kuter KZ (2020) Overview of general and discriminating markers of differential microglia phenotypes. Front Cell Neurosci 14:198. https://doi.org/10.3389/fncel.2020.00198
Article
Google Scholar
Kremlev SG, Palmer C (2005) Interleukin-10 inhibits endotoxin-induced pro-inflammatory cytokines in microglial cell cultures. J Neuroimmunol 162(1–2):71–80. https://doi.org/10.1016/j.jneuroim.2005.01.010
Article
CAS
Google Scholar
Mizuno T (2012) The biphasic role of microglia in Alzheimer’s disease. Int J Alzheimers Dis. https://doi.org/10.1155/2012/737846
Article
Google Scholar
Welser JV, Li L, Milner R (2010) Microglial activation state exerts a biphasic influence on brain endothelial cell proliferation by regulating the balance of TNF and TGF-β1. J Neuroinflammation 7(1):1–7. https://doi.org/10.1186/1742-2094-7-89
Article
CAS
Google Scholar
Yoneda O, Imai T, Nishimura M, Miyaji M, Mimori T, Okazaki T, Domae N et al (2003) Membrane-bound form of fractalkine induces IFN-γ production by NK cells. Eur J Immunol 33(1):53–58. https://doi.org/10.1002/immu.200390007
Article
CAS
Google Scholar
Schulz C, Schäfer A, Stolla M, Kerstan S, Lorenz M, von Brühl ML, Schiemann M et al (2007) Clinical perspective. Circulation 116(7):764–773. https://doi.org/10.1161/CIRCULATIONAHA.107.695189
Article
CAS
Google Scholar
Wu F, Ma Q, Song H, Guo X, Diniz MA, Song SS, Gonzalez NR et al (2018) Differential features of culprit intracranial atherosclerotic lesions: a whole-brain vessel wall imaging study in patients with acute ischemic stroke. J Am Heart Assoc 7(15):e009705. https://doi.org/10.1161/JAHA.118.009705
Article
Google Scholar
Al Mamun A, Chauhan A, Qi S, Ngwa C, Xu Y, Sharmeen R, Hazen AL et al (2020) Microglial IRF5-IRF4 regulatory axis regulates neuroinflammation after cerebral ischemia and impacts stroke outcomes. Proc Natl Acad Sci USA 117(3):1742–1752. https://doi.org/10.1073/pnas.1914742117
Article
CAS
Google Scholar
Dworzak J, Renvoise B, Habchi J, Yates EV, Combadiere C, Knowles TP, Dobson CM et al (2015) Neuronal Cx3cr1 deficiency protects against amyloid β-induced neurotoxicity. PLoS ONE 10(6):e0127730. https://doi.org/10.1371/journal.pone.0127730
Article
CAS
Google Scholar
Earls RH, Lee JK (2020) The role of natural killer cells in Parkinson’s disease. Exp Mol Med 52(9):1517–1525. https://doi.org/10.1038/s12276-020-00505-7
Article
CAS
Google Scholar
Lee E, Chanamara S, Pleasure D, Soulika AM (2012) IFN-gamma signaling in the central nervous system controls the course of experimental autoimmune encephalomyelitis independently of the localization and composition of inflammatory foci. J Neuroinflammation 9(1):1–17. https://doi.org/10.1186/1742-2094-9-7.pdf
Article
Google Scholar
Cardona SM, Mendiola AS, Yang YC, Adkins SL, Torres V, Cardona AE (2015) Disruption of fractalkine signaling leads to microglial activation and neuronal damage in the diabetic retina. ASN Neuro 7(5):1759091415608204. https://doi.org/10.1177/1759091415608204
Article
CAS
Google Scholar
O’Sullivan SA, Dev KK (2017) The chemokine fractalkine (CX3CL1) attenuates H2O2-induced demyelination in cerebellar slices. J Neuroinflammation 14(1):1–9. https://doi.org/10.1186/s12974-017-0932-4
Article
CAS
Google Scholar
Nash KR, Moran P, Finneran DJ, Hudson C, Robinson J, Morgan D, Bickford PC (2015) Fractalkine over expression suppresses α-synuclein-mediated neurodegeneration. Mol Ther 23(1):17–23. https://doi.org/10.1038/mt.2014.175
Article
CAS
Google Scholar
Finneran DJ, Nash KR (2019) Neuroinflammation and fractalkine signaling in Alzheimer’s disease. J Neuroinflammation 16(1):1–8. https://doi.org/10.1186/s12974-019-1412-9
Article
Google Scholar
Asai H, Ikezu S, Tsunoda S, Medalla M, Luebke J, Haydar T, Wolozin B et al (2015) Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat Neurosci 18(11):1584–1593. https://doi.org/10.1038/nn.4132
Article
CAS
Google Scholar
Spangenberg EE, Lee RJ, Najafi AR, Rice RA, Elmore MR, Blurton-Jones M, West BL, Green KN (2016) Eliminating microglia in Alzheimer’s mice prevents neuronal loss without modulating amyloid-β pathology. Brain 139(4):1265–1281. https://doi.org/10.1093/brain/aww016
Article
Google Scholar
Maphis N, Xu G, Kokiko-Cochran ON, Jiang S, Cardona A, Ransohoff RM, Lamb BT, Bhaskar K (2015) Reactive microglia drive tau pathology and contribute to the spreading of pathological tau in the brain. Brain 138(6):1738–1755. https://doi.org/10.1093/brain/awv081
Article
Google Scholar
Szalay G, Martinecz B, Lénárt N, Környei Z, Orsolits B, Judák L, Császár E et al (2016) Microglia protect against brain injury and their selective elimination dysregulates neuronal network activity after stroke. Nat Commun 7:11499. https://doi.org/10.1038/ncomms11499
Article
CAS
Google Scholar
Takeuchi H, Jin S, Wang J, Zhang G, Kawanokuchi J, Kuno R, Sonobe Y et al (2006) Tumor necrosis factor-α induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem 281(30):21362–21368. https://doi.org/10.1074/jbc.M600504200
Article
CAS
Google Scholar
Wu W, Li Y, Wei Y, Bosco DB, Xie M, Zhao MG, Richardson JR, Wu LJ (2020) Microglial depletion aggravates the severity of acute and chronic seizures in mice. Brain Behav Immun 89:245–255. https://doi.org/10.1016/j.bbi.2020.06.028
Article
CAS
Google Scholar
Crain JM, Nikodemova M, Watters JJ (2013) Microglia express distinct M1 and M2 phenotypic markers in the postnatal and adult central nervous system in male and female mice. J Neurosci Res 91(9):1143–1151. https://doi.org/10.1002/jnr.23242
Article
CAS
Google Scholar
Cherry JD, Olschowka JA, O’Banion MK (2014) Are “resting” microglia more “m2”? Front Immunol 5:594. https://doi.org/10.3389/fimmu.2014.00594
Article
CAS
Google Scholar
Chapman AG (2000) Glutamate and epilepsy. J Nutr 130(4):1043S-1045S. https://doi.org/10.1093/jn/130.4.1043S
Article
CAS
Google Scholar
Miao H, Li R, Han C, Lu X, Zhang H (2018) Minocycline promotes posthemorrhagic neurogenesis via M2 microglia polarization via upregulation of the TrkB/BDNF pathway in rats. J Neurophysiol 120(3):1307–1317. https://doi.org/10.1152/jn.00234.2018
Article
Google Scholar
Almeida RD, Manadas BJ, Melo CV, Gomes JR, Mendes CS, Graos MM, Carvalho RF et al (2005) Neuroprotection by BDNF against glutamate-induced apoptotic cell death is mediated by ERK and PI3-kinase pathways. Cell Death Differ 12(10):1329–1343
Article
CAS
Google Scholar
Li Z, Cao X, Ma H, Cui Y, Li X, Wang N, Zhou Y (2018) Surgical trauma exacerbates cognitive deficits and neuroinflammation in aged rats: the role of CX3CL1-CX3CR1 signaling. J Neuropathol Exp Neurol 77(8):736–746. https://doi.org/10.1093/jnen/nly051
Article
CAS
Google Scholar
Lee S, Varvel NH, Konerth ME, Xu G, Cardona AE, Ransohoff RM, Lamb BT (2010) CX3CR1 deficiency alters microglial activation and reduces beta-amyloid deposition in two Alzheimer’s disease mouse models. Am J Pathol 177(5):2549–2562. https://doi.org/10.2353/ajpath.2010.100265
Article
CAS
Google Scholar
Bellucci A, Westwood AJ, Ingram E, Casamenti F, Goedert M, Spillantini MG (2004) Induction of inflammatory mediators and microglial activation in mice transgenic for mutant human P301S tau protein. Am J Pathol 165(5):1643–1652. https://doi.org/10.1016/S0002-9440(10)63421-9
Article
CAS
Google Scholar
Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541(7638):481–487. https://doi.org/10.1038/nature21029
Article
CAS
Google Scholar
Chung IY, Benveniste EN (1990) Tumor necrosis factor-alpha production by astrocytes. Induction by lipopolysaccharide, IFN-gamma, and IL-1 beta. J Immunol 144(8):2999–3007
CAS
Google Scholar
Gorlovoy P, Larionov S, Pham TT, Neumann H (2009) Accumulation of tau induced in neurites by microglial proinflammatory mediators. FASEB J 23(8):2502–2513. https://doi.org/10.1096/fj.08-123877
Article
CAS
Google Scholar
Lee S, Xu G, Jay TR, Bhatta S, Kim KW, Jung S, Landreth GE et al (2014) Opposing effects of membrane-anchored CX3CL1 on amyloid and tau pathologies via the p38 MAPK pathway. J Neurosci 34(37):12538–12546. https://doi.org/10.1523/JNEUROSCI.0853-14.2014
Article
CAS
Google Scholar
Morganti JM, Nash KR, Grimmig BA, Ranjit S, Small B, Bickford PC, Gemma C (2012) The soluble isoform of CX3CL1 is necessary for neuroprotection in a mouse model of Parkinson’s disease. J Neurosci 32(42):14592–14601. https://doi.org/10.1523/JNEUROSCI.0539-12.2012
Article
CAS
Google Scholar
Mizuno T, Doi Y, Mizoguchi H, Jin S, Noda M, Sonobe Y, Takeuchi H, Suzumura A (2011) Interleukin-34 selectively enhances the neuroprotective effects of microglia to attenuate oligomeric amyloid-β neurotoxicity. Am J Pathol 179(4):2016–2027. https://doi.org/10.1016/j.ajpath.2011.06.011
Article
CAS
Google Scholar
McGeer PL, Itagaki S, Boyes BE, McGeer EG (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38(8):1285–1291. https://doi.org/10.1212/wnl.38.8.1285
Article
CAS
Google Scholar
Sterka D Jr, Marriott I (2006) Characterization of nucleotide-binding oligomerization domain (NOD) protein expression in primary murine microglia. J Neuroimmunol 179(1–2):65–75. https://doi.org/10.1016/j.jneuroim.2006.06.009
Article
CAS
Google Scholar
Honda M, Akiyama H, Yamada Y, Kondo H, Kawabe Y, Takeya M, Takahashi K et al (1998) Immunohistochemical evidence for a macrophage scavenger receptor in Mato cells and reactive microglia of ischemia and Alzheimer’s disease. Biochem Biophys Res Commun 245(3):734–740. https://doi.org/10.1006/bbrc.1998.8120
Article
CAS
Google Scholar
Franco-Bocanegra DK, McAuley C, Nicoll JA, Boche D (2019) Molecular mechanisms of microglial motility: changes in ageing and Alzheimer’s disease. Cells 8(6):639. https://doi.org/10.3390/cells8060639
Article
CAS
Google Scholar
Gyoneva S, Traynelis SF (2013) Norepinephrine modulates the motility of resting and activated microglia via different adrenergic receptors. J Biol Chem 288(21):15291–15302. https://doi.org/10.1074/jbc.M113.458901
Article
CAS
Google Scholar
Horti AG, Naik R, Foss CA, Minn I, Misheneva V, Du Y, Wang Y et al (2019) PET imaging of microglia by targeting macrophage colony-stimulating factor 1 receptor (CSF1R). Proc Natl Acad Sci USA 116(5):1686–1691. https://doi.org/10.1073/pnas.1812155116
Article
CAS
Google Scholar
Gerber YN, Saint-Martin GP, Bringuier CM, Bartolami S, Goze-Bac C, Noristani HN, Perrin FE (2018) CSF1R inhibition reduces microglia proliferation, promotes tissue preservation and improves motor recovery after spinal cord injury. Front Cell Neurosci 12:368. https://doi.org/10.3389/fncel.2018.00368
Article
CAS
Google Scholar
Lin W, Xu D, Austin CD, Caplazi P, Senger K, Sun Y, Jeet S et al (2019) Function of CSF1 and IL34 in macrophage homeostasis, inflammation and cancer. Front Immunol. https://doi.org/10.3389/fimmu.2019.02019
Article
Google Scholar
Easley-Neal C, Foreman O, Sharma N, Zarrin AA, Weimer RM (2019) CSF1R ligands IL-34 and CSF1 are differentially required for microglia development and maintenance in white and gray matter brain regions. Front Immunol 10:2199. https://doi.org/10.3389/fimmu.2019.02199
Article
CAS
Google Scholar
Hu X, Li S, Doycheva DM, Huang L, Lenahan C, Liu R, Huang J et al (2020) Rh-CSF1 attenuates neuroinflammation via the CSF1R/PLCG2/PKCε pathway in a rat model of neonatal HIE. J Neuroinflammation 17(1):1–18. https://doi.org/10.1186/s12974-020-01862-w
Article
CAS
Google Scholar
Li M, Pisalyaput K, Galvan M, Tenner AJ (2004) Macrophage colony stimulatory factor and interferon-γ trigger distinct mechanisms for augmentation of β-amyloid-induced microglia-mediated neurotoxicity. J Neurochem 91(3):623–633. https://doi.org/10.1111/j.1471-4159.2004.02765.x
Article
CAS
Google Scholar
Pons V, Laflamme N, Préfontaine P, Rivest S (2020) Role of macrophage colony-stimulating factor receptor on the proliferation and survival of microglia following systemic nerve and cuprizone-induced injuries. Front Immunol 11:47. https://doi.org/10.3389/fimmu.2020.00047
Article
CAS
Google Scholar
Wu CC, Chang CY, Shih KC, Hung CJ, Wang YY, Lin SY, Chen WY et al (2020) β-Funaltrexamine displayed anti-inflammatory and neuroprotective effects in cells and rat model of stroke. Int J Mol Sci 21(11):3866. https://doi.org/10.3390/ijms21113866
Article
CAS
Google Scholar
Oosterhof N, Kuil LE, van der Linde HC, Burm SM, Berdowski W, van Ijcken WF, van Swieten JC et al (2018) Colony-stimulating factor 1 receptor (CSF1R) regulates microglia density and distribution, but not microglia differentiation in vivo. Cell Rep 24(5):1203–1217. https://doi.org/10.1016/j.celrep.2018.06.113
Article
CAS
Google Scholar
Miller FD, Gauthier AS (2007) Timing is everything: making neurons versus glia in the developing cortex. Neuron 54(3):357–369. https://doi.org/10.1016/j.neuron.2007.04.019
Article
CAS
Google Scholar
Guan Z, Kuhn JA, Wang X, Colquitt B, Solorzano C, Vaman S, Guan AK et al (2016) Injured sensory neuron-derived CSF1 induces microglial proliferation and DAP12-dependent pain. Nat Neurosci 19(1):94–101. https://doi.org/10.1038/nn.4189
Article
CAS
Google Scholar
Mouchemore KA, Pixley FJ (2012) CSF-1 signaling in macrophages: pleiotrophy through phosphotyrosine-based signaling pathways. Crit Rev Clin Lab Sci 49(2):49–61. https://doi.org/10.3109/10408363.2012.666845
Article
CAS
Google Scholar
Pandur E, Tamási K, Pap R, Varga E, Miseta A, Sipos K (2019) Fractalkine induces hepcidin expression of BV-2 microglia and causes iron accumulation in SH-SY5Y cells. Cell Mol Neurobiol 39(7):985–1001. https://doi.org/10.1007/s10571-019-00694-4
Article
CAS
Google Scholar
Wang Y, Szretter KJ, Vermi W, Gilfillan S, Rossini C, Cella M, Barrow AD et al (2012) IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat Immunol 13(8):753–760. https://doi.org/10.1038/ni.2360
Article
CAS
Google Scholar
Lin H, Lee E, Hestir K, Leo C, Huang M, Bosch E, Halenbeck R et al (2008) Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science 320(5877):807–811. https://doi.org/10.1126/science.1154370
Article
CAS
Google Scholar
Kawanokuchi J, Shimizu K, Nitta A, Yamada K, Mizuno T, Takeuchi H, Suzumura A (2008) Production and functions of IL-17 in microglia. J Neuroimmunol 194(1–2):54–61. https://doi.org/10.1016/j.jneuroim.2007.11.006
Article
CAS
Google Scholar
Eda H, Shimada H, Beidler DR, Monahan JB (2011) Proinflammatory cytokines, IL-1β and TNF-α, induce expression of interleukin-34 mRNA via JNK-and p44/42 MAPK-NF-κB pathway but not p38 pathway in osteoblasts. Rheumatol Int 31(11):1525–1530. https://doi.org/10.1007/s00296-010-1688-7
Article
CAS
Google Scholar
Hwang SJ, Choi B, Kang SS, Chang JH, Kim YG, Chung YH, Sohn DH et al (2012) Interleukin-34 produced by human fibroblast-like synovial cells in rheumatoid arthritis supports osteoclastogenesis. Arthritis Res Ther 14(1):R14. https://doi.org/10.1186/ar3693
Article
CAS
Google Scholar
Xu R, Sun HF, Williams DW, Jones AV, Al-Hussaini A, Song B, Wei XQ (2015) IL-34 suppresses candida albicans induced TNFα production in M1 macrophages by downregulating expression of dectin-1 and TLR2. J Immunol Res 2015:328146. https://doi.org/10.1155/2015/328146
Article
CAS
Google Scholar
Li L, Acioglu C, Heary RF, Elkabes S (2020) Role of astroglial toll-like receptors (TLRs) in central nervous system infections, injury and neurodegenerative diseases. Brain Behav Immun 91:740–755. https://doi.org/10.1016/j.bbi.2020.10.007
Article
CAS
Google Scholar
Fiebich BL, Batista CRA, Saliba SW, Yousif NM, de Oliveira ACP (2018) Role of microglia TLRs in neurodegeneration. Front Cell Neurosci 12:329. https://doi.org/10.3389/fncel.2018.00329
Article
CAS
Google Scholar
Choi I, Zhang Y, Seegobin SP, Pruvost M, Wang Q, Purtell K, Zhang B, Yue Z (2020) Microglia clear neuron-released α-synuclein via selective autophagy and prevent neurodegeneration. Nat Commun 11(1):1–14. https://doi.org/10.1038/s41467-020-15119-w
Article
CAS
Google Scholar
Games D, Seubert P, Rockenstein E, Patrick C, Trejo M, Ubhi K, Ettle B et al (2013) Axonopathy in an α-Synuclein transgenic model of Lewy body disease is associated with extensive accumulation of C-terminal–truncated α-Synuclein. Am J Pathol 182(3):940–953. https://doi.org/10.1016/j.ajpath.2012.11.018
Article
CAS
Google Scholar
Sorrentino ZA, Giasson BI (2020) The emerging role of α-synuclein truncation in aggregation and disease. J Biol Chem 295(30):10224–10244. https://doi.org/10.1074/jbc.REV120.011743
Article
CAS
Google Scholar
Fellner L, Irschick R, Schanda K, Reindl M, Klimaschewski L, Poewe W, Wenning GK, Stefanova N (2013) Toll-like receptor 4 is required for α-synuclein dependent activation of microglia and astroglia. Glia 61(3):349–360. https://doi.org/10.1002/glia.22437
Article
Google Scholar
Mizutani N, Sakurai T, Shibata T, Uchida K, Fujita J, Kawashima R, Kawamura YI et al (2007) Dose-dependent differential regulation of cytokine secretion from macrophages by fractalkine. J Immunol 179(11):7478–7487. https://doi.org/10.4049/jimmunol.179.11.7478
Article
CAS
Google Scholar
Huang NQ, Jin H, Zhou SY, Shi JS, Jin F (2017) TLR4 is a link between diabetes and Alzheimer’s disease. Behav Brain Res 316:234–244. https://doi.org/10.1016/j.bbr.2016.08.047
Article
CAS
Google Scholar
Bernier LP, Bohlen CJ, York EM, Choi HB, Kamyabi A, Dissing-Olesen L, Hefendehl JK et al (2019) Nanoscale surveillance of the brain by microglia via cAMP-regulated filopodia. Cell Rep 27(10):2895–2908. https://doi.org/10.1016/j.celrep.2019.05.010
Article
CAS
Google Scholar
Jäkel S, Dimou L (2017) Glial cells and their function in the adult brain: a journey through the history of their ablation. Front Cell Neurosci 11:24. https://doi.org/10.3389/fncel.2017.00024
Article
CAS
Google Scholar
Madrigal JL, Caso JR, García-Bueno B, Gutiérrez IL, Leza JC (2017) Noradrenaline induces CX3CL1 production and release by neurons. Neuropharmacology 114:146–155. https://doi.org/10.1016/j.neuropharm.2016.12.001
Article
CAS
Google Scholar
Hinojosa AE, Caso JR, García-Bueno B, Leza JC, Madrigal JL (2013) Dual effects of noradrenaline on astroglial production of chemokines and pro-inflammatory mediators. J Neuroinflammation 10(1):852. https://doi.org/10.1186/1742-2094-10-81
Article
CAS
Google Scholar
Batista CRA, Gomes GF, Candelario-Jalil E, Fiebich BL, De Oliveira ACP (2019) Lipopolysaccharide-induced neuroinflammation as a bridge to understand neurodegeneration. Int J Mol Sci 20(9):2293. https://doi.org/10.3390/ijms20092293
Article
CAS
Google Scholar
Yang D, Elner SG, Bian ZM, Till GO, Petty HR, Elner VM (2007) Pro-inflammatory cytokines increase reactive oxygen species through mitochondria and NADPH oxidase in cultured RPE cells. Exp Eye Res 85(4):462–472. https://doi.org/10.1016/j.exer.2007.06.013
Article
CAS
Google Scholar
Tanabe K, Matsushima-Nishiwaki R, Yamaguchi S, Iida H, Dohi S, Kozawa O (2010) Mechanisms of tumor necrosis factor-α-induced interleukin-6 synthesis in glioma cells. J Neuroinflammation 7(1):1–8. https://doi.org/10.1186/1742-2094-7-16
Article
CAS
Google Scholar
Zielasek J, Tausch M, Toyka KV, Hartung HP (1992) Production of nitrite by neonatal rat microglial cells/brain macrophages. Cell Immunol 141(1):111–120. https://doi.org/10.1016/0008-8749(92)90131-8
Article
CAS
Google Scholar
Ali EH, Ahmed-Farid OA, Osman AA (2017) Bone marrow-derived mesenchymal stem cells ameliorate sodium nitrite-induced hypoxic brain injury in a rat model. Neural Regen Res 12(12):1990–1999. https://doi.org/10.4103/1673-5374.221155
Article
CAS
Google Scholar
Zujovic V, Benavides J, Vigé X, Carter C, Taupin V (2000) Fractalkine modulates TNF-α secretion and neurotoxicity induced by microglial activation. Glia 29(4):305–315. https://doi.org/10.1002/(SICI)1098-1136(20000215)29:4%3c305::AID-GLIA2%3e3.0.CO;2-V
Article
CAS
Google Scholar
Liang KJ, Lee JE, Wang YD, Ma W, Fontainhas AM, Fariss RN, Wong WT (2009) Regulation of dynamic behavior of retinal microglia by CX3CR1 signaling. Investig Ophthalmol Vis Sci 50(9):4444–4451. https://doi.org/10.1167/iovs.08-3357
Article
Google Scholar
Dichmann S, Herouy Y, Purlis D, Rheinen H, Gebicke-Härter P, Norgauer J (2001) Fractalkine induces chemotaxis and actin polymerisation in human dendritic cells. Inflamm Res 50:529–533. https://doi.org/10.1007/PL00000230
Article
CAS
Google Scholar
Das R, Balmik AA, Chinnathambi S (2020) Phagocytosis of full-length Tau oligomers by Actin-remodeling of activated microglia. J Neuroinflammation 17(1):1–15. https://doi.org/10.1186/s12974-019-1694-y
Article
CAS
Google Scholar
Wong HS, Jaumouillé V, Heit B, Doodnauth SA, Patel S, Huang YW, Grinstein S, Robinson LA (2014) Cytoskeletal confinement of CX3CL1 limits its susceptibility to proteolytic cleavage by ADAM10. Mol Biol Cell 25(24):3884–3899. https://doi.org/10.1091/mbc.E13-11-0633
Article
CAS
Google Scholar
Hu X, Li P, Guo Y, Wang H, Leak RK, Chen S, Gao Y, Chen J (2012) Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke 43(11):3063–3070. https://doi.org/10.1161/STROKEAHA.112.659656
Article
CAS
Google Scholar
Wei W, Nguyen LN, Kessels HW, Hagiwara H, Sisodia S, Malinow R (2010) Amyloid beta from axons and dendrites reduces local spine number and plasticity. Nat Neurosci 13(2):190–196. https://doi.org/10.1038/nn.2476
Article
CAS
Google Scholar
Sondag CM, Dhawan G, Combs CK (2009) Beta amyloid oligomers and fibrils stimulate differential activation of primary microglia. J Neuroinflammation 6:1. https://doi.org/10.1186/1742-2094-6-1
Article
CAS
Google Scholar
Castro-Sánchez S, García-Yagüe ÁJ, Kügler S, Lastres-Becker I (2019) CX3CR1-deficient microglia shows impaired signaling of the transcription factor NRF2: implications in tauopathies. Redox Biol 22:101118. https://doi.org/10.1016/j.redox.2019.101118
Article
CAS
Google Scholar
Geinisman Y, Berry RW, Disterhoft JF, Power JM, Van der Zee EA (2001) Associative learning elicits the formation of multiple-synapse boutons. J Neurosci 21(15):5568–5573. https://doi.org/10.1523/JNEUROSCI.21-15-05568.2001
Article
CAS
Google Scholar
Schätzle P, Ster J, Verbich D, McKinney RA, Gerber U, Sonderegger P, María Mateos J (2011) Rapid and reversible formation of spine head filopodia in response to muscarinic receptor activation in CA1 pyramidal cells. J Physiol 589(17):4353–4364. https://doi.org/10.1113/jphysiol.2010.204446
Article
CAS
Google Scholar
Gehrmann J, Banati RB, Kreutzberg GW (1993) Microglia in the immune surveillance of the brain: human microglia constitutively express HLA-DR molecules. J Neuroimmunol 48(2):189–198. https://doi.org/10.1016/0165-5728(93)90191-Z
Article
CAS
Google Scholar
Peng H, Nickell CR, Chen KY, McClain JA, Nixon K (2017) Increased expression of M1 and M2 phenotypic markers in isolated microglia after four-day binge alcohol exposure in male rats. Alcohol 62:29–40. https://doi.org/10.1016/j.alcohol.2017.02.175
Article
CAS
Google Scholar
Barcia C, Ros CM, Annese V, Gomez A, Ros-Bernal F, Aguado-Llera D, Martinez-Pagan ME et al (2011) IFN-γ signaling, with the synergistic contribution of TNF-α, mediates cell specific microglial and astroglial activation in experimental models of Parkinson’s disease. Cell Death Dis 2:e142. https://doi.org/10.1038/cddis.2011.17
Article
CAS
Google Scholar
Bertho N, Laupèze B, Mooney N, Le Berre C, Charron D, Drénou B, Fauchet R (2001) HLA-DR mediated cell death is associated with, but not induced by TNF-alpha secretion in APC. Hum Immunol 62(2):106–112. https://doi.org/10.1016/s0198-8859(00)00240-8
Article
CAS
Google Scholar
Minett T, Classey J, Matthews FE, Fahrenhold M, Taga M, Brayne C, Ince PG et al (2016) Microglial immunophenotype in dementia with Alzheimer’s pathology. J Neuroinflammation 13(1):135. https://doi.org/10.1186/s12974-016-0601-z
Article
CAS
Google Scholar
Lessard AJ, LeBel M, Egarnes B, Préfontaine P, Thériault P, Droit A, Brunet A et al (2017) Triggering of NOD2 receptor converts inflammatory Ly6Chigh into Ly6Clow monocytes with patrolling properties. Cell Rep 20(8):1830–1843. https://doi.org/10.1016/j.celrep.2017.08.009
Article
CAS
Google Scholar
Xu J, Zhang Q, Li Z, Gao Y, Pang Z, Wu Y, Li G et al (2021) Astragalus polysaccharides attenuate ovalbumin-induced allergic rhinitis in rats by inhibiting NLRP3 inflammasome activation and NOD2-mediated NF-κB activation. J Med Food 24(1):1–9. https://doi.org/10.1089/jmf.2020.4750
Article
CAS
Google Scholar
Liu T, Zhang L, Joo D, Sun SC (2017) NF-κB signaling in inflammation. Signal Transduct Target Ther 2(1):1–9. https://doi.org/10.1038/sigtrans.2017.23
Article
CAS
Google Scholar
Galán-Ganga M, García-Yagüe ÁJ, Lastres-Becker I (2019) Role of MSK1 in the induction of NF-κB by the chemokine CX3CL1 in microglial cells. Cell Mol Neurobiol 39(3):331–340. https://doi.org/10.1007/s10571-019-00664-w
Article
CAS
Google Scholar
Grewal RP, Yoshida T, Finch CE, Morgan TE (1997) Scavenger receptor mRNAs in rat brain microglia are induced by kainic acid lesioning and by cytokines. NeuroReport 8(5):1077–1081. https://doi.org/10.1097/00001756-199703240-00003
Article
CAS
Google Scholar
Zuroff L, Daley D, Black KL, Koronyo-Hamaoui M (2017) Clearance of cerebral Aβ in Alzheimer’s disease: reassessing the role of microglia and monocytes. Cell Mol Life Sci 74(12):2167–2201. https://doi.org/10.1007/s00018-017-2463-7
Article
CAS
Google Scholar
Chung H, Brazil MI, Irizarry MC, Hyman BT, Maxfield FR (2001) Uptake of fibrillar beta-amyloid by microglia isolated from MSR-A (type I and type II) knockout mice. NeuroReport 12(6):1151–1154. https://doi.org/10.1097/00001756-200105080-00020
Article
CAS
Google Scholar
Yu H, Ha T, Liu L, Wang X, Gao M, Kelley J, Kao R et al (1823) (SR-A) is required for LPS-induced TLR4 mediated NF-κB activation in macrophages. Biochim Biophys Acta Mol Cell Res 7:1192–1198. https://doi.org/10.1016/j.bbamcr.2012.05.004
Article
CAS
Google Scholar
Xu MX, Yu R, Shao LF, Zhang YX, Ge CX, Liu XM, Wu WY et al (2016) Up-regulated fractalkine (FKN) and its receptor CX3CR1 are involved in fructose-induced neuroinflammation: suppression by curcumin. Brain Behav Immun 58:69–81. https://doi.org/10.1016/j.bbi.2016.01.001
Article
CAS
Google Scholar
Walker DG, Lue LF (2015) Immune phenotypes of microglia in human neurodegenerative disease: challenges to detecting microglial polarization in human brains. Alzheimer’s Res Ther 7(1):56. https://doi.org/10.1186/s13195-015-0139-9
Article
CAS
Google Scholar
Zhou M, Wang CM, Yang WL, Wang P (2013) Microglial CD14 activated by iNOS contributes to neuroinflammation in cerebral ischemia. Brain Res 1506:105–114. https://doi.org/10.1016/j.brainres.2013.02.010
Article
CAS
Google Scholar
Wu H, Zheng J, Xu S, Fang Y, Wu Y, Zeng J, Shao A et al (2021) Mer regulates microglial/macrophage M1/M2 polarization and alleviates neuroinflammation following traumatic brain injury. J Neuroinflammation 18(1):1–20. https://doi.org/10.1186/s12974-020-02041-7
Article
CAS
Google Scholar
Manich G, Gómez-López AR, Almolda B, Villacampa N, Recasens M, Shrivastava K, González B, Castellano B (2020) Differential roles of TREM2+ microglia in anterograde and retrograde axonal injury models. Front Cell Neurosci 14:567404. https://doi.org/10.3389/fncel.2020.567404
Article
CAS
Google Scholar
Jiang T, Zhang YD, Chen Q, Gao Q, Zhu XC, Zhou JS, Shi JQ et al (2016) TREM2 modifies microglial phenotype and provides neuroprotection in P301S tau transgenic mice. Neuropharmacology 105:196–206. https://doi.org/10.1016/j.neuropharm.2016.01.028
Article
CAS
Google Scholar
Fitz NF, Nam KN, Wolfe CM, Letronne F, Playso BE, Iordanova BE, Kozai TD et al (2021) Phospholipids of APOE lipoproteins activate microglia in an isoform-specific manner in preclinical models of Alzheimer’s disease. Nat Commun 12(1):1–18. https://doi.org/10.1038/s41467-021-23762-0
Article
CAS
Google Scholar
Takahashi M, Komada M, Miyazawa K, Goto S, Ikeda Y (2018) Bisphenol A exposure induces increased microglia and microglial related factors in the murine embryonic dorsal telencephalon and hypothalamus. Toxicol Lett 284:113–119. https://doi.org/10.1016/j.toxlet.2017.12.010
Article
CAS
Google Scholar
Nonn O, Güttler J, Forstner D, Maninger S, Zadora J, Balogh A, Frolova A et al (2019) Placental CX3CL1 is deregulated by angiotensin II and contributes to a pro-inflammatory trophoblast-monocyte interaction. Int J Mol Sci 20(3):641. https://doi.org/10.3390/ijms20030641
Article
CAS
Google Scholar
Yang XD, Wang LK, Wu HY, Jiao L (2018) Effects of prebiotic galacto-oligosaccharide on postoperative cognitive dysfunction and neuroinflammation through targeting of the gut-brain axis. BMC Anesthesiol 18(1):177. https://doi.org/10.1186/s12871-018-0642-1
Article
CAS
Google Scholar
Zotova E, Bharambe V, Cheaveau M, Morgan W, Holmes C, Harris S, Neal JW et al (2013) Inflammatory components in human Alzheimer’s disease and after active amyloid-β42 immunization. Brain 136(9):2677–2696. https://doi.org/10.1093/brain/awt210
Article
Google Scholar
Jovanova-Nesic K, Shoenfeld Y, Herbert Spector N (2012) Aluminum excytotoxicity and neuroautotoimmunity: the role of the brain expression of CD32+ (FcγRIIa), ICAM-1+ and CD3ξ in aging. Curr Aging Sci 5(3):209–217. https://doi.org/10.2174/1874609811205030007
Article
CAS
Google Scholar
El Khoury JB, Moore KJ, Means TK, Leung J, Terada K, Toft M, Freeman MW, Luster AD (2003) CD36 mediates the innate host response to beta-amyloid. J Exp Med 197(12):1657–1666. https://doi.org/10.1084/jem.20021546
Article
CAS
Google Scholar
Grajchen E, Wouters E, van de Haterd B, Haidar M, Hardonnière K, Dierckx T, Van Broeckhoven J et al (2020) CD36-mediated uptake of myelin debris by macrophages and microglia reduces neuroinflammation. J Neuroinflammation 17(1):1–14. https://doi.org/10.1186/s12974-020-01899-x
Article
CAS
Google Scholar
Kim SM, Mun BR, Lee SJ, Joh Y, Lee HY, Ji KY, Choi HR et al (2017) TREM2 promotes Aβ phagocytosis by upregulating C/EBPα-dependent CD36 expression in microglia. Sci Rep 7(1):1–12. https://doi.org/10.1038/s41598-017-11634-x
Article
CAS
Google Scholar
Edler MK, Johnson CT, Ahmed HS, Richardson JR (2021) Age, sex, and regional differences in scavenger receptor CD36 in the mouse brain: potential relevance to cerebral amyloid angiopathy and Alzheimer’s disease. J Comp Neurol 529(9):2209–2226. https://doi.org/10.1002/cne.25089
Article
CAS
Google Scholar
Chen X, Jiang M, Li H, Wang Y, Shen H, Li X, Zhang Y et al (2020) CX3CL1/CX3CR1 axis attenuates early brain injury via promoting the delivery of exosomal microRNA-124 from neuron to microglia after subarachnoid hemorrhage. J Neuroinflammation 17(1):1–15. https://doi.org/10.1186/s12974-020-01882-6
Article
CAS
Google Scholar
Yang M, Xu W, Wang Y, Jiang X, Li Y, Yang Y, Yuan H (2018) CD11b-activated Src signal attenuates neuroinflammatory pain by orchestrating inflammatory and anti-inflammatory cytokines in microglia. Mol Pain 14:1744806918808150. https://doi.org/10.1177/1744806918808150
Article
CAS
Google Scholar
Taddio MF, Castro Jaramillo CA, Runge P, Blanc A, Keller C, Talip Z, Béhé M et al (2021) In vivo imaging of local inflammation: monitoring LPS-induced CD80/CD86 upregulation by PET. Mol Imaging Biol 23(2):196–207. https://doi.org/10.1007/s11307-020-01543-3
Article
CAS
Google Scholar
Gao Y, Zhuang Z, Lu Y, Tao T, Zhou Y, Liu G, Wang H et al (2019) Curcumin mitigates neuro-inflammation by modulating microglia polarization through inhibiting TLR4 axis signaling pathway following experimental subarachnoid hemorrhage. Front Neurosci 13:1223. https://doi.org/10.3389/fnins.2019.01223
Article
Google Scholar
Zhou T, Huang Z, Sun X, Zhu X, Zhou L, Li M, Cheng B et al (2017) Microglia polarization with M1/M2 phenotype changes in rd1 mouse model of retinal degeneration. Front Neuroanat 11:77. https://doi.org/10.3389/fnana.2017.00077
Article
CAS
Google Scholar
Zhang H, Zhang T, Wang D, Jiang Y, Guo T, Zhang Y, Zhu F et al (2020) IFN-γ regulates the transformation of microglia into dendritic-like cells via the ERK/c-myc signaling pathway during cerebral ischemia/reperfusion in mice. Neurochem Int 141:104860. https://doi.org/10.1016/j.neuint.2020.104860
Article
CAS
Google Scholar
Cao Z, Harvey SS, Chiang T, Foltz AG, Lee AG, Cheng MY, Steinberg GK (2020) Unique subtype of microglia in degenerative thalamus after cortical stroke. Stroke 52(2):687–698. https://doi.org/10.1161/STROKEAHA.120.032402
Article
Google Scholar
Gaikwad S, Patel D, Agrawal-Rajput R (2017) CD40 negatively regulates ATP-TLR4-activated inflammasome in microglia. Cell Mol Neurobiol 37(2):351–359. https://doi.org/10.1007/s10571-016-0358-z
Article
CAS
Google Scholar
Malada-Edelstein YF, Hadad N, Levy R (2017) Regulatory role of cytosolic phospholipase A2 alpha in the induction of CD40 in microglia. J Neuroinflammation 14(1):33. https://doi.org/10.1186/s12974-017-0811-z
Article
CAS
Google Scholar
He HY, Ren L, Guo T, Deng YH (2019) Neuronal autophagy aggravates microglial inflammatory injury by downregulating CX3CL1/fractalkine after ischemic stroke. Neural Regen Res 14(2):280–288. https://doi.org/10.4103/1673-5374.244793
Article
CAS
Google Scholar
Chuang DY, Simonyi A, Kotzbauer PT, Gu Z, Sun GY (2015) Cytosolic phospholipase A2 plays a crucial role in ROS/NO signaling during microglial activation through the lipoxygenase pathway. J Neuroinflammation 12(1):1–20. https://doi.org/10.1186/s12974-015-0419-0
Article
CAS
Google Scholar
Subramanian P, Stahelin RV, Szulc Z, Bielawska A, Cho W, Chalfant CE (2005) Ceramide 1-Phosphate acts as a positive allosteric activator of group IVA cytosolic phospholipase A 2 and enhances the interaction of the enzyme with phosphatidylcholine. J Biol Chem 280(18):17601–17607. https://doi.org/10.1074/jbc.M414173200
Article
CAS
Google Scholar
Sun GY, Shelat PB, Jensen MB, He Y, Sun AY, Simonyi A (2010) Phospholipases A2 and inflammatory responses in the central nervous system. Neuromol Med 12(2):133–148. https://doi.org/10.1007/s12017-009-8092-z
Article
CAS
Google Scholar
Sun C, Hu A, Wang S, Tian B, Jiang L, Liang Y, Wang H, Dong J (2020) ADAM17-regulated CX3CL1 expression produced by bone marrow endothelial cells promotes spinal metastasis from hepatocellular carcinoma. Int J Oncol 57(1):249–263. https://doi.org/10.3892/ijo.2020.5045
Article
CAS
Google Scholar
Martini M, De Santis MC, Braccini L, Gulluni F, Hirsch E (2014) PI3K/AKT signaling pathway and cancer: an updated review. Ann Med 46(6):372–383. https://doi.org/10.3109/07853890.2014.912836
Article
CAS
Google Scholar
Lauro C, Cipriani R, Catalano M, Trettel F, Chece G, Brusadin V, Antonilli L et al (2010) Adenosine A 1 receptors and microglial cells mediate CX3CL1-induced protection of hippocampal neurons against Glu-induced death. Neuropsychopharmacol 35(7):1550–1559. https://doi.org/10.1038/npp.2010.26
Article
CAS
Google Scholar
Lauro C, Catalano M, Trettel F, Limatola C (2015) Fractalkine in the nervous system: neuroprotective or neurotoxic molecule. Ann NY Acad Sci 1351(1):141–148. https://doi.org/10.1111/nyas.12805
Article
CAS
Google Scholar
Hoeferlin LA, Wijesinghe DS, Chalfant CE (2013) The role of ceramide-1-phosphate in biological functions. Handb Exp Pharmacol 215:153–166. https://doi.org/10.1007/978-3-7091-1368-4_8
Article
CAS
Google Scholar
Zhang J, Niu N, Li B, McNutt MA (2013) Neuron-derived IgG protects neurons from complement-dependent cytotoxicity. J Histochem Cytochem 61(12):869–879. https://doi.org/10.1369/0022155413504196
Article
CAS
Google Scholar
Corcione A, Ferretti E, Bertolotto M, Fais F, Raffaghello L, Gregorio A, Tenca C et al (2009) CX3CR1 is expressed by human B lymphocytes and mediates [corrected] CX3CL1 driven chemotaxis of tonsil centrocytes. PLoS ONE 4(12):e8485. https://doi.org/10.1371/journal.pone.0008485
Article
CAS
Google Scholar
Yeo SI, Kim JE, Ryu HJ, Seo CH, Lee BC, Choi IG, Kim DS, Kang TC (2011) The roles of fractalkine/CX3CR1 system in neuronal death following pilocarpine-induced status epilepticus. J Neuroimmunol 234(1–2):93–102. https://doi.org/10.1016/j.jneuroim.2011.03.005
Article
CAS
Google Scholar
Yan XX, Cai Y, Shelton J, Deng SH, Luo XG, Oddo S, LaFerla FM et al (2012) Chronic temporal lobe epilepsy is associated with enhanced Alzheimer-like neuropathology in 3× Tg-AD mice. PLoS ONE 7(11):e48782. https://doi.org/10.1371/journal.pone.0048782
Article
CAS
Google Scholar
Rakic S, Hung Y, Smith M, So D, Tayler HM, Varney W, Wild J et al (2018) Systemic infection modifies the neuroinflammatory response in late stage Alzheimer’s disease. Acta Neuropathol Commun 6(1):88. https://doi.org/10.1186/s40478-018-0592-3
Article
CAS
Google Scholar
Swanson ME, Scotter EL, Smyth LC, Murray HC, Ryan B, Turner C, Faull RL et al (2020) Identification of a dysfunctional microglial population in human Alzheimer’s disease cortex using novel single-cell histology image analysis. Acta Neuropathol Commun 8(1):170. https://doi.org/10.1186/s40478-020-01047-9
Article
CAS
Google Scholar
Ardestani PM, Evans AK, Yi B, Nguyen T, Coutellier L, Shamloo M (2017) Modulation of neuroinflammation and pathology in the 5XFAD mouse model of Alzheimer’s disease using a biased and selective beta-1 adrenergic receptor partial agonist. Neuropharmacology 116:371–386. https://doi.org/10.1016/j.neuropharm.2017.01.010
Article
CAS
Google Scholar
Felouzis V, Hermand P, de Laissardière GT, Combadière C, Deterre P (2016) Comprehensive analysis of chemokine-induced cAMP-inhibitory responses using a real-time luminescent biosensor. Cell Signal 28(1):120–129. https://doi.org/10.1016/j.cellsig.2015.10.011
Article
CAS
Google Scholar
Azizi G, Khannazer N, Mirshafiey A (2014) The potential role of chemokines in Alzheimer’s disease pathogenesis. Am J Alzheimers Dis Other Demen 29(5):415–425. https://doi.org/10.1177/1533317513518651
Article
Google Scholar
Kasama T, Isojima S, Umemura M, Tsukamoto H, Tokunaga T, Furuya H, Yanai R et al (2014) Serum macrophage migration inhibitory factor levels are correlated with response to tocilizumab therapy in patients with rheumatoid arthritis. Rheumatol Int 34(3):429–433. https://doi.org/10.1007/s00296-013-2778-0
Article
CAS
Google Scholar
Satoh J, Kino Y, Asahina N, Takitani M, Miyoshi J, Ishida T, Saito Y (2016) TMEM119 marks a subset of microglia in the human brain. Neuropathology 36(1):39–49. https://doi.org/10.1111/neup.12235
Article
CAS
Google Scholar
Pey P, Pearce RK, Kalaitzakis ME, Griffin WS, Gentleman SM (2014) Phenotypic profile of alternative activation marker CD163 is different in Alzheimer’s and Parkinson’s disease. Acta Neuropathol Commun 2:21. https://doi.org/10.1186/2051-5960-2-21
Article
Google Scholar
Hattermann K, Sebens S, Helm O, Schmitt AD, Mentlein R, Mehdorn HM, Held-Feindt J (2014) Chemokine expression profile of freshly isolated human glioblastoma-associated macrophages/microglia. Oncol Rep 32(1):270–276. https://doi.org/10.3892/or.2014.3214
Article
CAS
Google Scholar
Flamant M, Mougenot N, Balse E, Le Fèvre L, Atassi F, Gautier EL, Le Goff W et al (2021) Early activation of the cardiac CX3CL1/CX3CR1 axis delays β-adrenergic-induced heart failure. Sci Rep 11(1):1–16. https://doi.org/10.1038/s41598-021-97493-z
Article
CAS
Google Scholar
Arioz BI, Tastan B, Tarakcioglu E, Tufekci KU, Olcum M, Ersoy N, Bagriyanik A et al (2019) Melatonin attenuates LPS-induced acute depressive-like behaviors and microglial NLRP3 inflammasome activation through the SIRT1/Nrf2 pathway. Front Immunol 10:1511. https://doi.org/10.3389/fimmu.2019.01511
Article
CAS
Google Scholar
Isami K, Imai S, Sukeishi A, Nagayasu K, Shirakawa H, Nakagawa T, Kaneko S (2018) The impact of mouse strain-specific spatial and temporal immune responses on the progression of neuropathic pain. Brain Behav Immun 74:121–132. https://doi.org/10.1016/j.bbi.2018.08.013
Article
CAS
Google Scholar
Siew JJ, Chern Y (2018) Microglial lectins in health and neurological diseases. Front Mol Neurosci 11:158. https://doi.org/10.3389/fnmol.2018.00158
Article
CAS
Google Scholar
Siew JJ, Chen HM, Chen HY, Chen HL, Chen CM, Soong BW, Wu YR et al (2019) Galectin-3 is required for the microglia-mediated brain inflammation in a model of Huntington’s disease. Nat Commun 10(1):3473. https://doi.org/10.1038/s41467-019-11441-0
Article
CAS
Google Scholar
Burguillos MA, Svensson M, Schulte T, Boza-Serrano A, Garcia-Quintanilla A, Kavanagh E, Santiago M et al (2015) Microglia-secreted galectin-3 acts as a toll-like receptor 4 ligand and contributes to microglial activation. Cell Rep 10(9):1626–1638. https://doi.org/10.1016/j.celrep.2015.02.012
Article
CAS
Google Scholar
Stochmal A, Czuwara J, Zaremba M, Rudnicka L (2020) Altered serum level of metabolic and endothelial factors in patients with systemic sclerosis. Arch Dermatol Res 312(6):453–458. https://doi.org/10.1007/s00403-019-01993-y
Article
CAS
Google Scholar
Yilmaz N, Mollahasanoglu A, Gurvit H, Can M, Tuncer N, Inanc N, Yavuz S (2012) Dysexecutive syndrome: a specific pattern of cognitive impairment in systemic sclerosis. Cogn Behav Neurol 25(2):57–62. https://doi.org/10.1097/WNN.0b013e3182593c75
Article
Google Scholar
Townley RA, Graff-Radford J, Mantyh WG, Botha H, Polsinelli AJ, Przybelski SA, Machulda MM et al (2020) Progressive dysexecutive syndrome due to Alzheimer’s disease: a description of 55 cases and comparison to other phenotypes. Brain Commun 2(1):fcaa068. https://doi.org/10.1093/braincomms/fcaa068
Article
CAS
Google Scholar
Peferoen LA, Vogel DY, Ummenthum K, Breur M, Heijnen PD, Gerritsen WH, Peferoen-Baert RM et al (2015) Activation status of human microglia is dependent on lesion formation stage and remyelination in multiple sclerosis. J Neuropathol Exp Neurol 74(1):48–63. https://doi.org/10.1097/NEN.0000000000000149
Article
CAS
Google Scholar
Bai XJ, Hao L, Guo YE, Shi XB, Wu WP (2021) Bone marrow stromal cells reverse the microglia type from pro-inflammatory tumour necrosis factor a microglia to anti-inflammatory CD206 microglia of middle cerebral artery occlusion rats through triggering secretion of CX3CL1. Folia Neuropathol 59(1):20–31. https://doi.org/10.5114/fn.2021.105129
Article
Google Scholar
Febinger HY, Thomasy HE, Pavlova MN, Ringgold KM, Barf PR, George AM, Grillo JN et al (2015) Time-dependent effects of CX3CR1 in a mouse model of mild traumatic brain injury. J Neuroinflammation 12:154. https://doi.org/10.1186/s12974-015-0386-5
Article
CAS
Google Scholar
Zhao X, Liao Y, Morgan S, Mathur R, Feustel P, Mazurkiewicz J, Qian J et al (2018) Noninflammatory changes of microglia are sufficient to cause epilepsy. Cell Rep 22(8):2080–2093. https://doi.org/10.1016/j.celrep.2018.02.004
Article
CAS