Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA: Cancer J Clin 65:87–108. https://doi.org/10.3322/caac.21262
Article
Google Scholar
Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:E359–E386. https://doi.org/10.1002/ijc.29210
Article
CAS
PubMed
Google Scholar
Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA: Cancer J. Clin 65:5–29. https://doi.org/10.3322/caac.21254
Article
Google Scholar
Ministry of Health Republic of Indonesia: Situation of cancer disease. http://www.depkes.go.id/article/view/15021800011/situasi-penyakit-kanker.html: 2015 Accessed 28 February 2017.
Khalid A, Javaid MA (2016) Matrix metalloproteinases: new targets in cancer therapy. J Cancer Sci Ther 8:143–153. https://doi.org/10.4172/1948-5956.1000406
Article
CAS
Google Scholar
Krüger A, Kates RE, Edwards DR (2010) Avoiding spam in the proteolytic internet: future strategies for anti-metastatic MMP inhibition. BBA – Mol Cell Res 1803:95–102. https://doi.org/10.1016/j.bbamcr.2009.09.016
Article
CAS
Google Scholar
Singh P, Grewal AS, Pandita D, Lather V (2018) Synthesis and evaluation of a series of caffeic acid derivatives as anticancer agents. FJPS; available online. https://doi.org/10.1016/j.fjps.2017.11.002
Article
CAS
Google Scholar
Bauvois B (2012) New facets of matrix metalloproteinases MMP-2 and MMP-9 as cell surface transducers: outside-in signaling and relationship to tumor progression. BBA – Rev Cancer 1825:29–36. https://doi.org/10.1016/j.bbcan.2011.10.001
Article
CAS
Google Scholar
Fanjul-Fernández M, Folgueras AR, Cabrera S, López-Otín C (2010) Matrix metalloproteinases: evolution, gene regulation and functional analysis in mouse models. BBA – Mol Cell Res 1803:3–19. https://doi.org/10.1016/j.bbamcr.2009.07.004
Article
CAS
Google Scholar
Gingras D, Béliveau R (2010) Emerging concepts in the regulation of membrane-type 1 matrix metalloproteinase activity. BBA – Mol Cell Res 1803:142–150. https://doi.org/10.1016/j.bbamcr.2009.04.011
Article
CAS
Google Scholar
Yang W, Li G (2012) The matrix metalloproteinases and cerebral ischemia. In: Balestrino M (ed) Advances in the preclinical study of ischemic stroke. Intech, London, pp 145–154
Google Scholar
Aiken A, Khokha R (2010) Unraveling metalloproteinase function in skeletal biology and disease using genetically altered mice. BBA – Mol Cell Res 1803:121–132. https://doi.org/10.1016/j.bbamcr.2009.07.002
Article
CAS
Google Scholar
Hariono M, Yuliani SH, Istyastono EP, Riswanto FDO, Adhipandito CF (2018) Matrix metalloproteinase 9 (MMP9) in wound healing of diabetic foot ulcer: molecular target and structure-based drug design. Wound Med 22:1–13. https://doi.org/10.1016/j.wndm.2018.05.003
Article
Google Scholar
Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69:562–573. https://doi.org/10.1016/j.cardiores.2005.12.002
Article
CAS
PubMed
Google Scholar
Tallant C, Marrero A, Gomis-Rüth FX (2010) Matrix metalloproteinases: fold and function of their catalytic domains. BBA – Mol Cell Res 1803:20–28. https://doi.org/10.1016/j.bbamcr.2009.04.003
Article
CAS
Google Scholar
Mehner C, Hockla A, Miller E, Ran S, Radisky DC, Radisky ES (2014) Tumor cell-produced matrix metalloproteinase 9 (MMP-9) drives malignant progression and metastasis of basal-like triple negative breast cancer. Oncotarget 5:2736–2749. https://doi.org/10.18632/oncotarget.1932
Article
PubMed
PubMed Central
Google Scholar
Roeb E, Behrmann I, Grötzinger J, Breuer B, Matern S (2000) An MMP-9 mutant without gelatinolytic activity as a novel TIMP-1-antagonist. FASEB J 14:1671–1673. https://doi.org/10.1096/fj.99-0947fje
Article
CAS
PubMed
Google Scholar
Fields GB (2015) New strategies for targeting matrix metalloproteinases. Matrix Biol 44–46:239–246. https://doi.org/10.1016/j.matbio.2015.01.002
Article
CAS
PubMed
Google Scholar
Brew K, Nagase H (2010) The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. BBA – Mol Cell Res 1803:55–71. https://doi.org/10.1016/j.bbamcr.2010.01.003
Article
CAS
Google Scholar
Yabluchanskiy A, Iyer RP, Hall ME, Lindsey ML (2013) Matrix metalloproteinase-9: many shades of function in cardiovascular disease. Physiology 38:391–403. https://doi.org/10.1152/physiol.00029.2013
Article
CAS
Google Scholar
Strongin AY (2010) Proteolytic and non-proteolytic roles of membrane type-1 matrix metalloproteinase in malignancy. BBA – Mol Cell Res 1803:133–141. https://doi.org/10.1016/j.bbamcr.2009.04.009
Article
CAS
Google Scholar
Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases. Struct Funct Biochem 92:827–839. https://doi.org/10.1161/01.RES.0000070112.80711.3D
Article
CAS
Google Scholar
Ugarte-Berzal E, Bailón E, Amigo-Jiménez I, Albar JP, García-Marco JA, García-Pardo A (2014) A novel CD44-binding peptide from the pro-matrix metalloproteinase-9 hemopexin domain impairs adhesion and migration of chronic lymphocytic leukemia (CLL) cells. J Biol Chem 289:15340–15349. https://doi.org/10.1074/jbc.M114.559187
Article
CAS
PubMed
PubMed Central
Google Scholar
Fassina G, Ferrari N, Brigati C, Benelli R, Santi L, Noonan D, Albini A (2000) Tissue inhibitors of metalloproteases: regulation and biological activities. Clin Exp Metastasis 18:111–120. https://doi.org/10.1023/A:1006797522521
Article
CAS
PubMed
Google Scholar
Schwab RB, Koehler M, Ali SM, Murray BW (2016) Genomic profiling and treatment of HER2+, ER+, PgR+ “triple positive” breast cancer: a case report and literature review. Cancer Treat Res Commun 9:27–31. https://doi.org/10.1016/j.ctarc.2016.06.008
Article
Google Scholar
Ma X, Liu Y, Wang Q, Chen Y, Liu M, Li X, Xiang R, Wei Y, Duan Y, Han J (2015) Tamoxifen induces the development of hernia in mice by activating MMP-2 and MMP-13 expression. BBA - Mol Basis Dis 1852:1038–1048. https://doi.org/10.1016/j.bbadis.2015.02.006
Article
CAS
Google Scholar
Yousef EM, Tahir MR, St-Pierre Y, Gaboury LA (2014) MMP9 expression varies according to molecular subtypes of breast cancer. BMC Cancer 14:1–12. https://doi.org/10.1186/1471-2407-14-609
Article
CAS
Google Scholar
Benson CS, Babu SD, Radhakrishna S, Selvamurugan N, Sankar BR (2013) Expression of matrix metalloproteinases in human breast cancer tissues. Dis Markers 34:395–405. https://doi.org/10.3233/DMA-130986
Article
CAS
PubMed
PubMed Central
Google Scholar
Li HC, Cao DC, Liu Y, Hou YF, Wu J, Lu JS, Di GH, Liu G, Li FM, Ou ZL, Jie C, Shen ZZ, Shao ZM (2004) Prognostic value of matrix metalloproteinases (MMP-2 and MMP-9) in patients with lymph node-negative breast carcinoma. Breast Cancer Res Treat 88:75–85. https://doi.org/10.1007/s10549-004-1200-8
Article
CAS
PubMed
Google Scholar
Mahmood NA (2015) Matrix metalloproteinases MMP2 and MMP9 expression in stages II-III breast cancer in Iraqi women. J Med Biol Sci Res 1:30–37
Google Scholar
McGowan PM, Duffy MJ (2008) Matrix metalloproteinase expression and outcome in patients with breast cancer: analysis of a published database. Annu Oncol 19:1566–1572. https://doi.org/10.1093/annonc/mdn180
Article
CAS
Google Scholar
Stankovic S, Konjevic G, Gopcevic K, Jovic V, Inic M, Jurisic V (2010) Activity of MMP-2 and MMP-9 in sera of breast cancer patients. Pathol Res Pract 206:241–247. https://doi.org/10.1016/j.prp.2009.12.003
Article
CAS
PubMed
Google Scholar
Hollborn M, Stathopoulos C, Steffen A, Wiedemann P, Kohen L, Bringmann A (2007) Positive feedback regulation between MMP-9 and VEGF in human RPE cells. Invest Ophthalmol Vis Sci 48:4360–4367. https://doi.org/10.1167/iovs.06-1234
Article
PubMed
Google Scholar
Sa-nguanraksa D, O-charoenrat P (2012) The role of vascular endothelial growth factor A polymorphisms in breast cancer. Int J Mol Sci 13:14845–14864. https://doi.org/10.3390/ijms131114845
Article
CAS
PubMed
PubMed Central
Google Scholar
Castañeda-Gill JM, Vishwanatha JK (2016) Antiangiogenic mechanisms and factors in breast cancer treatment. J Carcinog 15:1. https://doi.org/10.4103/1477-3163.176223
Article
PubMed
PubMed Central
Google Scholar
Park JH, Rasch MG, Qiu J, Lund IK, Egeblad M (2015) Presence of insulin-like growth factor binding proteins correlates with tumor-promoting effects of matrix metalloproteinase 9 in breast cancer. Neoplasia 17:421–433. https://doi.org/10.1016/j.neo.2015.04.003
Article
CAS
PubMed
PubMed Central
Google Scholar
Mukherjee D, Zhao J (2013) The role of chemokine receptor CXCR4 in breast cancer metastasis. Am J Cancer Res 3:46–57
CAS
PubMed
PubMed Central
Google Scholar
Deryugina EI, Quigley JP (2010) Pleiotropic roles of matrix metalloproteinases in tumor angiogenesis: contrasting, overlapping and compensatory functions. BBA – Mol Cell Res 1803:103–120. https://doi.org/10.1016/j.bbamcr.2009.09.017
Article
CAS
Google Scholar
Gialeli C, Theocharis AD, Karamanos NK (2011) Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J 278:16–27. https://doi.org/10.1111/j.1742-4658.2010.07919.x
Article
CAS
PubMed
Google Scholar
Lawler J (2002) Thrombospondin-1 as an endogenous inhibitor of angiogenesis and tumor growth. J Cell Mol Med 6:1–12. https://doi.org/10.1073/pnas.96.26.14888
Article
CAS
PubMed
Google Scholar
Fleisch MC, Maxwell CA, Barcellos-Hoff MH (2006) The pleiotropic roles of transforming growth factor beta in homeostasis and carcinogenesis of endocrine organs. Endocr Relat Cancer 13:379–400. https://doi.org/10.1677/erc.1.01112
Article
CAS
PubMed
Google Scholar
Kim ES, Kim MS, Moon A (2004) TGF-beta-induced upregulation of MMP-2 and MMP-9 depends on p38 MAPK, but not ERK signaling in MCF10A human breast epithelial cells. Int J Oncol 25:1375–1382. https://doi.org/10.3892/ijo.25.5.1375
Article
CAS
PubMed
Google Scholar
Krstic J, Santibanez JF (2014) Transforming growth factor-beta and matrix metalloproteinases: functional interactions in tumor stroma-infiltrating myeloid cells. ScientificWorldJournal 2014:521754. https://doi.org/10.1155/2014/521754
Article
CAS
PubMed
PubMed Central
Google Scholar
Zarzynska JM (2014) Two faces of TGF-beta1 in breast cancer. Mediators Inflamm 2014: 141747. doi:org/https://doi.org/10.1155/2014/141747.
García-Pardo A, Opdenakker G (2015) Nonproteolytic functions of matrix metalloproteinases in pathology and insights for the development of novel therapeutic inhibitors. Metalloproteinases Med 2:19. https://doi.org/10.2147/MNM.S63629
Article
Google Scholar
Mantuano E, Inoue G, Li X, Takahashi K, Gaultier A, Gonias SL, Campana WM (2008) The hemopexin domain of matrix metalloproteinase-9 activates cell signaling and promotes migration of Schwann cells by binding to low-density lipoprotein receptor-related protein. Neuroscience 28:11571–11582. https://doi.org/10.1523/JNEUROSCI.3053-08.2008
Article
CAS
PubMed
Google Scholar
Heermann S, Schwab MH (2013) Molecular control of Schwann cell migration along peripheral axons: keep moving! Cell Adh Migr 7:18–22. https://doi.org/10.4161/cam.22123
Article
PubMed
PubMed Central
Google Scholar
Cain C (2011) A bid to revive MMP inhibitors. SciBX 4:701. https://doi.org/10.1038/scibx.2011.701
Article
Google Scholar
Redondo-Muñoz J, Ugarte-Berzal E, García-Marco JA, del Cerro MH, Van den Steen PE, Opdenakker G, Terol MJ, García-Pardo A (2008) α4β1 integrin and 190-kDa CD44v constitute a cell surface docking complex for gelatinase B/MMP-9 in chronic leukemic but not in normal B cells. Blood 112:169–178. https://doi.org/10.1182/blood-2007-08-109249
Article
CAS
PubMed
Google Scholar
Redondo-Muñoz J, Ugarte-Berzal E, Terol MJ, Van den Steen PE, Hernández del Cerro M, Roderfeld Roeb ME, Opdennaker G, García-Marco JA, García-Pardo A (2010) Matrix metalloproteinase-9 promotes chronic lymphocytic leukemia B cell survival through Its hemopexin domain. Cancer Cell 17:160–172. https://doi.org/10.1016/j.ccr.2009.12.044
Article
CAS
PubMed
Google Scholar
Ugarte-Berzal E, Bailón E, Amigo-Jiménez I, Vituri CL, del Cerro MH, Terol MJ, Albar JP, Rivas G, García-Marco JA, García-Pardo A (2012) A 17-residue sequence from the matrix metalloproteinase-9 (MMP-9) hemopexin domain binds α4β1 integrin and inhibits MMP-9-induced functions in chronic lymphocytic leukemia B cells. J Biol Chem 287:27601–27613. https://doi.org/10.1074/jbc.M112.354670
Article
CAS
PubMed
PubMed Central
Google Scholar
Ugarte-Berzal E, Vandooren J, Bailón E, Opdenakker G, García-Pardo A (2016) Inhibition of MMP-9-dependent degradation of gelatin, but not other MMP-9 substrates, by the MMP-9 hemopexin domain blades 1 and 4. J Biol Chem 291:11751–11760. https://doi.org/10.1074/jbc.M115.708438
Article
CAS
PubMed
PubMed Central
Google Scholar
Dufour A, Zucker S, Sampson NS, Kuscu C, Cao J (2010) Role of matrix metalloproteinase-9 dimers in cell migration: design of inhibitory peptides. J Biol Chem 285:35944–35956. https://doi.org/10.1074/jbc.M109.091769
Article
CAS
PubMed
PubMed Central
Google Scholar
Roeb E, Schleinkofer K, Kernebeck T, Pötsch S, Jansen B, Behrmann I, Matern S, Grötzinger J (2002) The MMP-9 hemopexin domain is a novel gelatin binding domain and acts as an antagonist. J Biol Chem 277:50326–50332. https://doi.org/10.1074/jbc.M207446200
Article
CAS
PubMed
Google Scholar
Ezhilarasan R, Jadhav U, Mohanam I, Rao SS, Gujrati M, Mohanam S (2009) The hemopexin domain of MMP-9 inhibits angiogenesis and retards the growth of intracranial glioblastoma xenograft in nude mice. Int J Cancer 124:306–315. https://doi.org/10.1002/ijc.23951
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Y, Zhao Y, Lu C, Fu M, Dou T, Tan X (2015) Signatures of positive selection at hemopexin (PEX) domain of matrix metalloproteinase-9 (MMP-9) gene. J Biosci 40:885–890
Article
CAS
Google Scholar
Overall CM, Kleifeld O (2006) Towards third generation matrix metalloproteinase inhibitors for cancer therapy. Br J Cancer 94:941–946. https://doi.org/10.1038/sj.bjc.6603043
Article
CAS
PubMed
PubMed Central
Google Scholar
Sela-Passwell N, Rosenblum G, Shoham T, Sagi I (2010) Structural and functional bases for allosteric control of MMP activities: can it pave the path for selective inhibition? BBA – Mol Cell Res 1803:29–38. https://doi.org/10.1016/j.bbamcr.2009.04.010
Article
CAS
Google Scholar
Rosenblum G, Van den Steen PE, Cohen SR, Grossmann JG, Frenkel J, Sertchook R, Slack N, Strange NW, Opdennaker G, Sagi I (2007) Insights into the structure and domain flexibility of full-length pro-matrix metalloproteinase-9/gelatinase B. Structure 15:1227–1236. https://doi.org/10.1016/j.str.2007.07.019
Article
CAS
PubMed
Google Scholar
Bertini I, Fragai M, Luchinat C, Melikian M, Mylonas E, Sarti N, Svergun DI (2009) Interdomain flexibility in full-length matrix metalloproteinase-1 (MMP-1). J Biol Chem 284:12821–12828. https://doi.org/10.1074/jbc.M809627200
Article
CAS
PubMed
PubMed Central
Google Scholar
Overall CM, Butler GS (2007) Protease yoga: extreme flexibility of a matrixmetalloproteinase. Structure 15:1159–1161. https://doi.org/10.1016/j.str.2007.10.001
Article
CAS
PubMed
Google Scholar
Bannikov GA, Karelina TV, Collier IE, Marmer BL, Goldberg GI (2002) Substrate binding of gelatinase B induces its enzymatic activity in the presence of intact propeptide. J Biol Chem 277:16022–16027. https://doi.org/10.1074/jbc.M110931200
Article
CAS
PubMed
Google Scholar
Geurts N, Martens E, Van Aelst I, Proost P, Opdenakker G, Van den Steen PE (2008) β-Hematin interaction with the hemopexin domain of gelatinase B/MMP-9 provokes autocatalytic processing of the propeptide, thereby priming activation by MMP-3. Biochemistry 47:2689–2699. https://doi.org/10.1021/bi702260q
Article
CAS
PubMed
Google Scholar
Rosenblum G, Meroueh S, Toth M, Fisher J, Fridman R, Mobashery S, Sagi I (2007) Molecular structures and dynamics of the stepwise activation mechanism of a matrix metalloproteinase zymogen: challenging the cysteine switch dogma. J Am Chem Soc 129:13566–13574. https://doi.org/10.1021/ja073941l
Article
CAS
PubMed
Google Scholar
Lehti K, Lohi J, Juntunen MM, Pei D, Keski-Oja J (2002) Oligomerization through hemopexin and cytoplasmic domains regulates the activity and turnover of membrane-type 1 matrix metalloproteinase. J Biol Chem 277:8440–8448. https://doi.org/10.1074/jbc.M109128200
Article
CAS
PubMed
Google Scholar
Van Den Steen PE, Van Aelst I, Hvidberg V, Piccard H, Fiten P, Jacobsen C, Moestrup SK, Fry S, Royle L, Wormald MR, Wallis R, Rudd PM, Dwek RA, Opdenakker G (2006) The hemopexin and O-glycosylated domains tune gelatinase B/MMP-9 bioavailability via inhibition and binding to cargo receptors. J Biol Chem 281:18626–18637. https://doi.org/10.1074/jbc.M512308200
Article
CAS
PubMed
Google Scholar
Itoh Y, Takamura A, Ito N, Maru Y, Sato H, Suenaga N, Aoki T, Seiki M (2001) Homophilic complex formation of MT1-MMP facilitates proMMP-2 activation on the cell surface and promotes tumor cell invasion. EMBO J 20:4782–4793. https://doi.org/10.1093/emboj/20.17.4782
Article
CAS
PubMed
PubMed Central
Google Scholar
Olson MW, Bernardo MM, Pietila M, Gervasi DC, Toth M, Kotra LP, Massova I, Mobashery S, Fridman R (2000) Characterization of the monomeric and dimeric forms of latent and active matrix metalloproteinase-9 differential rates for activation by stromelysin 1. J Biol Chem 275:2661–2668. https://doi.org/10.1074/jbc.275.4.266
Article
CAS
PubMed
Google Scholar
Vandooren J, Born B, Solomonov I, Zajac E, Saldova R, Senske M, Ugarte-Berzal E, Martens E, Van den Steen PE, Damme JV, García-Pardo A, Froeyen M, Deryugina EI, Quigley JP, Moestrup SK, Rudd PM, Saqi I, Opdenakker G (2015) Circular trimers of gelatinase B/matrix metalloproteinase-9 constitute a distinct population of functional enzyme molecules differentially regulated by tissue inhibitor of metalloproteinases-1. Biochem J 465:259–270. https://doi.org/10.1042/BJ20140418
Article
CAS
PubMed
PubMed Central
Google Scholar
Cha H, Kopetzki E, Huber R, Lanzendörfer M, Brandstetter H (2002) Structural basis of the adaptive molecular recognition by MMP9. J Mol Biol 320:1065–1079. https://doi.org/10.1016/S0022-2836(02)00558-2
Article
CAS
PubMed
Google Scholar
Li J, Brick P, O’hare MC, Skarzynski T, Lloyd LF, Curry VA, Clark IM, Biqq HF, Hazleman BL, Cawston TE (1995) Structure of full-length porcine synovial collagenase reveals a C-terminal domain containing a calcium-linked, four-bladed β-propeller. Structure 3:541–549. https://doi.org/10.1016/S0969-2126(01)00188-5
Article
CAS
PubMed
Google Scholar
Libson AM, Gittis AG, Collier IE, Marmer BL, Goldberg GI, Lattman EE (1995) Crystal structure of the haemopexin-like C-terminal domain of gelatinase A. Nat Struct Biol 2:938–942. https://doi.org/10.1038/nsb1195-938
Article
CAS
PubMed
Google Scholar
Gohlke U, Gomis-Rüth F-X, Crabbe T, Murphy G, Docherty AJP, Bode W (1996) The C-terminal (haemopexin-like) domain structure of human gelatinase A (MMP2): structural implications for its function. FEBS Lett 378:126–130. https://doi.org/10.1016/0014-5793(95)01435-7
Article
CAS
PubMed
Google Scholar
Gomis-Rüth FX, Gohlke U, Betz M, Knäuper V, Murphy G, López-Otín C, Bode W (1996) The helping hand of collagenase-3 (MMP-13): 2.7 Å crystal structure of its C-terminal haemopexin-like domain. J Mol Biol 264:556–566. https://doi.org/10.1006/jmbi.1996.0661
Article
PubMed
Google Scholar
Tochowicz AM (2006) Structural analysis of the cancer promoting matrix metalloproteinase – 9 in complexes with novel pharmacological inhibitors, PhD Diss, Max-Plank-Institute fürBiochemie.
Krüger A, Soeltl R, Sopov I, Kopitz C, Arlt M, Magdolen V, Harbeck N, Gänsbacher B, Schmitt M (2001) Hydroxamate-type matrix metalloproteinase inhibitor batimastat promotes liver metastasis. Cancer Res 61:1272–1275
PubMed
Google Scholar
Sinno M, Biagioni S, Ajmone-Cat MA, Pafumi I, Caramanica P, Medda V, Tonti G, Minghetti L, Mannello F, Cacci E (2012) The matrix metalloproteinase inhibitor marimastat promotes neural progenitor cell differentiation into neurons by gelatinase-independent TIMP-2-dependent mechanisms. Stem Cells Dev 22:345–358. https://doi.org/10.1089/scd.2012.0299
Article
CAS
PubMed
Google Scholar
Cathcart J, Pulkoski-Gross A, Cao J (2015) Targeting matrix metalloproteinases in cancer: bringing new life to old ideas. Genes Dis 2:26–34. https://doi.org/10.1016/j.gendis.2014.12.002
Article
CAS
PubMed
PubMed Central
Google Scholar
Jacobsen JA, Jourden JLM, Miller MT, Cohen SM (2010) To bind zinc or not to bind zinc: an examination of innovative approaches to improved metalloproteinase inhibition. BBA – Mol Cell Res 1803:72–94. https://doi.org/10.1016/j.bbamcr.2009.08.006
Article
CAS
Google Scholar
Kumar A, Bhatnagar S, Kumar A (2010) Matrix metalloproteinase inhibitor batimastat alleviates pathology and improves skeletal muscle function in dystrophin-deficient mdx mice. Am J Pathol 177:248–260. https://doi.org/10.2353/ajpath.2010.091176
Article
CAS
PubMed
PubMed Central
Google Scholar
Gupta A, Kaur CD, Jangdey M, Saraf S (2014) Matrix metalloproteinase enzymes and their naturally derived inhibitors: novel targets in photocarcinoma therapy. Ageing Res Rev 13:65–74. https://doi.org/10.1016/j.arr.2013.12.001
Article
CAS
PubMed
Google Scholar
Löffek S, Schilling O, Franzke CW (2011) Series “matrix metalloproteinases in lung health and disease” edited by J. Müller-Quernheim and O. Eickelberg number 1 in this series: Biological role of matrix metalloproteinases: a critical balance. Eur Resp J 38:191–208
Article
Google Scholar
Björklund M, Koivunen E (2005) Gelatinase-mediated migration and invasion of cancer cells. BBA – Rev Cancer 1755:37–69. https://doi.org/10.1016/j.bbcan.2005.03.001
Article
CAS
Google Scholar
Li H, Ezra DG, Burton MJ, Bailly M (2013) Doxycycline prevents matrix remodeling and contraction by trichiasis-derived conjunctival fibroblasts. IOVS 54:4675–4682. https://doi.org/10.1167/iovs.13-11787
Article
CAS
Google Scholar
Dahl R, Titlestad I, Lindqvist A, Wielders P, Wray H, Wang M, Samuelsson V, Mo J, Holt A (2012) Effects of an oral MMP-9 and-12 inhibitor, AZD1236, on biomarkers in moderate/severe COPD: a randomised controlled trial. Pulm Pharmacol Ther 25:169–177. https://doi.org/10.1016/j.pupt.2011.12.011
Article
CAS
PubMed
Google Scholar
Kalva S, Singam ERA, Rajapandian V, Saleena LM, Subramanian V (2014) Discovery of potent inhibitor for matrix metalloproteinase-9 by pharmacophore based modeling and dynamics simulation studies. J Mol Graph Model 49:25–37. https://doi.org/10.1016/j.jmgm.2013.12.008
Article
CAS
PubMed
Google Scholar
Björklund M, Heikkilä P, Koivunen E (2004) Peptide inhibition of catalytic and noncatalytic activities of matrix metalloproteinase-9 blocks tumor cell migration and invasion. J Biol Chem 279:29589–29597. https://doi.org/10.1074/jbc.M401601200
Article
CAS
PubMed
Google Scholar
Liao C, Sitzmann M, Pugliese A, Nicklaus MC (2011) Software and resources for computational medicinal chemistry. Future Med Chem 3:1057–1085. https://doi.org/10.4155/fmc.11.63
Article
CAS
PubMed
PubMed Central
Google Scholar
Taboureau O, Baell JB, Fernández-Recio J, Villoutreix BO (2012) Established and emerging trends in computational drug discovery in the structural genomics era. Chem Biol 19:29–41. https://doi.org/10.1016/j.chembiol.2011.12.007
Article
CAS
PubMed
Google Scholar
Anderson AC (2003) The process of structure-based drug design. Chem Biol 10:787–797. https://doi.org/10.1016/j.chembiol.2003.09.002
Article
CAS
PubMed
Google Scholar
Cozza G (2017) The development of CK2i: from traditional pharmacology to in silico rational drug design. Pharmaceuticals 10:26. https://doi.org/10.3390/ph10010026
Article
CAS
PubMed Central
Google Scholar
Morris G, Huey R (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comp Chem 30:2785–2791. https://doi.org/10.1002/jcc.21256
Article
CAS
Google Scholar
Exner TE, Korb O, Ten BT (2009) New and improved features of the docking software PLANTS. Chem Cent J 3:16. https://doi.org/10.1186/1752-153X-3-S1-P16
Article
Google Scholar
Chikhi A, Bensegueni A (2008) Docking efficiency comparison of Surflex, a commercial package and Arguslab, a licensable freeware. J Comput Sci Syst Biol 1:81–86. https://doi.org/10.4172/jcsb.1000007
Article
CAS
Google Scholar
Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748. https://doi.org/10.1006/jmbi.1996.0897
Article
CAS
PubMed
Google Scholar
Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749. https://doi.org/10.1021/jm0306430
Article
CAS
PubMed
Google Scholar
Bissantz C, Folkers G, Rognan D (2000) Protein-based virtual screening of chemical databases. 1. Evaluation of different docking/scoring combinations. J Med Chem 43:4759–4767. https://doi.org/10.1021/jm001044l
Article
CAS
PubMed
Google Scholar
Irwin JJ, Shoichet BK (2005) ZINC− a free database of commercially available compounds for virtual screening. J Chem Inform Model 45:177–182. https://doi.org/10.1021/ci049714+
Article
CAS
Google Scholar
Ikram NKK, Durrant JD, Muchtaridi M, Zalaludin AS, Purwitasari N, Mohamed N, Rahim ASA, Lam CK, Normi YM, Rahman NA, Amaro RE, Wahab HA (2015) A virtual screening approach for identifying plants with anti H5N1 neuraminidase activity. J Chem Inform Model 55:308–316. https://doi.org/10.1021/ci500405g
Article
CAS
Google Scholar
Rabow AA, Shoemaker RH, Sausville EA, Covell DG (2002) Mining the National Cancer Institute’s tumor-screening database: identification of compounds with similar cellular activities. J Med Chem 45:818–840. https://doi.org/10.1021/jm010385b
Article
CAS
PubMed
Google Scholar
Dufour A, Sampson NS, Li J, Kuscu C, Rizzo RC, DeLeon JL, Zhi J, Jaber N, Liu E, Zucker S, Cao J (2011) Small-molecule anticancer compounds selectively target the hemopexin domain of matrix metalloproteinase-9. Cancer Res 71:4977–4988. https://doi.org/10.1158/0008-5472.CAN-10-4552
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Z (2012) Identification of small molecules that bind to the hemopexin domain of matrix metalloproteinase-9. The Graduate School, Stony Brook University, Stony Brook, NY
Google Scholar
Alford VM, Kamath A, Ren X, Kumar K, Gan Q, Awwa M, Tong M, Seeliger MA, Cao J, Ojima I, Sampson NS (2017) Targeting the hemopexin-like domain of latent matrix metalloproteinase-9 (proMMP-9) with a small molecule inhibitor prevents the formation of focal adhesion junctions. ACS Chem Biol 12:2788–2803. https://doi.org/10.1021/acschembio.7b00758
Article
CAS
PubMed
PubMed Central
Google Scholar
Remacle AG, Golubkov VS, Shiryaev SA, Dahl R, Stebbins JL, Chernov AV, Cheltsov AV, Pellecchia M, Strongin AY (2012) Novel MT1-MMP small-molecule inhibitors based on insights into hemopexin domain function in tumor growth. Cancer Res 72:2339–2349. https://doi.org/10.1158/0008-5472.CAN-11-4149
Article
CAS
PubMed
PubMed Central
Google Scholar